当前位置:文档之家› 煤粉热解特性对富氧燃烧中NO生成规律的影响

煤粉热解特性对富氧燃烧中NO生成规律的影响

煤粉热解特性对富氧燃烧中NO生成规律的影响
煤粉热解特性对富氧燃烧中NO生成规律的影响

煤粉热解特性实验研究

第28卷第26期中国电机工程学报V ol.28 No.26 Sep.15, 2008 2008年9月15日 Proceedings of the CSEE ?2008 Chin.Soc.for Elec.Eng. 53 文章编号:0258-8013 (2008) 26-0053-06 中图分类号:TQ 530文献标识码:A 学科分类号:470?10 煤粉热解特性实验研究 魏砾宏1,李润东1,李爱民1,李延吉1,姜秀民2 (1.沈阳航空工业学院清洁能源与环境工程研究所,辽宁省沈阳市 110034; 2.上海交通大学机械与动力工程学院,上海市闵行区 200240) Thermogravimetric Analysis on the Pyrolysis Characteristics of Pulverized Coal WEI Li-hong1, LI Run-dong1, LI Ai-min1, LI Yan-ji1, JIANG Xiu-min2 (1. Institute of Clean energy and Environmental Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034, Liaoning Province China; 2. School of Mechanical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240, China) ABSTRACT: The pyrolysis characteristics of different particle size Hegang(HG) and Zhungaer(ZGE) coal were investigated by non-isothermal thermogravimetry in high purity argon. The results show that there are four stages (dehydration, holding, rapid weight-loss and slow weight-loss) during the non-isothermal weight loss process of different granularity coal powders, the differential thermo- gravimetry(DTG) curve has two weight loss peaks when temperatures lower than 1400℃. There was no differences in the weight-loss characteristics of various samples at the temperature below 400℃. For the pyrolysis characteristics of HG coal with rising heating-up rate , the initial release temperature decreases, the maximum weight loss rate and pyrolysis index D increase. Therefore the heating-up rate increase is favorable to improving pyrolysis characteristics of pulverized coal. In addition, comparison between similar particle size HG and ZGF coal at 10℃/min heating rate shows that the pyrolytic characteristics of HG coal with high ash and similar volatile is better than ZGE coal. KEY WORDS: pulverized coal; pyrolysis characteristics; particle size; thermogravimetric analysis 摘要:利用热天平,以高纯氩气为气氛气体,研究了细化鹤岗煤和准噶尔煤的热解特性。实验结果表明,不同粒度的细化和超细煤粉的热失重过程可以分为4个阶段,在1400℃之前热失重微分曲线有2个失重峰。室温~400℃,各样品的失重特性无明显区别。400~980℃,粒度对煤粉失重速率间存在较好规律性。升温速率对鹤岗细煤粉热解特性的影响表现在,随着升温速率的提高,挥发分的初析温度降低;热 基金项目:国家高技术研究发展计划基金项目(2002AA527051);辽宁省教育厅A类计划项目(2004D079)。 The National High Technology Research and Development of China (863 Programme)(2002AA527051).解最大失重速率增大,达到最大失重速率的温度升高,煤粉的热解特性指数D值增大,即升温速率的增加有利于细煤粉的热解。此外,在10℃/min加热条件下,对比了平均粒径基本相同的鹤岗煤和准噶尔煤的热解特性,发现挥发分含量接近,而灰分含量较高的鹤岗煤的热解特性明显优于准噶尔煤。 关键词:煤粉;热解特性;颗粒粒度;热分析 0 引言 煤的热解作为煤燃烧过程中的一个重要的初始过程,对煤粉着火有极大的影响,也影响到燃烧的稳定性及后期的燃尽问题。由于煤本身具有复杂性、多样性和不均一性,因此影响煤热解的因素繁多,如煤阶[1]、矿物成分和含量[2]、粒径[3-4]、升温速率[5]、温度[6-7]、停留时间[5]、压力[8-9]、煤的显微组分[10]、气氛[11]等。超细煤粉燃烧技术是目前一种重要的有效控制NO x排放的燃烧技术(在电站煤粉锅炉燃烧方面,将超细化煤粉定义为20μm以下的煤粉[12]),美国2000年清洁煤技术项目中将超细煤粉再燃作为降低燃煤NO x排放的主要技术之一。本文采用非等温热重分析方法,研究了粒度、升温速率和煤种对细化和超细化煤粉的热解特性的影响,由微分热重曲线计算热解反应动力学参数。 1 实验部分 1.1 样品的选取和制备 实验采用鹤岗(HG),准噶尔(ZGE)煤,经过碾磨,不进行筛分制成细化和超细化煤粉,原煤的煤质分析数据见表1。

