当前位置:文档之家› 中学数学中常用的七类构造法

中学数学中常用的七类构造法

中学数学中常用的七类构造法
中学数学中常用的七类构造法

1.构造法概述

1.1 一个简单例子

证明存在两个无理数y x ,,使y x z =是有理数[1]

传统证明方法是,假设对于任何两个无理数y x ,,都有y x z =是无理数。那么就有()

22一定是无理数,进而()222??????也是无理数,而()2)2(2222==??????是有理数,所以假设不成立 而我们如果令9log ,22==y x ,我们已知2和9log 2都是无理数,此时 32)2(3log 9log 22===y x 是有理数,问题得证。

上面这个问题中我们用到的第二种方法就是中学中常用的构造法。

1.2构造法的发展历史

到底什么是构造法呢?构造法就是按照固定方式,经过有限步骤能够实现的方法。引用韦尔(H.Weyl )在《数学的思维方式》一文中的一句话“当数学家们转向抽象时,有一件最为门外汉所不能理解的事情,那就是直觉的图像必须被转化为一种符号构造。”[2]这表明构造法从数学产生时就已经存在,因为数学发展所必须具备的数学符号就是用来构造对象的。除此之外,数学最初的定义有很多都是构造性的定义,比如:将线段绕其一个端点在平面内旋转一周,它的另一端点所画出的图形叫圆。构造法起源于数学之初,但它的发展是在19世纪末。

19世纪末,克罗内克和庞加莱基于数学的可信性,提出了“存在必须是被构造的”观点,创立了早期的直观数学学派。但是他们把直观数学推崇到极致,反对一切非构造性数学内容,搞得数学复杂难懂。随后马尔科夫提出算法数学,把一切数学概念归结为一个基本概念——算法的构造性方法。但是算法数学以递归函数为基础,大部分人同样难以理解。直到1867年美国数学家比肖泊发表《构造性分析》一书,摆脱了算法数学对递归函数的依赖,宣告现代构造数学的形成。

时至今日,构造法不仅开创了组合数学、计算机科学等新领域,而且在数值分析,拓扑学领域也大有用武之地。[3]

1.3 中学数学需要数学构造法

除了高等数学,现在的中学阶段对于构造法也是相当重视的。《高中数学教学大纲》中就明确规定了学习数学不仅包括数学内容,数学语言,更重要是数学思想、方法。

在高中数学解题过程里,我们常常会遇到无从下手、常规的方法不能快速、有效解决的问题,这时我们可以另辟蹊径,利用这种特殊的数学方法尝试解决问题——构造法。

2.中学解题中常用的几类构造法

运用构造法解题常常是因为我们常规思维定式探求解题思路受阻,这时我们根据题设特点,用已知元素和关系式构造一个新的数学形式,如:函数、方程、图形等,这样可以绕过阻碍,得到解题的思路和方法。中学阶段应用构造法时所需要构造的新的数学形式很多,包括构造图形、构造方程、构造函数、构造数列、构造命题、构造向量类、构造特殊模型等。我们就上面七种构造形式来一一探究,熟悉构造法解题过程中运用的构造技巧,以及构造法解题的本质,对问题的化归。

2.1构造图形

代数是数字和文字的组合,但是这并不代表代数和图形完全没有关系,对于一些代数的问题,我们如果能通过途径构造相应的图形,此时解题过程便十分直观、清晰。

例1.1 已知,1,0,0=+>>b a b a 求证:22

1212≤+++

?+b a ,222)2()21()21(=+++b a , 这时我们想到这和勾股定理有些相似,我们是不是可以尝试构造一个直角三角形,于是有:如图1.1

证明:构造如图的直角三角形,根据定理,三角形两边之和大于第三边, 所以21212+++

1=+b , 所以2)4

sin(22)sin (cos 22121≤+?=+=+++παααb a

综上所述,221212≤+++

图1.1

上面这个问题因为出现了形如222c b a =+的式子,所以我们想到构造一个直角三角形,如果题目中没有给出这么明显的唯一特征,我们能不能构造呢?

