当前位置:文档之家› 量子化学在药物设计中的应用

量子化学在药物设计中的应用

量子化学在药物设计中的应用
量子化学在药物设计中的应用

量子化学在药物设计中的应用

量子化学在药物设计中的应用量子化学发展史量子化学的重要性§1 量子化学基础一、薛定谔方程二、分子轨道理论分子轨道理论简介 2、单电子波函数的近似 3、分子轨道由原子轨道线性组合而成§3、从头算基组 basis set 常见的基组定义用一些符号表示,极小基组 minimal basis set 是Slater型轨道 Slater type orbitals, STO ,每个占据轨道只用一个指数项表示,其形式是STO-nG,n为表示每个原子轨道的Gaussian函数个数,适当表示Slater轨道至少要有3个Gaussian函数,随着n 的增加,计算量也在增加。为了回避从头计算方法的复杂运算,发展了若干种近似性更大的分子轨道理论计算方法。在物理模型上,它们都引入可调参数,体系基于Hartree-Fock-Roothaan方程,借用经验或半经验参数代替分子积分,统称为半经验 semi-empirical method 分子轨道法。 ZINDO/1 ZINDO/1将INDO 扩展到过渡金属,用于计算含过渡金属分子的能量与几何优化 ZINDO/S ZINDO/S可用于预测紫外可见光谱,不适用于计算几何优化和分子动力学。§6、QM/MM方法二、量子化学参数与结构-活性关系当分子间以形成电荷迁移络合物方式相互作用时,HOMO能可作为分子给电子能力的量度,而LUMO能则可作为分子接受电子能力的量度,即电子从给体的HOMO迁移到受体的LUMO。一般情况下,除库仑作用外,带正电的酶或受体,主要提供LUMO与配体或药物的HOMO 作用;而带负电的酶或受体用其HOMO与配体或药物的LUMO作用如胆碱酯酶应用实例之一:喹诺酮类化合物的定量结构-抗菌活性关系 5、量化参数在定量构效关系研究中的优势及局限性§2 量子化学软件及资源简介 ADF软件ADF可以进行单点计算、几何优化、寻找过渡态、计算力常数和热化学性质、跟踪反应路径、研究电子结构、通过比较离子的激发态和基态而获得激发能。新

版本的ADF包括了含时密度泛函理论,基组库中包含了1~118号所有元素,而且对常见元素有不同大小的基组,从最小的到高质量的。 DF软件在材料科学和生命科学均有应用,但更侧重于前者,尤其在重元素化学、无机化学、催化领域非常流行。最新版的ADF加入了QM/MM方法,可用于生物大分子体系的研究。

二、量子化学资源 International Journal of Quantum chemistry Journal of molecular modeling Journal of physical chemistry Journal of chemical theory and computation (美国化学会2005年推出) Journal of molecular structure Theochem Reviews in Computational Chemistry (丛书) Journal of theoretical and computational chemistry Theoretical chemical accounts Journal of computational chemistry Gaussian公司的官方网站国际上著名的计算化学列表网站,开通较早,内有大量关于计算化学的邮件列表。北京大学化学系开设的量化计算论坛。厦门大学化学系开设的量化计算论坛国内著名的量子化学论坛国内著名的量子化学论坛几十年来,量子化学发展非常迅速,刚开始只是个别的一些工作,目前已成为物理化学的主要内容之一。不仅如此,量子化学已深入到化学的各个领域,并作为一个强有力的工具广泛应用于物理学、生物学、药学、大气科学、环境科学、材料科学等诸多学科领域。可以毫不夸张地说,只要一个科学领域有从原子或分子层次进行认知的需要,量子化学都有它的用武之地。随着量子化学理论及方法的不断完善,量子化学计算软件用户界面的不断改进以及计算机性能的提高,量子化学将不再是理论化学家的专有工具,而是广大实验科学家包括药物化学家的必备工具之一。分裂价基来考虑,即对内层轨道用一个Slater轨道来拟合原子轨道,价轨道则用2个Slater轨道来拟合。其中一个Slater轨道称为内轨,另一个称为外轨。由于量子化学从头计算方法耗时,需要大的内存和磁盘空间。虽然随着计算机性能的提升,所能处理的体系越来越大,但还是远无法与计算量正比于电子数的四次方相比。因此从头算目前还只能处理相对简单的分子。为了使量子化学方法能处理更大的体

系,人们尝试多种办法来减少计算量。半经验量子化学计算方法即是在这一背景下产生的。由于很多药物分子通常具有较大的分子量,而且药物分子设计中往往要对一系列的体系进行处理,因此半经验量子化学计算仍是该领域一种广泛应用的方法。 AM1对MNDO中的核-核排斥函数(CRF)进行了修正从整体和大量研究看,两者互有优势,并不存在其中一种方法明显优于另一种。从文献统计看,AM1方法似乎更常用些。由于方法中采用高级别的从头计算结果来拟合参数和实验值,因此这两种方法得到的计算结果可与一些从头计算结果相媲美。 MNDO特点 MNDO方法计算了一系列有机化合物,平衡几何构型(包括键角、键长、两面角)、生成热、第一电离势、偶极矩等都取得显著的成功,与实验结果符合得很好 MINDO3 MINDO3是将INDO许多相互作用的计算用参数代替,主要用于有机大分子,特别适用于含硫化合物(四)AM1法由于MNDO在一些计算中有明显的局限性,1985年Dewar提出另一种基于NDDO的方法AM1(Austin Model 1)法。AM1对MNDO中的核-核排斥函数(CRF)进行了修正用于含有第一周期和第二周期元素的有机分子,不适用于过渡金属。计算同时含有氮和氧的分子结果好于MNDO AM1中采用了大量的实验数据来进行参量化,因此与MNDO相比计算结果有显著的改进,主要表现为: 1)AM1在氢键处理上,明显优于MNDO。 2)AM1对于反应活化能垒的计算显著好于MNDO。 3)对高价磷化合物,AM1的计算与MNDO相比有一定的改进。一般AM1计算出的生成热值较用MNDO方法的计算值误差低约41%。(五)PM3法 MNDO-PM3法(简称PM3, Parametric Method 3) Stewart在1989年提出的一种基于MNDO模型的新参量化方法。 PM3法与AM1法相比有一定的改进,表现在(1)PM3计算出的生成热误差要小于AM1方法;(2)PM3在处理高价态化合物上优于AM1。 AM1和PM3法是目前应用最广泛的两种半经验量化计算方法缺点:是计算产生的误差随意性大,使得结构差异很大的体系依据半经验计算的结果来进行性质比较时,往往可靠性不高。优点:量子化学半经验计算的优点是计算速度快、计算所需的磁盘空间和计算机