生物质与煤共热解特性研究

生物质与煤共热解特性研究 摘要:选取一种典型生物质样品(棉秆),并将生物质样品与煤分别以1:9、3:7、5:5的质量比混合。采用热重分析法,在相同升温速率下,对各样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;随混煤中生物质比例的增加,热解温度降低,热解速度变快。 关键词:热重分析生物质煤热解共热解 随着人们越来越关注化石能源的使用对生态环境的不利影响,生物质能源的利用份额逐年上升[1]。但是,由于生物质分布分散、能量密度低、收集运输和预处理费用高、热值低、水分大、转化利用需要外热源等缺点[2],使得单独利用生物质燃料的设备容量较小、投资费用较高、系统独立性差和效率低。为了使生物质在较短期内实现大规模有效利用,并具有商业竞争力,生物质与煤混合燃烧和转化技术在现阶段是一种低成本、大规模利用生物质能源的可选方案。 1 生物质能的转化 生物质的利用转化方式主要有直接燃烧、热化学转化和生物转化[3]。热化学转化是指高温下将生物质转化为其它形式能量的转化技术,包括气化(在气体介质氧气、空气或蒸汽参与的情况下对生物质进行部分氧化而转化成气体燃料的过程)、热解(在没有气体介质氧气、空气或蒸汽参与的情况下,单纯利用热使生物质中的有机物质等发生热分解从而脱除挥发性物质,常温下为液态或气态,并形成固态的半焦或焦炭的过程)和直接液化(在高温高压和催化剂作用下从生物质中提取液化石油等);生物转化法是指生物质在微生物的发酵作用下产生沼气、酒精等能源产品。 固体生物质的热解及其进一步转化是开发利用生物质能的有效途径之一。在生物质热化学转化过程中,热解是一个重要的环节。生物质形态各异,组成多为木质素、纤维素等难降解有机物,与矿物燃料不同,因此生物质热解过程是一个复杂的过程,影响生物质热解的运行参数有终端温度、加热速率、压力和滞留时间等[4]。生物质的组成、结构等对热解也都有影响。研究生物质与煤共同作为燃料所具有的特性可为更广泛的利用生物质能提供参考依据。 2 试验 2.1 试验仪器及性能指标 采用美国Perkin-Elmer公司生产的热重-差热联用仪(TG/DTA),其性能指标如下:

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案 为提高锅炉效率,降低辅机耗电率,保持煤粉“经济细度”的要求,力争机械不完全燃烧损失和制粉系统能耗之和最小;保证锅炉设备安全、各经济指标综合最优和环保参数达标排放,制定以下燃烧优化调整方案: 1、优先运行A、B、C、D层煤粉燃烧器,低负荷时运行 B、C、D层煤粉燃烧器,负荷增加时,根据需要依次投入E、F层煤粉燃烧器,运行中应平均分配各层燃烧器出力(可通过各分离器出口风粉温度、压力是否一致判断,通过调整各容量风门偏置维持各容量风门后磨煤机入口风压一致来实现),各层煤粉燃烧器出力应在24~28t/h(根据单只燃烧器设计热负荷,19.65MJ/kg热值对应出力6.1t/h,17.5 MJ/kg 热值对应出力 6.85t/h),单侧运行的磨煤机出力不得超过30t/h(通过节流单侧运行磨煤机热风调节门,维持单侧运行磨煤机总风压偏低正常双侧运行磨煤机0.7~1.0kPa,调整容量风门偏置来实现),在此原则基础上,及时减少煤粉燃烧器运行层数或对角停运燃烧器,一方面,可发挥低氮燃烧器自身的稳定能力,另一方面,较高的煤粉浓度有利于在低氧环境中,集中煤粉挥发分中的含氮基团将NO还原为N2,此外,运行下层燃烧器增加了煤粉到燃尽区(富氧区)的停留时间,可充分利用含氮基团将NO还原为N2,从而降低SCR

入口NOx。 2、锅炉氧量保持:(1)供热期,负荷150~180MW氧量 3.0~5.0%;负荷180~210MW氧量 2.5~ 4.0%;负荷大于210MW氧量2.0~3.2%。(2)非供热期,负荷150~200MW氧量3.2~ 5.5%;负荷200~250MW氧量2.7~4.0%;负荷大于250MW氧量2.0~3.5%。(3)正常情况下,锅炉氧量按不低于2.5%保持,不能超出以上规定区间;环保参数超限,异常处理时,氧量最低不低于1.5%,异常处理结束后应及时恢复正常氧量。通过以上原则保证锅炉不出现高、低温硫腐蚀、受热面壁温超限、空预器差压增大,同时为降低飞灰含碳量、再热器减温水量、排烟温度、引送风机耗电率提供保障。 3、运行中保持二次风与炉膛差压不低于0.3kPa,掺烧贫瘦煤较多时,周界风风门开度在锅炉蒸发量500t/h以下可关至10%(周界风量太大时,相当于二次风过早混入一次风,因而对着火不利),大负荷时周界风风门开度不超过35%,除保持托底二次风至少70%以上开度,其余二次风采用倒塔配风方式。 4、燃尽风量占总风量的20~30%(燃尽风量之和与锅炉总风量的比值),低负荷压低限,优先使用下层燃尽风,锅炉蒸发量600t/h以下最多使用两层燃尽风(燃尽风使用原则:锅炉蒸发量430t/h以上燃尽风A层开50~80%;锅炉蒸发量500t/h以上燃尽风B层逐渐开启至全开;锅炉蒸发