例 1.2正数C B A c b a ,,,,,,满足条件k C c B b A a =+=+=+,求证:2k cA bC aB <++

由求证的不等式cA bC aB ,,,我们想到这是不是和面积有关,于是我们构造一个三角形,并且题干中k C c B b A a =+=+=+,所以我们构造一个等边三角形。于是有图1.2

图1.2

证明:构造一个如图的等边三角形PQR ,其中各个边角的关系如下b MP B RM a LR A QL c NQ C PN ======,,,,,,考虑图形中的面积关系,有PQR NQL MPN LRM S S S S ????<++,又3sin 21πaB S LPM =?,3sin 21πbC S MPN =?, 3sin 21πcA S NQL =

?,3

sin 212πk S PQR =?,带入PQR NQL MPN LRM S S S S ????<++,得3sin 21πaB +3sin 21πbC +3sin 2

1πcA <3sin 212πk ,整理得:2k cA bC aB <++.[5] 上面得解题方法中利用了三角形的面积公式A AC AB S ABC sin 2

1??=?,不等式两边的θsin 都是3sin π,所以约掉,最后化简到2k cA bC aB <++的形式。考虑到面积更为简单的形式cA bC aB ,,可以是长方形的面积,此时我们可以构造一个矩形,又k C c B b A a =+=+=+,我们不妨构造一个如图1.3的正方形.

图1.3

方法二,证明:构造一个如图所示的正方形PQRT ,其中各边关系如下, B LP b QL B SQ b RS C NR c TN A MT a PM ========,,,,,,,,又正方形有如下关系,PQRT S S <++321S S 阴影阴影阴影,带入数据得2k cA bC aB <++。

虽然数与形是数学中不同的领域,但是这两个领域不是相互独立的。解题中亦是如此,如果在数学问题中我们给一些代数关系赋予几何意义,那么问题往往变得形象、直观。当然在利用图形直观分析解决问题时,我们构造的图形也有简单复杂之分,所以构造图形时我们要注意一点,构造几何图形要有正确的思考方

法,不能盲目去套用图形。从上面两个问题中我们可以简单总结一下思考原则:首先寻找题目中的条件与所求结论中的几何含义,然后考虑可以借用哪些有关的几何概念和性质,最后根据这些选择一个最好的几何图形。

2.2构造方程

方程作为数学解题中一个很重要的工具,是因为方程能把未知和已知联系在一起。遇到一些无从下手的问题时,构造方程可以把条件和结论之间联系起来,使问题中隐藏的关系显露出来,从而快速找到问题的突破口,进而解决问题。

例2.1 若R q p ∈,,且233=+q p ,求证:20≤+

题干中给出的是33q p +的具体值,要求的结论是q p +的取值范围,我们尝试由233=+q p 出发,有2)(3)(333=+-+=+q p pq q p q p ,此时出现了要求的q p +,但是多出来了pq ,我们不妨利用方程,把pq 解出来,这是q p +和pq 显然是方程的两个根,于是题目隐藏的关系暴露出来,解题思路也由此而生。

证明:由233=+q p ,有2)(3)(333=+-+=+q p pq q p q p ,

显然0≠+q p ,设k q p =+,则k

k pq 322-= 构造二次方程03222

=-+-k k kx x ,则q p ,为方程的两个实根 故032422

≥-?-=?k k k ,解得,20≤

上面的过程中构造了一个方程,然后我们要求的q p +的取值范围就变成了,二次方程有实根,解一个判别式大于等于零的不等式。

例2.2 已知R c b a ∈,,,满足0=++c b a 和2=abc ,求证:c b a ,,中至少有一个不小于2。[6]

和例2.1中类似,我们可以通过构造方程来发现隐藏的关系。

证明:由0=++c b a ,显然c b a ,,中至少有个大于零,不妨设0>a ,

则a bc a c b 2,=

-=+,构造二次方程022=++a

ax x ,则c b ,为二次方程的两个实根,故0≥?,即0242≥?-a a ,又0>a ,解得,2≥a 上面两个问题都是通过构造二次方程,发现题目已知与结论之间的关系,然后利用二次方程的判别式解决问题。其实还有一种情况,题目中结论形式与二次方程的判别式极为相似,此时我们需要构造二次方程,从而使用二次方程的判别式。我们不妨把这类构造方程方法称作构造判别式法。

例 2.3 设R c b a ∈,,,且b c a 2≠+,这时要求证:)2)(2(4)2(2c b a b c a a b c -+-+≥-+

这个问题我们如果直接通过不等式方法去证明,难免会有些繁琐,但是如果我们仔细思考不等式的形式,就会发现这和 0≥?,即ac 4b 2≥有类似之处,于是我们需要做得就是构造一个有实根的二次方程,因此解题思路就出现了。