内存小、计算的体系大; 5 、密度泛函理论 1964年,Hohenberg和Kohn证明分子基态的电子能量与其电子密度有关。一个可与分子轨道理论相提并论、严格的非波函数型量子理论密度泛函理论(Density Functional Theory, DFT)由于密度泛函理论中融人了统计的思想,不必考虑每个电子的行为,只需算总的电子密度,所以计算量大减。 1998年,DFT的开创性工作Kohn与另一位著名量子化学家Pople一道获得了该年度的诺贝尔化学奖。基本思想是:用量子力学处理感兴趣的中心,如酶和底物结合的活性位点,其余部分用经典分子力学来处理。近年来人们发展了一种量子力学与分子力学结合的方法(QM/MM方法),该方法既包括了量子力学的精确性,又利用了分子力学的高效性。量化计算已成为药物设计工作者的基本工具之一,其中一个重要的应用是构效关系,即通过量化计算获得的结构信息来定性或定量地阐述化合物的结构与活性之间的关系,并藉此指导新化合物的设计 1. 量子化学参数量子化学参数,大致可分为电荷、轨道能级、轨道电子密度等、超离域度、原子极化率、分子极化率、偶极矩和极性以及能量等八大类分子轨道能级最高占有分子轨道(HOMO)能级和最低空轨道(LUMO)能级是最常用的量子化学参数,因为这些轨道在许多反应及电荷转移复合物形成中起着至关重要的作用。EHOMO和ELUMOEHOMO与分子的电离势相关,作为分子给电子能力的量度,EHOMO越小,该轨道中的电子越稳定,分子给电子能力越小,对于供体分子EHOMO对电荷转移起重要作用。ELUMO与分子的电子亲和能直接相关,其值越小,电子进入该轨道后体系能量降低得越多,该分子接受电子的能力越强,对于受体分子ELUMO的电荷密度则非常重要。举例致幻剂色胺乙胺类的致幻活性与分子EHOMO有良好的对应关系,EHOMO愈高,致幻活性愈大。最强的致幻剂麦角酸二乙酰胺 LSD ,其EHOMO最高 0.218β,故致幻剂在与受体相互作用时是电子给予体。普鲁丁类化合物是杜冷丁型鸦片受体镇痛剂,其镇痛活性与EHOMO呈正比轨道电子密度原子的前沿轨道电子密度是确切表征给体-受体相互作用的非常有用

的手段。分子中某个原子附近的电子密度。化合物的许多化学反应和物理性质都是由分子内电荷密度和原子所带电荷决定的。电荷密度的大小可以反映各原子发生反应的倾向性电子密度越大的位置与亲电试剂的反应性越大;而电子密度越小的位置则与亲核试剂的反应性越大。电荷密度计算的差异大多数半经验量化方法采用Mulliken布居分析计算分子中的电荷分布。原子电荷的定义有一定的随意性,有多种定义可供利用,尽管它们没有一个可与实验观测量相对应。但是,由于这些量易于得到,而且定量构效关系中所需的是相对意义的电荷,因此,半经验方计算的原子电荷仍广泛采用。喹诺酮的抗菌作用与酮基上氧原子的净电荷有很好的相关性键级(bond order,Prs)即键的数目,表示两个相邻原子间成键的强度,与它们的原子轨道的电子云重叠有关。键级的大小同一个键的成键能力是相关联的,键级的数值越大,键的强度亦大,键长则越短,键也越难以断裂单环β内酰胺抗生素酰胺键强度的削弱有利于化合物活性的增强超离域度超离域度是一种占有轨道和空轨道的反应性指数。所以此参数经常用于表征分子间的相互作用及用于比较不同分子中相对应原子的反应性。原子极化率原子自身或原子-原子的极化率(pAA,pAB)亦被用于表征化学反应性。这些量化指数是建立在微扰理论基础之上,仅表示由一个原子的扰动对同一原子(pAA)或不同原子(pAB)电荷所产生的影响。分子极化率分子极化率是电子密度分布对静电场响应的一种度量。分子极化率最重要的特征是它可用于表征分子的大小或体积。偶极矩和极性指数分子的极性对化合物的许多物理化学性质都非常重要能量体系总能量、结合能、相对生成热、电离势喹诺酮类药物是目前广泛使用的一类重要的抗生素,新一代喹诺酮的抗菌作用和疗效可与第三代头孢菌素媲美。喹诺酮类药物的基本结构大致可分为萘啶酸类、吡啶并嘧啶酸类、喹啉酸类和噌啉酸等几大类。李江波等采用半经验量子化学AMl 方法对4种环系的喹诺酮广义上的化合物进行了研究,建立了很好的定量结构-活性关系方程。在此基础上,对其它不同的母核变化情况进行了预测。首先

全铝车身结构设计

汽车轻量化解决方案—全铝车身结构设计 摘要:解决汽车节能环保的问题,有提高传统燃油发动机的能效、发展新能汽车、应用轻量化技术三个方向。比较以上三种技术路线,在当今发动机技术提升难度日益加大、动力电池效率不高的背景下,不论对传统燃油汽车,还是新能源汽车,汽车轻量化技术都是一项共性的基础技术。大力发展并推进汽车轻量化技术,成为节能、减排的主导之一。而实现汽车轻量化技术又有三个技术途径:一种“轻量化材料”要通过一种“轻量化工艺”来实现一种“轻量化结构”。 关键词:汽车轻量化全铝车身型材截面优化 Stiffness Mass Efficient 由于世界能源的随时枯竭与环境的日益恶化,世界各行各业都积极行动起来,根据政府的优惠政策与民众的强烈要求,在节能、环保方面进行了高投入研发其高效节能、积极环保的产品。汽车产业首当其冲,其汽车零部件的制造,迁联到能源、钢材、铝材、合金、塑料、橡胶、玻璃、化工、机械、电器、信息等各行各业,对汽车节能环保的要求,就是对其它相关行业的要求。对汽车进行轻量化结构的研究,要联系相关行业的专业知识,进行综合性的研究。 一、汽车轻量化的目的 就汽车产业而言,根据汽车产品的特点,降低油耗或提高燃油效率、减少或清洁排放对环境的污染,是节能环保研发的主要目的。从全球汽车产业来看,解决汽车节能环保问题主要采用以下三种方式:

一是大力发展先进发动机技术,通过对传统发动机的改良和一系列汽车电子技术的应用,来提高燃烧效率,改善燃油经济性。 二是大力发展新能源汽车,通过研发先进新型发动机技术和推广使用气体燃料、生物质燃料、煤基燃料、高效电池等动力替代传统能源来减少汽车燃油消耗和对石油资源的依赖。 三是大力发展汽车轻量化技术,在保障汽车安全性和其他基本性能的前提下,通过减轻汽车自身重量降低能耗来实现节能减排的目的。 比较以上三种技术路线,在当今发动机技术提升难度日益加大、动力电池效率不高的背景下,不论对传统燃油汽车,还是新能源汽车,汽车轻量化技术都是一项共性的基础技术。大力发展并推进汽车轻量化技术,成为节能、减排的主导之一。 汽车的轻量化,英文名:Lightweight of Automobile,涵义是“在保证汽车的强度和安全性能的前提下,尽可能地降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗,降低排气污染。” 世界节能与环境协会的研究报告指出:汽车自重每减少10%, 燃油消耗可降低6%—8%,排放降低5%—6%。而燃油消耗每减少1升,CO2排放量减少2.45kg。燃油消耗量减少不仅有利于节约能源,也可有效减少污染物排放。当前,由于节能和环保的需要,汽车的轻量化已经成为世界汽车发展的潮流。 伴随着技术进步,制造汽车车身的材料已经不仅仅是钢铁了,越来越多的新材料被应用到车身的制作中。其中包括:玻璃钢、铝合金、