600MW超临界机组锅炉燃烧调整试验研究

第27卷第2期电站系统工程V ol.27 No.2 2011年3月Power System Engineering 16 文章编号:1005-006X(2011)02-0016-03 600 MW超临界机组锅炉燃烧调整试验研究 孙科1曹定华2刘海洋2 (1.华电电力科学研究院,2.内蒙古华电包头发电有限公司) 摘要:介绍了某电厂600 MW超临界机组锅炉燃烧调整试验。分析了该厂燃料特性与锅炉燃烧恶化的关系。找出了制粉系统投运方式对锅炉飞灰、大渣含碳量的影响。对锅炉烟气温度偏差进行了调整,并做出了氧量及二次风箱压力对锅炉效率影响曲线,给出了600 MW负荷下最佳氧量及二次风箱压力。 关键词:600 MW机组;超临界锅炉;燃烧调整 中图分类号:TK227.1 文献标识码:A Experimental Study on Combustion Adjustment of 600MW Supercritical Boilers SUN Ke, CAO Ding-hua, LIU Hai-yang Abstract:The firing adjustment experiment of 600MW supercritical unit boilers in some power plant is introduced. The relationship of the fuel character in this factory and the boilers’ firing deteriorate situation is analyzed and the influent the commission way of milling system does to the carbon content in fly ash and big slag in the boiler is found out. The deviation of the boiler’s flue gas temperature was adjusted, the efficiency curve of oxygen quantity and secondary air pressure on the boiler is made, and the best oxygen quantity and secondary bellows pressure on the boiler is given under 600MW circumstance. Key words: 600MW unit; supercritical boiler; combustion adjustment 某电厂2号机组锅炉于2008年7月21~9月19日进行了大修。在前一阶段运行中,发现锅炉存在飞灰、大渣含碳量高,左右侧烟气温度偏差较大,再热汽温偏低,锅炉效率较低等问题。为解决上述问题,有针对性地进行了相关的锅炉燃烧调整试验工作,通过调整,基本解决了锅炉存在的相关问题,找出了相关的运行规律,为锅炉安全、经济运行提供指导。 1 设备概况 某电厂锅炉是超临界参数变压螺旋管圈直流锅炉,型号为SG-1913/25.4-M965,单炉膛,一次中间再热,平衡通风,露天布置,固态排渣,全钢结构,全悬吊∏形布置, BMCR 蒸发量1913 t/h,额定蒸汽压力25.4 MPa,额定蒸汽温度571℃,再热蒸汽温度569 ℃。锅炉B-RL效率为93.55%。锅炉(B-MCR)燃煤量为240.00 t/h(设计煤种)、244.0 t/h(校核煤种)。采用中速磨煤机冷一次风机正压直吹式制粉系统,每台炉配6台中速磨煤机,燃烧设计煤种时,5台运行,1台备用。每台磨煤机带锅炉的一层燃烧器。炉膛宽度18816 mm,炉膛深度16576 mm,水冷壁下集箱标高为8300 mm,炉顶管中心标高为71050 mm,大板梁底标高78350 mm。水平烟道深度为6108 mm,由后烟井延伸部分组成,其中布置有末级过热器。后烟井深度为13200 mm,布置有低温再热器和鳍片省煤器。 锅炉采用低NO x同轴燃烧系统。主风箱设有6层宽调节比煤粉喷嘴,在煤粉喷嘴四周布置有燃料风。在每相邻两收稿日期:2010-08-25 孙科(1982-),男,硕士,工程师。杭州,310030 层煤粉喷嘴之间布置有1层辅助风喷嘴,其中包括上下2只 偏置的辅助风喷嘴、1只直吹风喷嘴。在主风箱上部设有两 层紧凑燃尽风喷嘴,在主风箱下部设有1层火下风喷嘴。在 主风箱上部布置有分离燃尽风燃烧器,包括5层可水平摆动 的分离燃尽风喷嘴。连同煤粉喷嘴的周界风,每角主燃烧器 和分离燃尽风燃烧器各有二次风挡板25组,均由电动执行 器单独操作。为满足锅炉汽温调节的需要,主燃烧器喷嘴采 用摆动结构,由内外连杆组成一个摆动系统,由一台电执行 器集中带动作上下摆动。 2 燃料特性分析 由于该厂的燃煤情况非常复杂,燃用的煤种已经严重偏 离了设计的数值,因此为做好燃烧调整试验工作,针对现阶 段的燃煤情况进行了必要的摸底试验工作。表1为设计燃料 特性表,表2为实际燃用煤种着火特性分析表。 表1 设计燃料特性表 项目设计煤种校核煤种 低位发热量LHV/kJ·kg-1 21981 20581 干燥无灰基挥发分V daf/% 24.8 21.00 全水分M t/% 9.9 9.50 空气干燥基水分M ad/% 2.1 1.90 灰分A ar/% 23.7 28.72 可磨性系数HGI 78 78 表2 实际燃用煤种着火特性分析表 项目煤样1 煤样2 着火指数RI/℃401 384 燃尽指数Cb 18.30 17.92 着火特性难难 燃尽特性极难极难