证明:构造方程()0)2()2(22=-++-++-+c b a x a b c x b c a

因为b c a 2≠+,所以构造的方程是二次方程,又把1=x 带入发现满足方程,故1=x 为方程一实根,所以二次方程判别式0≥?,代入数据,

即)2)(2(4)2(2c b a b c a a b c -+-+≥-+

有的时候,题干中不一定出现了判别式的形式,这时候要靠我们化简来发现构造方程的前提。

例2.4 设+

∈R c b a ,,,求证:c b a c a b c a b ++≥++2

22.[7] 由于不等式中没有出现判别式的形式,所以我们第一步需要构造一个判别式的形式,因为+∈R c b a ,,,所以我们在不等式两边同乘以c b a ++,就出现了判别式的形式,解题思路便随之而来。

证明:因为+∈R c b a ,,,所以有 0))(()c b (2

222

≤++++-++c b a c a b c a b a , 构造方程0)()c (2)(2

222

=+++++-++c a b c a b x b a x c b a ,

方程经过配方,化简为0)()(222

=-+-+???? ??-c a x c b c x b a b x a , 显然方程至多有一个实根,此时0≤?,代入数据, 即0))(()c b (2

222

≤++++-++c b a c a b c a b a 也就是c b a c

a b c a b ++≥++2

22 从这两个例子中,我们看到构造判别式法其实也需要构造方程,只是这里构造二次方程有一定技巧,要结合结论要证明的不等式构造二次方程,还要确保二次方程有(或者没有)实根。

无论是一般的构造方程法还是特殊的构造判别式法,我们主体思路就是利用方程思想把题目中要证明的未知结论和题干中已知结合起来,如果是二次方程,一般利用判别式进行解答。

2.3构造函数

函数作为中学阶段最重要的一个领域之一,是因为数学中存在大量的函数关系。如果我们研究的问题本质上属于函数关系,那么我们可以构造一个(或多个)由已知条件构成的函数模型,通过研究函数的性质,进而解决要求的结论。

例3.1 求证:b b

a a

b a a +++≤+++111b

这是个带有绝对值的不等式,但是如果真的直接利用绝对值性质去证明,短时间内也无法下手。我们不妨整体把握,发现不等式中有一个我们常见的基本函数模型的身影,即()x

x x f +=1,于是我们的解题思路就从()x f 的性质出发。 证明:构造函数()x x x f +=1,同时()x

x x x f +-=+=1111,易知()x f 在()+∞-,1上是递增的,因为b a b a +≤+,所以())(b a f b a f +≤

+, 即b

b

a a

b a b

b a a

b a b

a b a a +++≤+++++=+++≤+++111111b

上面构造函数之后利用了函数()x

x x f +=

1的单调性来证明不等式,当然我们有时候还需要利用函数的其他性质。

例 3.2 解方程 ()0)41()4)56(1(5622=+++++++x x x x [8]

解这个复杂的方程看似无从下手,但注意到方程中())4)56(1(562++++x x 与)41(2++x x 有相同的结构,我们构造函数)41()(2++=x x x f ,则原方程就转化为了)()56(x f x f -=+,这时我们想到只要函数)(x f 为奇函数且单调,此题就可以快速解决,于是我们要研究的就是)(x f 的单调性和奇偶性。 解:构造函数)41()(2++=x x x f ,原方程化为0)()56(=++x f x f 显然)(-)-(x f x f =,)(x f 为奇函数

下面证明)(x f 具有单调性:设21x x <

(1) 若[)+∞∈,0,21x x ,则1)

41()41()()(0221121<++++=≤

x x x x x f x f 所以 )()(21x f x f <

(2) 若()0,,21∞-∈x x ,因为121>x x ,1414121>++++x x ,所以 1)

41()41()()(221121>++++= x x x x x f x f ,又0)(2

(3) 若()0,1∞-∈x ,[)+∞∈,02x ,显然有0)(1

所以 )()(21x f x f <

由(1)(2)(3)可知,)(x f 在()+∞∞-,上是单调递增的函数,

所以原方程0)()56(=++x f x f 等价于)-()56(x f x f =+

即 x x -56=+,解得 7

5-=x 上面的例子中,我们观察题目中的形式共同点,然后构造了一个基本函数,然后通过研究这个函数单调性或奇偶性,来完成对结论的证明。还有一些特殊情况,我们成功构造函数后,利用的并不是函数单调性或是奇偶性,而是根据恒等