轻量化设计

受到能源和环境保护的压力,世界汽车工业很早就开始了轻量化的研究虽然应用轻金属。现代复合材料是现代车辆轻量化研究的热点之一但是这些新材料应用在主要承载部件上的成本较高。因此在短时间内很难普及另一方面,车辆的传统材料钢材,由于其强度高成本低、工艺成熟,并且是最适于回收循环利用的材料。因此利用钢材实现轻量化的可能性备受关注。 1994年,国际钢铁协会成立了由来自全世界18个国家的35个钢铁生产企业组成的ULSAB项目组。其目的是在保持性能和不提高成本的同时,有效降低钢制车身的质量。ULSAB项目于1998年5月完成,其成果是显著的ULSAB试制的车身总质量比对比车的平均值降低25% ,同时扭转刚度提高80% ,弯曲刚度提高52% ,一阶模态频率提高58%,满足碰撞安全性要求,同时成本比对比车身造价降低15%。 从1997年5月启动的ULSAC、ULSAS和1999年1月启动的ULSAB_A VC 为ULSAB的后续项目也在轻量化研究上取得很大成绩。 除了以上提到的国际上著名的四个轻量化项目外,全世界范围内对基于结构优化的轻量化技术也进行了大量的研究。韩国汉阳大学J.K.Shin、K.H.Lee、S.I.Song和G.J.Park应用ULSAB的设计理念和组合钢板的工艺,对轿车前车门内板进行了结构优化,成功地使前车门内板的质量减重8.72%。此技术己在韩国一家汽车企业中得到应用。 通用汽车公司的R.R.MAYER 密西根大学的N.KIKUCHI和R.A.SCOTT应用拓扑优化技术以碰撞过程中最大吸收能量为目标对零件进行优化设计,此技术已应用到一款轿车的后围结构上。 瑞典Linkoping University的P.O.Marklund和L.Nilsson从碰撞安全性角度对轿车B柱进行了减重研究,研究以B柱变形过程中的最大速度为约束变量。以B柱各段的厚度为优化变量,以质量为优化目标,实现在不降低安全性能的条件下减重25%。 美国航天航空局兰利研究中心的J.Sobieszczanski Sobieski和SGI公司的S. Kodiyalam以及福特汽车公司车辆安全部门的R.Y.Yang共同进行了轿车的BIP (Body In Prime)基于NVH(噪声、振动、稳定性)和碰撞安全性要求下的轻量化研究,实现了在不降低性能的条件下减重15Kg。 近年来,交通运输、公路管理等国家部门在全国范围内对超载车辆的

汽车轻量化设计研究

汽车轻量化设计研究 企业产业发展的主要方向就是汽车轻量化,也是一个汽车厂商是否拥有先进技术的主要标志。我国汽车制造业很早已经把轻量化作为发展课题,如今面对逐渐提高的环保要求以及不断上涨的原材料价格,积极发展汽车灯具轻量化已经显得至关重要。文章主要分析了汽车轻量化设计的现状和意义,汽车灯具轻量化设计应用,汽车轻量化技术的应用前景。 标签:汽车轻量化;设计;发展 1 汽车轻量化设计的现状和意义 在世界经济领域与人们现实生活中企业的地位毋庸置疑,其发展的重要方向是舒适、安全、低成本、节能和智能化等,随着不断提高的社会文明程度以及日益紧张的不可再生资源,最大程度降低材料用量以及控制尾气污染,这些都是汽车行业需要面对的挑战。相关资料表示,每次减少10%的汽车质量,可以节省6-8%的油耗。世界主要汽车生产国都在严格执行排放标准。我国北京也把汽车尾气排放强制执行欧洲三级标准。 控制节省车体质量,也就是轻量化设计这一主要问题,不仅可以减少材料消耗,还可以降低排放尾气量,这已经成为全球汽车行业的共识,已经得到了巨大的成绩。同时加入WTO以后,对轻量化设计的大量应用,提高了我国汽车综合水平,成功接轨于世界标准,对于提升我国汽车行业国际竞争起到重要作用。 2 汽车灯具轻量化设计应用 2.1 替代材料 20世纪80年代,由于能源危机造成的影响,日本提出了汽车轻量化设计,设计出对能耗与原材料有效节省的新车型。汽车灯具选择注塑材料制作,提出了与灯具大型注塑件相适合的制造技术,有效节省了手工操作所需的成本,进一步提升了企业灯具轻量化设计水平。车灯具体能够划分为前照灯、后车灯、转向灯、雾灯等。PC由于具有较强的抗冲击能力要相当于250倍的无机玻璃,相当于30倍的聚甲基丙烯酸甲酯板材,最早代替剥离在前灯外罩中应用,由于利用PC制作外罩,造成灯体利用改性聚丙烯,灯罩与灯体一般利用粘胶粘接式进行装配。此外,车灯造型中装饰功能是主要部分,PC拥有极好的光学与着色性能,可以制作车内装饰条对车灯进行点缀和装饰。一般利用透明有色的PC制作装饰条,可以选择辅助喷底漆突出其颜色,也可以同构镀铝方式对金属色积极改变和装饰;装饰圈通常利用镀铝方式改变金属色在照明灯外实施包嵌;灯具中反射镜是主要的零部件,从前都是利用压铸件镀铝进行制作,目前全部应用PC注塑镀铝,降低了质量,也对工艺进行了简化。灯具中一般是没有办法改变灯泡的发光颜色的,而指示灯全部是发出颜色的灯光,因此,利用内配光镜的颜色对整灯光颜色进行调整,通常有色透明PC的颜色包括红、黄、绿和蓝。

金属抗癌药物的应用和发展

金属抗癌药物的应用与发展 摘要:癌症是二十世纪以来人类健康的主要杀手,而生物无机化学领域研究的金属抗癌药物已在癌症治疗中发挥了巨大作用,并且显示出了良好的发展前 景。本文对当前的一些铂类及非铂类金属抗癌药物的研究状况作一综述,并且就降低铂类药物的毒性和抗药性提出了新的设计策略。 关键词:金属抗癌药物铂类药物非铂类药物设计策略 生物无机化学的研究与医药学的关系十分密切。研究发现,许多金属配合物如铂、锡和铜等金属元素的配合物具有潜在抗癌活性,并且不同配合物对不同形式的癌症的作用具有一定的选择性。因此,通过对其作用机理和构效关系的研究,设计合成高效、低毒的金属抗癌药物,可为临床上化疗法治疗癌症开辟一条新的途径。 金属药物有许多其它药物无法比拟的独特性质,以顺铂为代表的铂类抗癌药物在癌症临床化疗中发挥了巨大作用。 1 铂类抗癌药物的应用研究 自美国密执安州立大学教授B Rosenberg和V Camp发现顺铂具有抗癌活性以来,铂族金属抗癌药物的应用和研究得到了迅速的发展。顺铂和卡铂已成为癌症化疗不可缺少的药物。1995年WHO对上百种治癌药物进行排名,顺铂的综合评价(疗效、市场等)位居榜前,列第二位。另据统计,在我国以顺铂为主或有顺铂参加配位的化疗方案占据化疗方案的70-80%。 1.1 第一代铂族抗癌药物——顺铂(Cisplatin) 顺铂(Cisplatin)是顺式—二氯二氨合铂(Ⅱ)的简称,分子式是cis—Pt[(NH3)C12],相对分子质量为300。其结构式为:

顺铂作为一种广谱抗癌药物,在临床上已广泛使用。它在l9世纪末就被合成出来,60年代Rosenberg和Van Camp发现它具有抗癌活性,于1978年首先在美国批准临床使用,并迅速成为治疗癌症的佼佼者(现在临床采用的联合化疗方案中,70—80%以顺铂为主或有顺铂参与配位,是治疗癌症的首选药物之一)[1]。顺铂致力于治疗的癌症有卵巢癌、肺癌、宫颈癌、鼻咽癌、前列腺癌、恶性骨肿瘤、淋巴肉瘤等等。顺铂是第一个无机抗癌药物,它不但对癌症的治疗带来了一次革命,而且带动了一门新学科——生物无机化学的形成和发展。 但早期由于顺铂具有肾毒性、胃肠道反应、水溶性差、耳毒性以及交叉抗药等缺陷,使其应用受到限制。直到1976年通过水化或使用利尿剂的方法缓解其肾毒性以及通过服用5—HT,受体拮抗剂ondansetron来减轻恶心呕吐的症状,才使顺铂应用逐渐广泛起来。 各国研究人员先后合成2000多种铂类配合物并进行筛选,研究发现:当配体被较大的有机基团取代时,顺式和反式铂的配合物都具有抗肿瘤活性。也就是在设计反式铂类抗癌配合物时,利用一些空间位阻较大的基团来减少动力学活性。 1.2 第二代铂族抗癌药物——卡铂(Carboplatin)和奈达铂(Nedaplatin) 卡铂是1,1—环丁二羧酸二氨合铂(Ⅱ)的简称,是美国施贵宝公司、英国癌症研究所以及Johnson Matthey公司合作开发的第二代铂族抗癌药物。分子式是Pt(NH3)2CBDCA。其结构式为: 卡铂与紫杉酵联用在治疗晚期头颈部癌、小细胞肺癌等方面的应用很有价值。卡铂具有:(1)化学稳定性好,溶解度比顺铂高16倍;(2)毒副作用低于

关于Honda节能车竞技大赛节能车的部分设计

Honda节能车竞技大赛节能车的部分设计(部分插图是我们用Solidworks软件制作的基本草图) 引子 随着近年来社会的不断高速发展,能源节约,环境保护问题已经渐渐受到人们越来越多的关注。世界石油储备的急剧减少及原油价格的不断上涨预示了节能是当代汽车发展的必然趋势。 根据Honda中国节能竞技大赛的大赛规则,我们在节能车的设计过程满足竞赛要求的基础上,要尽量降低整车机构复杂度从而降低整车质量,同时减小整车行驶阻力。这就需要对节能车的行驶系统、转向系统、动力传输系统等各系统以及车身、车架、驾驶员作合理的布置配合。 总体设计方案 节能竞技大赛是各参赛团队设计制作的节能车在规定时间,规定路线下行驶一段距离,并由此换算出一升汽油能够行驶的距离,耗油量少则胜出的赛事。其中参加比赛车辆的发动机统一搭载由本田公司开发的Honda125cc化油器低油耗四冲程发动机,发动机可自由改造。 1 总体布置形式 由于比赛规则规定参赛车辆必须是三轮及三轮以上,综合考虑了其耗油量,驾驶安全性,行驶稳定性以及大赛要求之后,我们选择比赛中最常见的前两轮后一轮的布置形式。同时由于该方案采用的是后

一轮驱动,因此就可以直接省去了差速器和驱动半轴等结构,大大降低了机构的复杂程度。 2 车架的结构与材料 在车架的结构和材料的确定中应该同时考虑到小巧、轻便、结实、安全、价格等因素。车架的质量在一定程度上直接影响到油耗。而且所选材料以及结构的合理性对车辆的安全性也有着很大的影响。综合考虑下,选择铝合金梯形结构车架还是比较合适的。因为铝合金密度比钢材小得多,相同体积下质量比较小,铝合金材料的加工很方便同时铝合金的价格相对于镁合金,碳纤维增强复合塑料等一些高级材料来说也有着很大的优势。

汽车车身轻量化结构设计

汽车车身轻量化结构设计 2011届分类号: 单位代码 :10452 本科专业职业生涯设计 题目汽车车身轻量化结构设计 姓名 学号 年级 2007级 专业车辆工程 系 (院) 工学院 指导教师 2011年4月24日星期日 目录 人生需要梦想 ............................................ 2 ,一, 引言 ............................................. 4 ,二, 自我分 析 ......................................... 4 ,三, 环境条件分 析 ..................................... 4 3.1 家庭条件分 析 (4)

3.2 社会环境的分析 ...................................... 4摘 要 (5) ABSTRACT (5) 汽车车身轻量化概述 ................................ 6 第1章 1.1 汽车轻量化的意义 .................................... 6 1.2 汽车轻量化的发展 .................................... 6 第2章汽车车身轻量化设计的材料选择 . (7) 2.1 高强度钢是占主导地位的轻量化材料 (7) 2.2铝合金是最有希望取代钢铁材料的轻量化材料 (11) 2.3塑料和复合材料 ...................................... 12 第3章汽车轻量化设计的分析 .............................. 13 3.1轻量化设计的分析原则 ................................ 13 3.2减重:轻量化评价参 量 ................................ 14 3.3性能:满足各类碰撞法 规 .............................. 15 3.4轻量化与成本的关 系 .................................. 16 第4章运用CAE技术进行某微型客车车架结构的分析与优化设计 16 4.1 CAE技术 ............................................ 16 4.2动力学分析 .......................................... 17 4.3静力分 析 ............................................ 20 4.4优化设 计 ............................................ 23 第五章结束 语 .......................................... 24 参考文 献 ............................................... 25 谢 辞 (26) 2

前药设计原理及应用

前药设计原理及应用 前药是药物分子的生物可逆的衍生物,在体内经酶或化学作用释放具有活性的原药,从而发挥预期的药理作用。在药物的发现和发展过程中,前药已经成为一种确切的改善原药理化性质、生物药剂学性质及药物代谢动力学性质的手段。目前在世界范围内批准上市的药品中有5%~7可以归类为前药,并且在新药研究的早期前药这一理念也越来越受到重视。 前药是一类通过结构修饰将原来药物分子中的活性基团封闭起来而导致本身 没有活性,但在体内可代谢成为具有生物活性的药物]1]。前药原理在药物设计中应用广泛,不仅可对经典的含羧基、羟基、氨基药物进行结构修饰制成酯、羧酸酯、氨基酸酯、酰胺、磷酸酯等类型的前药,还可制成偶氮型前药、曼尼希碱型前药、一氧化氮型前药及开环、闭环等新型结构的前药,既保持或增强了原药的药效,又克服了原药的某些缺点。 1. 前药设计的结构修饰类型1.1酯类前药 含有羧基、羟基和巯基的药物成酯在前药的应用中是最广泛的,将近49%勺上市药物在体内是通过酶的水解来激活的。酯类前药主要是用来提高药物的脂溶性和被动的膜渗透能力,通常通过掩蔽水溶性药物的极性基团来达到的。在体内,酯键可以很容易的被血液、肝脏以及其他器官和组织中普遍存在的酯酶水解掉。 目前临床上有许多烷基或芳基酯类前药在应用,其中B-内酰胺类抗生素匹 氨西林(Pivampicillin )就是一个成功的例子[2 ]。氨苄青霉素是耐酸、广谱、半合成青霉素,可以口服,但是口服吸收差,血药浓度只有注射给药的20%-40%。分析结构表明,氨卡青霉素分子中的C2羧基与C6侧链氨基在胃内pH 情况下解离为两性离子,将羧基形成简单的脂肪。芳香酯类不够活泼,在体内酶促分解成原药的速度很慢,将其设计成双酯型前药,末端酯键位阻较小,易于发生酶促断裂,生成的羟甲酯不稳定,自动分解,释放出甲醛和氨苄青霉素,产生药效,生物利用度提高3?5倍,口服几乎定量吸收(98%?99% )。 1.2磷酸酯/磷酸盐类前药 含有羟基和氨基的药物磷酸酯类前药主要是针对含有羟基和氨基的水溶性差的药物而设计的,目的是提高它们的水溶性来得到更好的口服给药效果。磷酸酯 类前药表现出很好的化学稳定性,同时在体内可以通过小肠和肝脏中的磷酸酯酶快速的转化为原药[3 ]o 磷苯妥英钠(fosphenytoin sodium 为抗癫痫药苯妥英(phenytoin )的胃肠 外使用的有效前药,其水溶性和稳定性较原药都有很大提高。由于苯妥英的水溶性很低(24卩g ? mL 1 ),很难有效给药,因此开发了其前药磷苯妥英钠。该药可在血红细胞、肝和许多其他组织中的碱性磷酸酯酶的作用下,迅速而完全的转 变为苯妥英。由于该药极性增加,使其水溶性增加(140 mg ? mL1 ),可制成50 mg - mL 1稳定的混合水溶液通过静脉注射或肌内注射途径给药,克服了苯妥英临床应用带来的不良反应并消除了苯妥英的药物相互作用[4 ]o 1.3 碳酸酯类与氨基甲酸酯类前药含有羧基、羟基和氨基的药物碳酸酯与氨基甲酸酯类化合物与对应的酯相比对酶的稳定性更好,碳酸酯是羧基与醇基的衍生物,氨基甲酸酯是