(完整版)花生壳生物质热解特性研究毕业设计

毕业论文 学院:材料科学与工程学院 专业年级:08级高分子二班 题目:花生壳生物质热解特征研究 指导教师:杨素文博士 评阅教师: 2012年5月

摘要 生物质能是重要的可再生资源之一,而热解是未来最有前景的生物质利用方式之一。通过对生物质的热解动力学研究,可以获得热解反应动力学参数,对于判断热解反应机理和影响因素以及优化反应条件具有重要意义。利用热分析仪,在氮气气氛下,采用不同升温速率对花生壳热解行为进行了研究。通过热重分析实验了解生物质受热过程中的基本变化规律及其影响因素,结果表明,随升温速率的增大,达到最高热解速率时所对应的温度也越高,且升温速率越高热解越快,达到相同热解程度所需的时间越短。通过热重曲线研究花生壳的热解动力学,求出动力学参数。 关键词:生物质, 热解、热重分析,动力学 ABSTRACT Biomass energy is one of most important renewable energies. Paralysis is one of most promising methods of biomass utilization in the future. Study on biomass paralysis kinetics which can obtain paralysis kinetic parameters is of great important significance toward judging paralysis mechanism and influence factors and optimizing reaction

锅炉燃烧调整配风规定

通知 国电东胜热电有限公司发电部第007号2011-12-01 锅炉燃烧调整方案 氧量控制表 控制锅炉氧量的意义: 煤粉燃烧是一种化学反应的过程。氧量的多少对化学反应速度影响较大,高温条件下有较高的化学反应速度,但若物理混合速度低,氧气浓度下降,可燃物得不到充足的氧气供应,结果燃烧速度也必然下降。适量的空气供应,是为燃料提供足够的氧气,它是燃烧反应的原始条件。空气供应不足,可燃物得不到足够的氧气,也就不能达到完全燃烧。但空气量过大,又会导致炉温下降及排烟损失增大。 1)入炉总风量的大小与锅炉热效率的高低密切相关,总风量过大会使排烟热损失增加;总风量过小,则会使煤粉燃烧不充分,烟气中CO含量、飞灰可燃物含量和炉渣可燃物含量增加,致使化学和机械未完全燃烧损失增加;总风量的大小也对主汽温和再热汽温产生影响,因此选取合理的入炉总风量,可使总的热损失最小,锅炉热效率达到最高,同时在低负荷时又能保持较高的汽温。 2)炉膛—风箱压差 在锅炉负荷与炉膛出口氧量不变的条件下,炉膛—风箱压差的高低关系到辅助风、燃料风和燃烬风彼此间风量的比例,比例大小对煤粉燃烧的稳定性、燃烬性及NOx的排放量有极大的影响,因此选择合理的炉膛—风箱压差,会提高锅炉的安全性和经济性。 3)燃尽风风量 燃烧器最上层为燃烬风喷口,燃烬风的作是实现分级燃烧,减少热力型NOx生成,补充燃烧后期所需氧。燃尽风风量的大小影响NOx的排放量和碳粒子的燃烬程度。不足容易产生CO,因而使灰熔点温度大大降低。这时,即使炉膛出口烟温不高,仍会形成结渣。燃用挥发份大的煤时,更容易出现这种现象。 4)燃料与空气混合不充分。 燃料与空气混合不充分时,即使供给足够的空气量,也会造成一些局部地区空气多一些,另一些局部地区空气少一些。在空气少的地区就会出现还原性气体,而使灰熔点降低,造成结渣。

医疗废物典型组分的热解特性研究

硕士学位论文 论文题目 医疗废物典型组分的热解特性研究 作者姓名苏鹏宇 指导教师岑可法教授 马增益副教授 学科(专业) 工程热物理 所在学院机械与能源工程学院 提交日期 2005年1月

Study on Pyrolysis Characteristics of Typical Components in Medical Waste Candidate: Su Pengyu Supervisor: Professor Cen Kefa Associate Professor Ma Zengyi Thermal Physics Engineering Clean Energy and Environmental Engineering Key Laboratory of Ministry of Education Institute of Thermal Power Engineering Zhejiang University, Hangzhou, China Jan.2005

学号 独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名:签字日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解浙江大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权浙江大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:导师签名: 签字日期:年月日签字日期:年月日 学位论文作者毕业后去向: 工作单位:电话: 通讯地址:邮编:

锅炉燃烧调整

[分享]锅炉燃烧的监视与调整 锅炉燃烧, 调整 锅炉燃烧的监视与调整 1. 燃烧调整的任务炉内燃烧调整的任务可归纳为四点: (1)保证燃烧供热量适应外界负荷的需要,以维持蒸汽压力、温度在正常范围内。 (2)保证着火和燃烧稳定,燃烧中心适当,火焰分布均匀,不烧坏燃烧器,不引起水冷壁、过热器等结渣和超温爆管。(燃烧的安全性) (3)燃烧完全,使机组运行处于最佳经济状况。提高燃烧的经济性,减少对环境的污染。(经济性) (4)对于平衡通风的锅炉来说,应维待一定的炉膛负压。 2. 燃烧火焰监视煤粉的正常燃烧,应具有光亮的金黄色火焰,火色稳定、均匀,火焰中心在燃烧室中部,不触及四周水冷壁;火焰下部不低于冷灰斗一半的深度,火焰中不应有煤粉分离出来,也不应有明显的星点,烟囱的排烟应呈淡灰色。 ① 火焰亮白刺眼:风量偏大,这时炉膛温度较高; ② 火焰暗红:风量过小、煤粉太粗、漏风多,此时炉膛温度偏低; ③ 火焰发黄、无力:煤的水分偏高或挥发分低。 3. 燃料量的调整由于直吹式制粉系统出力的大小直接与锅炉蒸发量相匹配,当负荷变化时,通过①调节给煤机的转速或②启停制粉系统来适应负荷变化的需要。 (1)负荷变动大,即需启动或停止一套制粉系统。 在确定制粉系统启、停方案时,必须考虑到燃烧工况的合理性,如投运燃烧器应均衡、保证炉膛四角都有燃烧器投入运行等。以韩二600MW锅炉为例: ① 75%~100%B-MCR时,运行五台磨; ② 55%~75%B-MCR时,运行四台磨; ③ 40%~55%B-MCR,只有三台磨煤机运行。

④ 40%B-MCR以下时,两台磨运行。 而当锅炉负荷小于50%B-MCR时,应投入油枪稳定燃烧。同时为了保持低负荷时燃烧的经济性,在停用制粉系统时,应注意先停上层燃烧器所对应的磨煤机,而保持下层燃烧器的运行。 (2)负荷变化不大,可通过调节运行中的制粉系统出力来解决。 1) 锅炉负荷增加,要求制粉系统出力增加,应: ① 先增加磨煤机的通风量(开大磨煤机进口风量挡板),利用磨煤机内的少量存粉作为增负荷开始时的缓冲调节; ② 然后增大给煤量(加大给煤机的转速); ③ 同时开大相应的二次风门,使燃煤量适应负荷。 2) 锅炉负荷降低时,则减少给煤量和磨煤机通风量以及二次风量。 4. 风量的调整锅炉的负荷变化时,送入炉内的风量必须与送入炉内的燃料量相适应,同时也必须对引风量进行相应的调整。 入炉的总风量包括一次风和二次风,以及少量的漏风。单元制机组通常配有一、二次风机各两台。一次风机负责将煤粉送入炉内,故运行中的一次风量按照一定的风煤比来控制;二次风机就是送风机,燃烧所需要的助燃空气主要是送风机送入炉膛的,所以入炉总风量主要是通过调节二次风量来调节的。而调节的目标就是在不同负荷下维持相应的氧量设定值(锅炉氧量定值设为锅炉负荷的函数)。 (1) 总风量的调节方法1) 送风大小的判断 ① 锅炉控制盘上装有O2量表,运行人员根据表计的指示值,通过控制烟气中的CO2和O2含量,从而控制炉内过量空气系数的大小。使其尽可能保持为最佳值,以获得较高的锅炉效率。 ② 锅炉在运行中,除了用表计分析判断之外,还要注意分析飞灰、灰渣中的可燃物含量,观察炉内火焰及排烟颜色等,综合分析炉内工况是否正常。如前所述:火焰炽白刺眼,风量偏大,O2量表计的指示值偏高,可能是送风量过大,也可能是锅炉漏风严重,送风调整时应予以注意;火焰暗红不稳,风量偏小时,O2量表计值偏小,此时火焰末端发暗且有黑色烟怠,烟气中含有CO并伴随有烟囱冒黑烟等。 2) 总风量的调节 ①是通过电动执行机构操纵送风机进口导向挡板或动叶倾角,改变其开度来实现的。

锅炉燃烧的调整

锅炉燃烧的调整 ?炉内燃烧调整的任务可归纳为三点: ?维持蒸汽压力、温度在正常范围内。 ?着火和燃烧稳定,燃烧中心适当,火焰分布均匀,燃烧完全。 ?对于平衡通风的锅炉来说,应维持一定的炉膛负压 锅炉进行监视和调整的主要内容有: ?1)使锅炉参数达到额定值,满足机组负荷要求。 ?2)保持稳定和正常的汽温汽压。 ?3)均衡给煤、给水,维持正常的水煤比。 ?4)保持合格的炉水和蒸汽品质。 ?5)保持良好的燃烧,减少热损失,提高锅炉效率。 ?6)及时调整锅炉运行工况,使机组在安全、经济的最佳工况下运行。 ?煤粉的正常燃烧,应具有限的金黄色火焰,火色稳定和均匀,火焰中心在燃烧室中部,不触及四周水冷壁;火焰下不低于冷灰斗一半的深度,火焰中不应有煤粉分离出来,也不应有明显的星点,烟囱的排放呈淡灰色。 ?如火焰亮白刺眼,表示风量偏大,这时的炉膛温度较高; ?如火焰暗红,则表示风量过小,或煤粉太粗、漏风多等,此时炉膛温度偏低; ?火焰发黄、无力,则是煤的水分高或挥发分低的反应。 制粉系统运行调整 ?(1)调整磨煤机出力时,应同时调节。 ?(2)根据磨煤机研磨件磨损情况,及时调整加载力,保证制粉系统出力。