式性质来完成结论的证明。我们可以把这种特殊的构造函数法称作构造恒等式法,下面两个问题的解答就是利用了构造恒等式法。

例3.3 已知c b a ,,是互不相等的实数,求证:

1)

)(())(())(())(())(())((=--+++--+++--++a b c b a x c x c a b a c x b x b c a c b x a x 如果把式子左边展开来证,显然是非常复杂繁琐的,注意到c b a ,,互不相等这一特点,我们可以构造一个函数证明这个问题。 证明:构造函数1)

)(())(())(())(())(())(()(---+++--+++--++=a b c b a x c x c a b a c x b x b c a c b x a x x f 由c b a ,,互不相等知,c b a ---,,也互不相等,

显然)(x f 是关于x 的不超过二次的函数,而

0)()()(=-=-=-c f b f a f ,即0)(=x f 恒成立 也就是1)

)(())(())(())(())(())((=--+++--+++--++a b c b a x c x c a b a c x b x b c a c b x a x 恒成立 同样的问题:

例3.4已知c b a ,,是互不相等的实数,求证:

2222)()

)(())(())(())(())(())((c b a b c a c b c a c c a b c b a b c b b c a b a c a b a a ++=--+++--+++--++ 和例3.3一样,直接展开左式来证是十分复杂的,我们还是构造一个函数来证明结论,不过这次构造的函数需要一些技巧,要综合式子左右两边来考虑构造的函数。

证明:构造一个函数

2222)

)(())(())(())(())(())(()(x b c a c b x a x c a b c b a x c x b c a b a c x b x a x f -----+----+----=, 显然)(x f 是关于x 的不超过二次的函数,

对于c b a x ,,=,带入函数)(x f ,有0)()()(===c f b f a f ,

故0)(=x f 恒成立

即2222)

)(())(())(())(())(())((x b c a c b x a x c a b c b a x c x b c a b a c x b x a =----+----+----恒成立 令c b a x ++=,带入上式,得

2222)()

)(())(())(())(())(())((c b a b c a c b c a c c a b c b a b c b b c a b a c a b a a ++=--+++--+++--++ 综合构造恒等式法,我们把构造函数法所应用的地方加以扩展,包括:不等式证明,方程的求解,以及恒等式的证明。运用构造方程法我们必须要做的是根据题目中给出的形式共同点,需找其函数本质,然后构造函数,对函数的性质(单调性,奇偶性,特殊的如恒等性)进行研究,以获得解答最终问题的所需的目的性质。

2.4构造数列

细数最近几年高考有关数列的综合问题,一般考察数列问题所给出的数列不会是一般的等差、等比数列,这时候需要我们根据题目要求,构造出一个特殊数列(等差数列、等比数列、常数列或者是单调数列),[9]利用这些数列的性质,来解决有关计算或证明。

例4.1 设)1(3221+++?+?=n n a n ΛΛ,ΛΛ3,2,1=n 证明:2

)1(2)1(2

+<<+n a n n n 拿到问题,第一时间想到的是,这个问题和上面提到的构造函数法有雷同地方。但是数列和函数是有区别的,我们这时候可以构造两个数列,通过单调性来考虑证明最后的不等式。 证明:构造数列2)1(+-

=n n a x n n ,ΛΛ3,2,1=n 因为0)1(2

)1(2)1(11>-+=-++--=---n n n n n n n a a x x n n n n ΛΛ4,3,2=n ,即n x 为递增数列 且012111>-=-=a x ,故0>n x , 即02)1(>+-n n a n ,也就是2