汽车结构的轻量化设计方法综述李传博

Value Engineering 0引言 随着快速增长的汽车保有量,一方面,汽车作为方便、快捷的交通工具改善了人们的生活和工作方式;另一方面,却加剧了能源消耗,带来尾气、噪声等环境污染以及交通安全危害。汽车产业面临着节能、安全和环保的巨大压力。 针对上述问题,解决的重要途径是在对动力系统进行改进的同时积极开发和寻找替代能源及相关技术。 但受技术难度、开发周期和市场份额等问题制约,仅靠这一途径很难满足国家和市场的要求;另一个重要途径是整车轻量化。有关研究数据表明,若车桥、变速器等机构的传动效率提高10%,燃油效率可提高7%;若汽车整车质量降低10%,燃油效率可提高6% ~8%[1,2] 。车身占整个汽车制造成本60%,占汽车总重量的30~40%,空载情况下,70%的油耗将用于车身质量上[3]。图1展现了日本统计的乘用车自重与油耗之间关系。显而易见,当车辆的自重从1500kg 下降到1000kg 时,每升燃油平均行驶的里程由10km 上升到17.5km ,即每减重100kg ,每升油可多行驶1.5km ,也就是说在此区间内,燃油的经济性提高了5.7%-10%。 1车身结构轻量化设计的研究内容和方法 车身结构轻量化设计研究,主要从三个方面进行:一是结构优 化或创新,改进车身结构,使零部件薄壁化、中空化、小型化和复合化[6],采用CAD/CAE/CAM/CAPP 数字化设计和制造技术提高零部件 开发质量;二是采用先进的车身制造工艺,如激光拼焊、 中高温成形、滚压或液压成形等;三是采用轻质高强度材料[7] 。宝马汽车轻量化设计方案就是综合运用各种技术在保证汽车性能前提下,最大限度的减轻汽车重量,如图2所示。 2轻量化材料在汽车结构轻量化中的应用 2.1高强度钢板高强度钢板材料在强度、塑性、抗冲击能力、回收使用及低成本方面具有综合优势。高强度钢板的明显优点是在车身结构设计上采用更薄的钢板,并获得相同的强度,在钢板厚度分别减小0.05、0.10和0.15mm 时可以使车身分别减重6%、12%和 18%[8] 。因此,在高强度钢板比传统钢在价钱上更贵的情况下,减轻了重量可使得两者实际成本相近。 未来十年,高强度钢在汽车中的应用会大幅度增加。 2.2铝合金比强度和比刚度十分优良的铝金属基复合材料研究开发的成功,是汽车轻量化的进一步发展的一个很好途径。据统计2010年每辆轿车的平均铝使用量与1998年相比增长53%,上升到130kg 。铝材的强度和刚度虽然是比钢材小很多,通过框架结构设计及采用更厚的板材也可以补偿这个不足,车身空间框架结构质量在使用铝材后下降47%,与此同时采用改进的断面形式将使车身 汽车结构的轻量化设计方法综述 The Review of Design Methods for Lightweight of Automobile Structure 李传博①Li Chuanbo ;谢然②Xie Ran ;郭琳②Guo Lin (①商洛学院城乡发展与管理工程系,商洛726000;②广州汽车集团股份有限公司汽车工程研究院,广州510640) (①Urban and Rural Development and Project Management Department of Shangluo University , Shangluo 726000,China ;②Guangzhou Automobile Group Co.,Ltd.GAC Automotive Engineering Institute ,Guangzhou 510640,China ) 摘要:汽车结构轻量化对降低汽车排放和油耗具有重要意义。文章介绍了汽车结构轻量化的几个代表性研究项目;对高强度钢板、铝镁合金 及塑料等轻质高强度材料在车身结构轻量化中的应用进行了阐述;围绕新材料的先进成形工艺,如激光拼焊板、液压和气压成形,热冲压工艺等 成形工艺,以及自冲铆接等先进连接工艺进行了分析;同时还介绍了有关的汽车结构优化和创新设计方法。最后对汽车结构轻量化设计方法的发展动向进行了展望。 Abstract:Lightweight of automobile structure is important for vehicle emissions reduction and fuel consumption.It can be realized by using lightweight-high-strength materials,relative advanced forming process for automobile structure parts,connection technology and structure optimization or other innovation methods.This article describes a few representative research projects on automotive structural lightweight;elaborates the use of high strength steel,aluminum-magnesium alloy,plastics and other lightweight-high-strength materials in the lightweight of body structure;analyzes advanced forming process for new materials,such as tailored blanks,hydraulic and pneumatic forming,hot stamping,and advanced connectivity technology of the self-pierce riveting.It also presents the relative methods for structural optimization and innovative design.Finally,it prospects the development trend of design method for lightweight of automobile structure. 关键词:汽车轻量化;高强度钢板;激光拼焊板;自冲铆接Key words:lightweight of automobile ;high strength steel ;laser tailor-welded board ;self-piercing riveting 中图分类号:U462 文献标识码:A 文章编号:1006-4311(2012)19-0029-03 —————————————————————— —作者简介:李传博(1981-),男,陕西商洛人,硕士,讲师,研究方向为车辆检 测与诊断技术 。 ·29·