?(3)定期进行煤粉取样分析细度,通过对分离器的调整,使煤粉细度符合要求。 ?(4)维持磨煤机出口温度正常。 一、煤粉量的调整 ?配有直吹式制粉系统的锅炉 ?当锅炉负荷有较大变动时,即需启动或停止一套制粉系统。 ?锅炉负荷变化不大时,可通过调节运行中的制粉系统出力来解决。 ?对于带直吹式制粉系统的煤粉炉,其燃料量的调节是用改变给煤量来实现的,因而对负荷改变的响应频率较仓储式制粉系统较慢。 二、风量的调整 ?锅炉的负荷变化时,送入炉内的风量必须与送入炉内的燃料量相适应,同时也必须对引风量进行相应的调整。 ?1.送风调整 ?进入锅炉的空气主要是有组织的一、二、三次风,其次是少量的漏风。 ?2.炉膛负压及引风调整 煤粉细度的调节 ?中速磨煤机固定式离心分离器的调节,通常是改变安装在磨煤机上部的可调切向 叶片角度(即折向挡板开度)来改变风粉气流的流动速度和旋转半径,从而达到改变煤粉的离心力和粗细粉分离效果的目的。在这种型式的分离器中,在一定调节范围内,煤粉细度将随折向挡板开度的增大而变粗。 ?中速磨煤机磨辊压力越大,煤粉越细,根据煤种的实际情况调整磨辊压力,从而 改变煤粉细度。 ?改变制粉系统的通风量,对煤粉细度的影响也是非常明显的。当通风量增加时, 将使煤粉变粗,通风量减小时,煤粉相应变细。但制粉系统的通风量的改变也即一次风量的改变,应充分考虑一次风量变化给燃烧带来的影响。不能作为主要的调整煤粉细度的手段。

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

锅炉燃烧调整方法

. 锅炉燃烧调整方法 锅炉运行调整中,在保证安全运行基础上,还要做到经济运行,提高锅炉效率。一般的锅炉机组,效率基本可以达到92%以上,各项损失之和不到8%,最大损失是:排烟热损失,一般5—6%,其次是机械未完全燃烧热损失不到1-1.5%,散热损失和灰渣物理热损失两项1%左右。(对高灰份煤灰渣物理热损失会更大)。从指标量化看,要提高锅炉效率,重点是降低排烟损失和机械未完全燃烧热损失。注意排烟温度的变化,排烟温度过高,影响锅炉效率,过低容易造成空预器的低温腐蚀,所以要求在运行中根据负荷的变化加强调整。 在煤质变化比较大,燃料量明显增加时,及时调整总风量和一二次风温高于设计煤种下的 精品

. 温度。 精品

. (1)控制好锅炉总风量 锅炉风量的使用,不仅影响锅炉效率的高低,而且,过量的空气量还会增加送、引风机的单耗,增加厂用电率,影响供电煤耗升高。要保持合适的风量可通过观察氧量值,一般在3-4%左右,对于不同煤种在飞灰含碳量不增加的情况下可考虑低氧燃烧,实现降低排烟损失的目的。但要根据锅炉所烧煤种的结渣特性,注意尽量保持锅炉出口烟温低于灰渣的软化温度,以减轻结渣的程度,对于易结渣煤种,可以适当保持氧量高一些,避免出现还原性气氛,减少结渣。 (2)降低排烟温度 精品

. a.锅炉吹灰器正常运行,及时吹灰,保证受热面清洁; b.防止空预器堵灰,可从出入口压差判断,当压差增大时就有可能是堵灰,要及时吹灰; c.控制锅炉火焰中心位置,在过热汽温和再热汽温不低的情况下可调火焰中心下移,可以通过对上中下各层喷燃器的配风量进行调整, d.要尽量提高进入预热器的空气温度,一般不低于20℃(冬季投入暖风器),以利于强化燃烧。特别是在低负荷阶段,往往出现锅炉氧量过高的情况,既对燃烧不利,也增加了风机单耗。 (3)降低飞灰含碳量 飞灰含碳量是指飞灰中碳的质量百分比(%)。飞灰越大,损失也越大,影响飞灰损失的因素很多,包括: 精品