)1(+>n n a n

中学数学教学中的反证法-精选教育文档

中学数学教学中的反证法 在生活中,我们都有这样的常识,去掉大米中的砂粒,有两种方法.一种是直接从大米中把砂粒一粒一粒地拣出来;一种是用间接的方法――淘洗法,把砂粒残留下来.这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的.有时用直接方法很困难,而用间接方法却容易得多.牛顿曾说:“反证法是数学家最精当的武器之一.”当一些命题不易从正面直接证明时,就可考虑用反证法. 一、反证法的基本概念 1.反证法的定义 法国数学家阿达玛对反证法的实质做了如下概括:“若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法的极好概括.其实反证法也称作归谬法。反证法适合一些正面证明比较困难,但是否定则比较简单的题目,在高中数学中的应用较为广泛,在解决一些较难问题的时候,反证法能体现其优越性. 2.反证法的基本思想 反证法的基本思想就是否定之否定,这种基本思想可以用下面的公式表示: “否定→推理→矛盾→肯定”,即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定. 3.反证法的逻辑依据 通过以上三个步骤,为什么能肯定原命题正确呢?其逻辑根据就在于形成逻辑的两个基本规律:“排中律”和“矛盾律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

初中数学十大常见解题方法

初中数学十大常见解题方法 1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,

而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。 6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

初中数学常用的10种解题方法.doc

初中数学常用的10种解题方法 来源: e度教育社区 数学的解题方法是随着对数学对象的研究的深入而发展起来的.教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。 下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式.配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式.因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法.我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程20(a、b、c属于R,a≠0)根的判别,△2—4,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,

浅谈中学数学中的反证法

本科生毕业论文 浅谈中学数学中的反证法 院系:数学与计算机科学学院 专业:数学与应用数学 班级: 2008级数学与应用数学(2)班 学号: 200807110211 姓名:黎康乐 指导教师:陈志恩 完成时间: 2012年5月26日

浅谈中学数学中的反证法 摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果. 关键词:反证法假设矛盾结论

Abstract:The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect. Key words:Counter-evidence method hypothesis contradiction conclusion

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等. 【方法点评】 类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例1. 若,x y ∈{正整数},且2x y +>。求证:12x y +<或12y x +<中至少有一个成立。 【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2 +2ax -2a =0至少有一个方程有实根。则实数a 的取值范围为________。 类型二 证明“不可能”问题 使用情景:证明“不可能”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论.

例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a -= ∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴. 【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。求证:AC 与平面SOB 不垂直。 类型三 证明“存在性”或“唯一性”问题 使用情景:证明“存在性”或“唯一性”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例3.求证:方程512x =的解是唯一的. 【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为() A .自然数c b a ,,都是奇数 B .自然数c b a ,,都是偶数 C .自然数c b a ,,中至少有两个偶数 D .自然数c b a ,,中至少有两个偶数或都是奇数

浅谈中学数学中的反证法

浅谈中学数学中的反证法 摘要:反证法在数学中是一种非常重要的间接证明方法,它被称为“数学家最精良的武器之一”,又称为归谬法、背理法。反证法不仅是一种论证方法,还是一种思维方式,对培养和提高学生的逻辑思维能力和创造性思维能力也有极其重要的作用,还能拓展学生的解题思路,从而使学生形成良好的数学思维。反证法在中学数学中有着广泛的应用,如今学生在运用反证法解题中,基础一般的学生会受到思维能力的限制,如果能恰当的使用反证法,在一些有难度的题目上也许能够得到解决。所以本文首先会叙述反证法的产生,具体阐述反证法的定义,即反证法的概念、分类、科学性,介绍反证法在中学数学中的应用并举例分析以及说明应用反证法要注意的问题。 关键词:反证法;中学数学;应用; On the Proof by Contradiction in Middle School Mathematics Abstract:Proof by contradiction is a very important indirect proof method in mathematics, it is called "one of the most sophisticated weapons of mathematicians", also known as reduction to absurdity, unreasonable method. Proof by contradiction is not only an argumentation method, but also a way of thinking. It plays an extremely important role in cultivating and improving students' logical thinking ability and creative thinking ability. It can also expand students' thinking of solving problems, so that students can form good mathematical thinking. Anyway, the method has been widely used in middle school mathematics. Nowadays, when students solve problems with the method of proof by contradiction, the students with general foundation are limited by their thinking ability. If the method of proof by contradiction can be used properly, they may be able to solve some difficult problems. Therefore, this paper will first describe the source of proof by contradiction, specifically elaborate the definition of proof by contradiction, that is, the concept, classification and logical basis of proof by contradiction, introduce the application of proof by contradiction in middle school mathematics and explain the problems to be noticed in the application of proof by contradiction. Keywords:proof by contradiction; Middle school mathematics; Application;

初中几何反证法专题(编辑)