汽车节能试题

1.新能源汽车:是指除汽油、柴油发动机之外所有其它能源汽车, 新能源汽车是指采用非常规车用燃料作为动力来源(或使用常规车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车 2、缸内直喷技术:是指将喷油嘴设置在进排气门之间,高压燃油直接注入燃烧室平顺高效地燃烧,缸内直喷所宣扬的是通过均匀燃烧和分层燃烧实现了高负荷、尤其是低负荷下的燃油消耗降低,动力还有很大提升的一种技术。 3、废气再循环技术:废气再循环是指把发动机排出的部分废气回送到进气歧管,并与新鲜混合气一起再次进入气缸。由于废气中含有大量的CO2,而CO2不能燃烧却吸收大量的热,使气缸中混合气的燃烧温度降低,从而减少了NOx的生成量。 4、替代燃料汽车:用来替代柴油和汽油的其它燃料,都可称为代替燃料,使用替代燃料的汽车就是替代燃料汽车 5、燃油消耗率:是指发动机发出每千瓦时的功率在一个小时内燃油消耗量 6、发动机负荷特性:发动机的转速不变时,其性能指标随负荷的变化关系,在测定负荷特性时必须保持转速不变。(即:当发动机转速不变,而逐渐改变节气门开度,每小时耗油量B、燃料消耗率b随负荷(Pe、Ttq或Pme)而变化的关系。) 7、混合动力汽车:是指车辆驱动系由两个或多个能同时运转的单个驱动系联合组成的车辆,车辆的行驶功率依据实际的车辆行驶状态由单个驱动系单独或共同提供。 8、增程型电动车:是以电力驱动车辆行驶为主要能源,而汽油则是它的备用能源。可以在电池电量耗尽后继续行驶,由内燃机或者燃料电池提供额外的电能来驱动车辆‘ 一、简答题 1、简述我国发展低碳汽车有哪些产业优势。 一,市场规模大,且呈现多样性,二,技术取得局部突破,三,制造成本低,四,资源保障能力强 2、简述发动机涡轮增压原理。 一,发动机排出的废气,推动涡轮排气端的涡轮叶轮,并使之旋转。由此便能带动与之相连的另一侧的压气机叶轮也同时转动。 二,压气机叶轮把空气从进风口强制吸进,并经叶片的旋转压缩后,再进入管径越来越小的压缩通道作二次压缩,这些经压缩的空气被注入汽缸内燃烧。 三,有的发动机设有中冷器,以此降低被压缩空气的温度、提高密度,防止发动机产生爆震。 四,被压缩(并被冷却后)的空气经进气管进入汽缸,参与燃烧做功。 五,燃烧后的废气从排气管排出,进入涡轮,再重复以上(一)的动作。

汽车轻量化低碳设计

汽车轻量化低碳设计 轻量化不仅意味着车架和钢板重量的减轻,也包括了发动机、传统系统、驱动系统以及油箱等每一个可能降低重量的部分。轻量化到底能带来多大效果,根据奥迪方面的研究,现在,一辆采用轻量化科技的奥迪A5,比普通A5可减轻重量350公斤,意味着每百公里可以降低油耗约1升。足见汽车轻量化设计是不折不扣的“低碳”经济。 “低碳”经济如今成为全球最热话题,随着上海世博会出行普通采用纯电动、混合动力、燃料电池等新能源汽车以及新能源汽车补贴政策的实施,汽车行业也燃起了一股“低碳”经济热潮。不过大家关注汽车行业低碳经济的时候,往往首先想到的就是新能源汽车,事实上,只要有利于减少排放和污染的技术都可以称之为低碳技术。今天我们就来讲讲汽车行业的另类“低碳”经济——全球汽车轻量化设计风潮。 汽车轻量化是不折不扣的“低碳”经济 汽车轻量化,并非没有技术含量的简单降低汽车重量,事实上诸如碳纤维代表着当今最先进的汽车技术。汽车轻量化是在保证汽车强度和安全性能的前提下,尽可能地降低汽车的整备质量,从而提高汽车的动力利用率,减少燃料消耗,降低排气污染。汽车轻量化对于节约能源、减少废气排放十分重要。权威研究显示,若汽车整车重量降低10%,燃油效率可提高6%—8%;汽车整备质量每减少100公斤,百公里油耗可降低0.3—0.6升;汽车重量降低1%,油耗可降低0.7%。而在驾驶方面,汽车轻量化后其加速性能也将得到提高,而在碰撞时由于惯性小,制动距离也将减少。此外,车辆每减轻100公斤,二氧化碳排放可减少约5克/公里。可见汽车轻量化的节能环保效益觉不亚于汽车发动机技术节油技术。 当前,由于环保和节能的需要,汽车轻量化已成为世界汽车发展的潮流。实施汽车轻量化的主要材料有碳纤维、铝合金、镁合金、钛合金、工程塑料、复合材料和高强度钢等,主要用来改造和替代车身材料。汽车轻量化大致可以分为三类:车身轻量化、发动机轻量化、底盘轻量化。其目的均是在保证性能的前提下通过使用更轻材料降低车重,从而实现节能环保功能。将车身轻量化运用到极致的当属大量使用碳纤维的F1赛车,不过由于追求速度和激情,燃油消耗依然严重再次不做介绍,但可以肯定的是如果F1赛车不采取轻量化车身,其燃油消耗将更为惊人。 宝马、奥迪引领发动机和底盘轻量化 发动机和底盘的轻量化,一般都是采用铝合金或镁铝合金结构代替笨重的铸铁发动机部件和普通钢制悬架部件,从而实行更强强度和更轻的质量。以这一代宝马530的前悬挂和直列6缸引擎为例,铝合金材料的大量运用,有效的控制了二者的自重,从而帮助设计师实现了降低12%单位油耗的既定目标。

汽车座椅轻量化结构设计与优化

汽车座椅轻量化结构设计与优化 摘要:随着汽车总保有量的不断增加,汽车与能源、环保之间的矛盾己成为制约汽车产业可持续发展的突出问题。面对低碳时代的到来和节能减排的巨大压力,汽车轻量化是解决这一问题最有效、最现实的途径之一。从而推动了新材料新工艺在汽车工业中的应用和发展。其中,尤为引人注目的是铝合金在汽车轻量化中的应用和发展。本文从座椅骨架材质轻量化、结构优化设计及成形工艺分析等方面入手对汽车座椅进行了轻量化设计研究。 关键词:汽车座椅;轻型化;结构设计;铝合金;低压铸造 随着汽车总保有量和新增量的不断增加,汽车耗油量及汽车二氧化碳、有害气体及颗粒的排放量也在快速增加。在能源日益紧缺,环境同益恶化的今天,这种矛盾己成为制约汽车产业可持续发展的突出问题。面对能源危机和低碳环保的巨大压力,解决这一矛盾最有效、最现实的方法之一,也是当今世界汽车工业发展的潮流,就是实现汽车的轻量化。 1.汽车轻量化概念 汽车轻量化(Lightweight of Automobile)就是必须在保证汽车使用性能,如强度、刚度和安全性的前提下,降低汽车的重量,从而提高汽车的动力性能,燃油经济性,并且降低废气污染。汽车轻量化并不只是简单地降低汽车重量,还包含了许多新理论、新材料、新工艺。 根据美国铝协会研究,若汽车整车重量降低10%,其燃油效率可提高6%~8%;汽车整车重量每减少100kg,其百公里油耗可降低O.3~0.6L,二氧化碳排放量可减少约59/km。 总的来说,实现汽车轻量化主要有2种途径:一是利用有限元方法,拓扑优化方法改进汽车整车结构及零部件结构,实现结构件材料分布最优化;二是利用各种轻量化材料,包括高强度钢板材料和轻质材料。 结构轻量化设计就是利用有限元法和现代优化设计方法进行结构分析和结构优化,以减轻汽车车身、各零部件如发动机、承载件件和内饰件的重量。结构优化设计即在保证产品达到某些性能目标(如强度、刚度)并满足一定约束条件的前提下,改变某些设计变量,使结构的重量最轻,这不但节省了材料,也便于运输和安装。优化设计以数学规划为理论基础,将设计问题的物理模型转换成数学模型,运用最优化数学理论,以计算机和商业软件为优化工具,在充分考虑多种约束的前提下满足设计目标的最佳设计方案。有限元法在结构设计中被广泛使用,它可以使任何复杂的工程问题,简化为有限元模型进行分析研究。目前广泛使用的结构优化工具Altair Optistruct,以有限元法为基础,提供拓扑优化、尺寸优化、形貌优化、自由形状优化等多种优化方法,可以对汽车车架结构及各零部件结构进行分析和优化。在有效满足设计功能及外型要求的前提下,先经过概念