煤粉热分解特性及添加助燃剂的影响

第34卷 第6期1999年6月 钢 铁 I RON AND ST EEL V o l.34,N o.6 June1999煤粉热分解特性及添加助燃剂的影响 徐万仁 杜鹤桂 (上海宝钢集团公司)(东北大学) 摘 要 研究了煤粉在氮气氛和空气气流中的热分解特性及添加助燃剂的影响。结果表明,煤粉在燃烧条件下挥发分的析出量超过在氮气氛下的产率,煤粉燃烧过程中挥发分的析出燃烧碳与残碳的燃烧并存。助燃剂的种类和加入量对煤粉热分解的催化作用有很大影响,浸渍6%左右的Fe(NO3)3可使双鸭山烟煤和阳泉无烟煤的挥发分产率分别增加1017%和512%。 关键词 高炉喷煤 热分解 挥发分产率 助燃剂 催化机理① PY ROLY ST I C CHARACTER IST I CS OF PUL VER IZED COAL AND EFFECT OF ADD IT I ONAL COM BUST I ON-SUPPORT ING AGENTS XU W an ren DU H egu i (Shanghai B ao steel Group Co rp1)(N o rtheastern U n iversity) ABSTRACT T he p yro lysis of pu lverized coal(PC)in n itrogen atm o sp here and ho t air flow and effect of additi onal chem ical com bu sti on2suppo rting agen ts w as investigated1T he resu lts show ed that the vo latile m atter yield of PC in com bu sti on is h igher than that in n itrogen,the devo latilizati on and char com bu sti on are p rocessed si m u ltaneou sly1T he effect of vari ou s ad2 diti on s on p yro lystic characteristics of PC is rem arkab le1T he additi on of Fe(NO3)3in6% increases vo latile m atter yield of b itum inou s by1017%and an th racite by512%1 KEY WOR D S pu lverized coal(PC)in jecti on in to B F,pyro lysis,vo latile m atter yield,com2 bu sti on2suppo rting agen ts,catalysis m echan is m 1 前言 尽管在喷煤过程中不要求煤粉在风口回旋区完全燃烧,未燃尽部分可在高炉内被消耗利用,但强化燃烧仍然是增大喷煤比的一个关键步骤。随喷煤量提高,必须采取强化燃烧的措施,才能保持风口前煤粉燃烧率不变或下降不多,炉芯区未燃尽煤粉不至严重恶化高炉死料柱的透气性和透液性,使炉缸活跃、煤气流分布合理(具有较强的中心气流)、高炉透气性良好、炉况稳定顺行。强化煤粉燃烧的手段应是促进煤粉热分解、着火和燃烧各过程措施的总和。 煤粉热分解对煤粉在高炉风口区着火及燃烧过程有重要影响,挥发分析出燃烧相对于煤粉在回旋区极短的停留时间(10~20m s)不可忽略。煤的挥发分越高,着火点越低,燃烧性越好。因此选择较高挥发分煤种或者通过物理和化学的预处理方法增强煤的反应活性,促进煤的热分解过程,将对提高煤粉燃烧率,增大高炉喷煤量起重要作用。 本文从煤的热分解与煤的大分子结构和煤岩组成的关系出发,研究不同变质程度煤的热分解特性,及外加化学添加剂对煤粉热分解的影响,以期为强化喷煤燃烧提供一种新的有效的工艺方法。 2 实验方法 取阳泉洗精无烟煤和双鸭山烟煤为实验用煤,原煤的化学成分、岩相组成分别见表1、2。煤粉热分解过程在煤枪喷入点开始,煤粉气流与高炉热风交叉混合后受热升温,发生热分解、着火及燃烧,因此热分解实际是在有氧条件下进行的,为研究空气环境(燃烧过程中)下煤粉的热分解特性,向立式空管炉内通热风(空气),风量为56m3 h,煤粉从炉顶喷入,实验时燃烧炉初始温度1320℃。为与在惰性气 ①联系人:徐万仁,工程师,上海(200941)宝山钢铁(集团)公司炼铁部

煤粉锅炉系统操作规程 (1)

煤粉锅炉系统操作规程 一、系统工艺流程介绍 高效洁净燃气煤粉工业锅炉系统主要包括三大部分:1、炉前煤粉储供系统;2、锅炉燃烧及换热系统;3、尾部烟气处理系统。1、煤粉储存及输送 集中制粉站来的密闭罐车直接与煤粉储罐(F001)对接,将符合要求的干煤粉输入煤粉储罐(F001)。煤粉储罐(F001)中的煤粉通过星形卸料器给入中间粉仓(F002)。中间粉仓(F002)的煤粉通过叶轮给料器(F003)定量进入风粉混合器(F004),由一次风输送,通过一次风管进入燃烧器(B002)风粉管道。 2、燃烧及换热 煤粉在锅炉(B001)内与二次风混合进入燃烧,生成高温烟气。高温烟气在炉膛内与工质换热后依次进入高温空气预热器、省煤器、低温空气预热器等尾部受热面,由锅炉下部进入布袋除尘器。冷空气由鼓风机(J002)送入燃烧器二次风道。 3、清灰 煤粉燃烧过程中产生中飞灰绝大部分随烟气进入布袋除尘器(Q001),少部分在炉膛底部及对流管束区沉积,对流管束区积灰通过压缩空气送入炉膛底部除渣机排出。尾部受热面积灰通过声波吹灰器定时清除。 4、烟气净化系统