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正 确 简而言之就是“反设-归谬-结论”三步曲。 例题: 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明: 假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 (1) ∴OM⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM 这与已知的定理相矛盾。 故AB与CD不能互相平分。 例2.已知:在四边形ABCD中,M、N分别是AB、DC的 中点,且MN=(AD+BC)。 求证:AD∥BC

例谈反证法在数学证明中的应用

例谈反证法在数学证明中的应用 【摘要】反证法是解决数学问题时常用的数学方法之一,它在数学解题中广泛使用,特别是有些问题,用反证法更简捷明了。文章阐明反证法的定义、逻辑依据、证明的一般步骤,重点论述了反证法在中学数学证明中的应用。 【关键词】反证法证明假设矛盾结论 有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 一、对“反证法”的概述 (一)反证法的概念及其逻辑依据 1.反证法的概念 假设命题判断的反面成立,在已知条件和“否定命题判断”这个新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论或自相矛盾,从而断定命题判断的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法。 2.反证法的逻辑依据 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。

矛盾律: 在同一论证过程中, 对同一对象的两个互相矛盾(对立)的判断, 其中至少 有一个是伪的。 排中律: 在同一论证过程中, 对同一对象的两个互相矛盾的判断, 不能为伪, 其中 必有一个是真的。 (二)反证法的证明步骤 设待证的命题为“若A 则B ”,其中A 是题设,B 是结论,A 、B 本身也都是数学判断,那 么用反证法证明命题一般有三个步骤: 1. 反设:假设所要证明的结论不成立,而设结论的反面成立; 2. 归谬:由“反设”出发,以通过正确的推理,导出矛盾——与已知条件﹑已知的公理 定理﹑定义﹑反设及明显的事实矛盾或自相矛盾; 3. 结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立, 从而肯定了结论成立。 二、反证法在数学证明中的应用 反证法在数学证明中的应用非常广泛,反证法虽然是在平面几何教材中出现的,但对数 学的其它各部分内容,如代数、三角、立体几何、解析几何中都可应用。那么,究竟什么样 的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题 一般用反证法来证比较方便。 1.否定性命题 结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入 手,而用反证法就容易多了。 例1 求证:当 n 为自然数时 ,2(2 n + 1) 形式的数不能表示为两个整数的平方差。 证明:假设有整数 a , b ,使)(1n 22b a 22+=-, 即 (a + b)(a - b)=2(2n + 1) ① 当 a ,b 同奇、 同偶时 , a + b 、 a - b 皆为偶数 , (a + b)(a - b) 应是4的倍数 ,但2(2n+ 1) 除以4余2 ,矛盾。 ② 当a ,b 一奇一偶时 ,a + b 、a - b 皆为奇数 , (a + b)(a - b) 应是奇数 ,但2(2n + 1)为偶数 ,矛盾。 所以假设错误 ,即2(2n + 1) 形式的数不能表示为两个整数的平方差。

浅谈中学数学常用的解题方法.doc

浅谈中学数学常用的解题方法 新疆奎屯市一中王新敞(833200) 数学的解题方法是随着对数学对象的研究的深入而发展起来的。教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。 下面介绍的解题方法,都是中学数学中最常用的,有些方法也是中学教学大纲要求掌握的。 1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式

变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。 6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

浅谈反证法在数学中的应用

浅谈反证法在数学中的应用 摘要 反证法在数学中是一种极其重要的证明方法,被称为“数学家最精良的武器之一”。它与一般证明方法不同,反证法可分为归谬反证法和穷举反证法两种。只要抓住要领,反证法就能使一些不易直接证明的问题变得简单,易证,它在数学证题中确有独到之处。本文主要介绍了反证法的基本概念、步骤、依据及分类。对于反证法的应用需注意事项和解题步骤做一些论述。 关键词:反证法;归谬;矛盾;假设;结论 Abstract Contradiction in mathematics is an extremely important method of proof, known as "mathematician one of the most sophisticated weapons." It is different with the general method of proof, proof by contradiction can be classified into two kinds of absurd contradiction and exhaustive reductio ad absurdum. Simply grab the essentials, reductio ad absurdum can make a number of difficult problems becomes simple direct proof, easy to prove, it is proof in mathematics problem in that there are unique. This paper describes the concept of reductio ad absurdum, steps, basis and classifications.The reductio ad absurdum of the application notes and problem-solving steps required to do some exposition.

文本预览
相关文档 最新文档