汽车轻量化论文

摘要:汽车轻量化对于降低汽车燃油消耗和减少排放污染起着举足轻重的作用,采用轻质材料是实现汽车轻量化的重要途径。文章详细分析了轻量化技术 在现在汽车种的应用,包括铝合金镁合金钛合金3种轻合金的特点。轻量化 设计技术以及金属成型方法和连接技术,说明了汽车轻量化的意义,对汽车的 轻量化技术发展有一定的指导作用。 关键词:汽车;轻量化;车身 1轻量化技术在汽车上的应用 目前,国内外应用于汽车的请炼化技术主要有:1)轻质材料技术的应用,如铝合金镁合金钛合金高强度钢塑料粉末冶金生态复合材料及陶瓷等的应用越来越多;2)结构优化及计算机辅助设计和分析技术的应用;3)汽车制造中新的成型方法和连接技术的不断应用。 1.1.1基于材料的轻量化技术的应用 1.11高强度钢在汽车上的应用 高强度刚已成为颇具竞争力的汽车轻量化材料,它在抗碰撞性能,加工工艺和成本方面与其他材料相比具有较大的优势。采用高强度钢板,首先能改善汽车的安全和碰撞性能,传统的碳素钢虽然可以吸收碰撞能量,但其缺点是质量大,影响燃油经济性;高强度钢板用于汽车车身,除了能减薄车身部件厚度降低自重之外还可以提高汽车表面件的抗凹陷性及抗破坏能力,在降低燃油消耗率的同时又可以提高汽车的安全性。 国外高强度钢在汽车上的应用以日本最为典型。在日本,车身零件实际应用高强度钢始于20世纪70年代,最早应用于车身外表件,然后应用到内部零件和结构件。目前,日本悬架结构和支撑件的强度已达到800-1000MPa。 抗拉强度410 MPa的高强度钢多用于内部件,即将采用590 MPa高强度钢用于内部件,有望进一步减薄零件厚度。

1.12铝合金在汽车上的应用 铝具有高的导电性和导热性,密度小,塑性好,易成型,易回收利用。 可通过铸锻冲压工艺制造各类汽车零件。自1991年使用高强度铝合金以来,北美汽车上铝的用量已增加2倍,运动多用途车皮卡和微型厢式车上的铝的用量呈3倍增长。 目前,铝合金已经广泛应用于汽车车身底盘零部件以及发动机的某些部件上。现代轿车发动机活塞几乎都采用铸铝合金,这是因为活塞作为主要的往复运动件要靠减重来减小惯性,减轻曲轴配重,提高效率,并需要材料有良好的导热性,较小的热膨胀系数,以及在350度左右有良好的力学性能,而铸铝合金符合这些要求。同时由于活塞连杆采用了铸铝合金件,减轻了质量,从而降低了发动机的振动,降低了噪声,使发动机的油耗下降,这也符合汽车的发展趋势。 近年来,一些新型铝合金材料也开始在汽车上应用,如快速凝固铝合金TiAi金属间化合物泡沫铝材铝复合材料铝基粉末冶金材料和铝拼焊冲压坯材料。 1.13 镁合金在汽车上的应用 镁合金的基本特性如下: 1)质量轻。镁合金比铝合金轻33%,比钢轻77%,为常用结构金属材料中最轻的材料。同时,镁能制造出与铝同样复杂的零件而质量则较后者轻 1/3.镁合金用于车辆,将显著地降低其起动惯性,降低燃油消耗,减少 环境污染。 2)比强度高,刚性强。同等形状下,镁合金制品的刚性为塑料的10倍以上。 如用镁合金代替ABS塑料,则制品的质量可以减少36%,厚度可以降低 64%。

汽车轻量化解决方案全铝车身结构设计范本

汽车轻量化解决方案全铝车身结构设 计 1

汽车轻量化解决方案—全铝车身结构设计 伍成祁 摘要:解决汽车节能环保的问题,有提高传统燃油发动机的能效、发展新能汽车、应用轻量化技术三个方向。比较以上三种技术路线,在当今发动机技术提升难度日益加大、动力电池效率不高的背景下,不论对传统燃油汽车,还是新能源汽车,汽车轻量化技术都是一项共性的基础技术。大力发展并推进汽车轻量化技术,成为节能、减排的主导之一。而实现汽车轻量化技术又有三个技术途径:一种“轻量化材料”要经过一种“轻量化工艺”来实现一种“轻量化结构”。 关键词:汽车轻量化全铝车身型材截面优化Stiffness Mass Efficient 由于世界能源的随时枯竭与环境的日益恶化,世界各行各业都积极行动起来,根据政府的优惠政策与民众的强烈要求,在节能、环保方面进行了高投入研发其高效节能、积极环保的产品。汽车产业首当其冲,其汽车零部件的制造,迁联到能源、钢材、铝材、合金、塑料、橡胶、玻璃、化工、机械、电器、信息等各行各业,对汽车节能环保的要求,就是对其它相关行业的要求。

对汽车进行轻量化结构的研究,要联系相关行业的专业知识,进行综合性的研究。 一、汽车轻量化的目的 就汽车产业而言,根据汽车产品的特点,降低油耗或提高燃油效率、减少或清洁排放对环境的污染,是节能环保研发的主要目的。从全球汽车产业来看,解决汽车节能环保问题主要采用以下三种方式: 一是大力发展先进发动机技术,经过对传统发动机的改良和一系列汽车电子技术的应用,来提高燃烧效率,改进燃油经济性。 二是大力发展新能源汽车,经过研发先进新型发动机技术和推广使用气体燃料、生物质燃料、煤基燃料、高效电池等动力替代传统能源来减少汽车燃油消耗和对石油资源的依赖。 三是大力发展汽车轻量化技术,在保障汽车安全性和其它基本性能的前提下,经过减轻汽车自身重量降低能耗来实现节能减排的目的。 比较以上三种技术路线,在当今发动机技术提升难度日益加大、动力电池效率不高的背景下,不论对传统燃油汽车,还是新