进入布袋除尘器(Q001)的烟气经过滤除尘后,经引风机进入脱硫塔,达标后排入烟囱(Q003)进入大气。布袋除尘器收集的飞灰落入积灰箱定期密闭排出。 5、点火系统 点火系统分为燃油储存系统,供油管路,油枪系统等。 本锅炉采用燃烧器点火,点火介质采用零号或-10号轻柴油,点火操作过程如下: (1)吹扫完成后,开启油跳闸阀和油循环阀,将油枪到位,高能点火器打火(总打火40秒),开启进油角阀,如果油阀打开后监测不到火焰,关油角阀。油枪进枪不进行吹扫,停用油枪时关闭角阀,吹扫600秒,退出油枪。 (2)启动引风机、加一次风、调整引风机的挡板使炉膛负压维持在-200Pa。点火着火稳定后,调整引风机及点火一次风挡板,使炉膛负压正常。使炉膛燃烧器附件温度平稳上升至1000℃左右,满负荷运行时预热空气温度达130℃以上。 (3)粉仓粉位高于3M,炉内燃烧良好,可以投入煤粉燃烧器。煤粉喷嘴在投用前应先缓慢开启一次风进行冲管,保持一次风速在25-30m/s;将一次风挡板开度应大于90%(风压大于2500Pa),然后启动对应的给粉机,检查着火良好后再启动二次风助燃。并调整二次风使喷嘴着火良好。 (4)煤粉燃烧器应尽量相对布置,燃烧器逐只投用。燃烧优质煤时,增负荷应先加风,后加煤;减负荷应先减煤后减风。燃烧劣质燃料时,反之,风煤比严格掌握好。

600MW机组超临界直流锅炉的燃烧调整试验共4页

600MW机组超临界直流锅炉的燃烧调整试验 一、600MW超临界直流锅炉简介 我国600MW机组超临界直流锅炉,有许多都是上海电气动力集团公司制造的,其特点:四角切圆燃烧方式、一次中间再热、变压运行、平衡通风、露天布置、全钢构架、固态排渣、全悬吊结构、螺旋管圈单炉膛锅炉。这样在锅炉的设计和校核煤种均为淮南烟煤,可燃烧方式是引进的摆动式四角切圆燃烧技术,采用从美国阿尔斯通能源公司,正压直吹式制粉、冷一次风机、中速磨煤机的设计。摆动式燃烧器是采用煤粉燃烧,为四角布置、切向燃烧、。煤粉喷嘴的燃烧器在设置上分为六层,600MW机组超临界直流锅炉其主要是由中速磨煤机组成的,在出口上每台磨煤机都有四根管与炉膛四角相互连接到煤粉喷嘴上,600MW机组超临界直流锅炉MCR和ECR 负荷时投入运行五层,有一层用来备用。600MW机组超临界直流锅炉的燃烧器上设置了六层煤粉喷嘴,主要是自下而上,其燃烧方式采用的是同轴燃烧系:在主风箱设有6层,来强化煤粉喷嘴,在煤粉喷嘴的四周都分布布置燃料风。在燃烧器二次风室中是采用蒸汽雾化方式来点火,其配置了三层共12支轻油枪。600MW机组超临界直流锅炉,其制粉系统都是应用了正压直吹式系统制粉,工作原理采取的是,风进和风机出都为相互的,风进一次就风机出一次,还有一部分是通过预热器来加热,磨煤机进热以就直接转换成磨煤机的压力冷风,磨煤机每台都分为四路,供相相应的每层,这样就一次可以将风进入锅炉的炉膛了。 二、600MW机组超临界直流锅炉的燃烧调整试验 600MW机组超临界直流锅炉的燃烧优化调整的目的,在于保证锅炉达

到额定参数,运行安全及着火稳定,对效率和环保指标有这较高的要求。在600MW机组超临界直流锅炉,在其它条件和燃烧都相同的情况下,影响燃烧的主要状况其原因有:燃料用风、辅助用风、偏置用风、周界用风等等各层燃烧用风的组合。在600MW机组流锅炉的燃烧里对SOFA风投运组合、节煤器出口氧量、炉膛风箱相互压差、磨煤机组合、CCOFA风投运组合、煤粉细度等不同情况下,对600MW超临界直流锅炉效率和排放的影响。 1、燃烧调整对锅炉效率的影响 燃烧器调整主要是通过空气预热器的均匀布置来调整的,是进口的80个烟道上的测孔所测得的;而省煤器出口氧量分布,是通过热器管壁一级温度的横向来分布的,也是调节各个燃烧器二次风的配风方式。燃烧调整的目是为了保证锅炉达到额定参数,使着火稳定、这样锅炉就可以在安全的运行,首先要测得省煤器出口氧量,可见尾部烟道的氧量分布不太均匀。磨煤机燃烧器运行的调风盘全部开度,这时非运行磨煤机燃烧器调风盘开度为一半,燃烧器所有的内外二次风开度均为初始位置,而OFA层调风套筒也为初始位置,OFA层风箱A/B侧挡板和二次风箱两侧挡板也全部开度。通过燃烧调整后省煤器出口氧量,机组高负荷时维持3.0%,燃烧器状态均匀,省煤器出口烟道上的氧量,分布已明显比试验前均衡,氧量取得了较高的效率,可看出调整后的壁温,均衡性明显得到了改善。 2、燃烧调整对锅炉氮氧化物排放的影响 600MW机组超临界直流锅炉,投用BCDEF磨煤机,用5层煤粉喷嘴的情况下,改变省煤器出口氧量,维持其它参数不变,可以看出:在省煤器出口氧量增加的情况下,采用LNCFS燃烧系统后,增强了燃烧用的效率,同时也

相关主题
文本预览
相关文档 最新文档