国内外汽车节能发展现状

国内外汽车节油概况随着能源的日渐紧张和对环境保护的日益迫切,汽车节油工作受到了世界各国的普遍重视,许多国家都把节能作为一项国策。美国是全球最大的石油消费国,汽车用油在石油消费总量中占有相当大的比重,在汽车节油方面积累了丰富的经验。为了研究降低汽车油耗的技术,美国各大汽车公司均拔出大量研究经费。美国汽车制造厂在减轻汽车重量、改善空气阻力、提高传动效率、减少附件功率损耗,发展小排量汽车、汽车柴油机化,发展电动汽车,开发醇类燃料等方面取得较大发展。与此同时,美国国家还对建设公路和养路进行了大量投资,以期降低油耗。 欧盟国家非常重视汽车节油政策的调节作用,制定和实施了一整套积极有效的燃油税收政策,同时比较注重生物燃料的研发。英国政府仅在1980年就提供了600万英镑作为研究节能问题的资金,其中400万英镑用于研制发动机、变速器与微机处理器,200万英镑用于研制电动汽车及蓄电池。法国政府于1974年就成立了国家能源机构。1975年由中央计划委员会制定了法国的“能源政策”。1991年,法国政府投资2.3亿法郎给标志-雪铁龙联合公司和雷诺公司共同生产电动轿车。 日本是没有石油的国家,所需石油全部依靠进口,这就迫使日本自20世纪60年代起就高度重视发展节能型汽车。日本汽车保有量逐年大幅度增目前节能引起我国社会各界的广泛关注, 中央政府把节能减排列为国家经济工作的八大任务之一和考核政府领导的重要指标,以此来推动全社会节能降耗,缓解能源瓶颈制约。随着我国进入“汽车社会”,汽车耗能在能源消耗中所占的比例日益增大,并成为我国石油对外依存度增加的主要原因。 我国在传统内燃机节油方面还有很大的潜力,国外研究的复合火花点火技术、缸内直喷技术、增压技术、低压缩高膨胀循环、可变气门相位及升程、可变压缩比、可变排量、减速时部分汽缸休眠、双火花塞顺序点火以及集成的起动发电机等技术在我国均有所发展。清华大学承担国家"973"重点项目“新一代内燃机燃烧理论与石油替代的基础研究”,在发动机新型燃烧机理的研究上取得了进展;天津大学开展稀薄燃烧技术的研究,燃油消耗率可降低15%;吉林大学、湖南大学、长安大学等一批高校都在开展汽车动力系统优化节油的研究。 第1章 2.汽车轻量化节油 不锈钢与强度较高的碳钢相比,表现出不少优点。一汽轿车、奇瑞汽车公司在轿车车身上进行了高强度钢板的初步应用实验;上海交大、湖南大学、重庆大学、清华大学等高校在镁合金的强韧化、耐蚀性、阻燃性和抗高温蠕变性等方面开展了较深入的研究。在轻量化结构设计方面,结构优化和零部件的模块化设计水平不断提高,如采用前轮驱动、高刚性结构和超轻悬架结构等来达到轻量化的目的,计算机辅助集成技术和结构分析等技术也有所发展。湖南大学与上汽通用五菱在薄板冲压工艺与模具设计理论方面开展了较深入的研究;北京航空航天大学开发了CAD系统CAXA,并已经开展了客车轻量化技术的研究,利用有限元法和优化设计方法进行结构分析和结构优化设计,以减少车身骨架、发动机和车身蒙皮的重量等替代燃料节油是解决我国目前严峻石油能源形势的一种有效途径。我国的替代能源发展已纳入“十一五”发展规划,按照“节约优先、立足国内、煤为基础、多元发展”的能源方针,实行直接替代(以发展车用替代燃料为主)与间接替代(以节能、替代工业原料与燃料用油为主)一起抓。 针对我国“富煤少油缺气”的国情和现有技术基础,适宜我国目前发展的替代能源主要为:煤基替代燃料、生物质替代燃料、天然气替代燃料和氢能。煤基替代燃料中,M15比例甲醇汽

前药原理与新药设计

前药原理与新药设计 探索前药原理在新药设计中的规律,推动新药研究工作的开展,通过文献检索,综合、归纳、分析、概括前药原理在新药设计方面的典型事例。前药原理在新药设计中广泛应用,不仅可对经典的含羧基、羟基、氨基药物进行结构修饰制成前药,还可制成偶氮型前药、曼尼希碱型前药、一氧化氮型前药及开环、闭环等新型结构的前药,既保持或增强了原药的药效,又克服了原药的某些缺点。利用前药原理设计新药投资少、风险小、成功率高,适合我国国情,是值得推广的新药研究途径。 关键词:前药原理结构修饰新药设计 进入21世纪H我国新药研究从仿制向创制转轨已成共识。然而,新药创制是系统工程,需 要多学科协同作战,难能一蹴而就。但是对我们13亿人口的大国来说,服药的重要性不亚于吃饱穿暖,是迫在眉睫一天也不能或缺的国计民生大事。根据我国的实际情况,新药研究应以开发那些结构类型已知,疗效优于或近于现有同类产品的药物作为主攻方向【1】。前药原理是将已知有生物活性而又存在某些缺点(如:生物利用度差、性质不稳定、作用时间短、有异味等)的药物经结构修饰制成新药即前药,后者体外无活性,在体内分解释放出原药产生药效。与原药相比,前药保持或增强原药的药效,又克服原药的缺点。前药属于结构类型已知,疗效优于或近于现有同类药物的创新药物类型,其特点为投资少、风险小,成功率高因而在新药研究中占有重要地位,尤其适合目前我国制药工业中既有的实际情况,为推动我国新药研究工作的发展,现按照结构修饰类型综述有关前药原理在新药设计中的应用。 1、含羧基药物的前药设计 1.1成酯前药设计 氨苄青霉素是耐酸、广谱、半合成青霉素,可以口服,但是口服吸收差,血药浓度只有注射给药的20%~40%,分析结构表明,氨卡青霉素分子中C2羧基与C6侧链氨基,在胃内pH 情况下解离为两性离子,极性大是影响口服吸收的关键,将羧基成酯,发现其简单的脂肪/芳香酯类不够活泼,在体内酶促分解成原药的速度很慢,血药浓度达不到峰值,其原因是氨苄青霉素分子中羧基邻位的两个甲基占有较大空间,其屏蔽作用阻碍酯酶水解所致。而将其设计成双酯型前药,末端酯键位阻较小,易于发生酶促断裂,生成的羟甲酯不稳定,自动分解释放出甲醛和氨苄青霉素,产生药效,生物利用度提高3~5倍,口服几乎定量吸收(98%~99%)。 近几年!这种双酯前药设计广泛应用于含羧基药物的前药设计中* 1.2成醛前药设计 含羧基药物制成醛基前药,可增加原药的脂溶性,显著提高口服吸收效果,增加血药浓度。如氟哌酸,为广谱抗菌药,作用强但口服吸收不完全,只有给药剂量的35%~40%,其原因为分子中羧基与哌嗪环上的氮原子成两性离子,不易透过生物膜,做成酯不理想,做成醛以后,在体内经氧化形成,!口服吸收好,血药浓度高。因而含羧酸药物成酯不理想时,可考虑做成醛化物一试* 2 含羟基药物的前药设计 2.1氨基酸酯前药设计 氨基酸的羧基与母药的羟基成酯,其氨基与无机酸成盐!以增加药物水溶性。如甲硝唑-N,N-二甲基甘氨酸酯盐酸盐,水溶性好,血浆浓度高,但水溶液不稳定,需在临用前配制.其原因为分子中的氨基在制pH值为3~5下质子化,有强的吸电子效应,活化了酯羰基,易受OH-离子进攻,使酯键断裂.研究发现,若在酯基和氨基之间引入一个苯基,使成为N-取代的胺甲基苯甲酸酯,可完全阻止氨基对酯键的影响,又不影响体内酶促水解反应,如甲硝唑的这种前药水溶性比母药增加,水溶液稳定性增加,同样条件下可保存14年。

相关主题
文本预览
相关文档 最新文档