当前位置:文档之家› 直接甲醇燃料电池技术发展近况及应用

直接甲醇燃料电池技术发展近况及应用

直接甲醇燃料电池技术发展近况及应用
直接甲醇燃料电池技术发展近况及应用

新能源汽车A 版

收稿日期:2010-07-27

直接甲醇燃料电池技术发展近况及应用

王瑞敏 (上海汽车集团股份有限公司商用车技术中心,上海 200438)张颖颖 (山东省科学院海洋仪器仪表研究所,青岛 266001)

摘要 针对直接甲醇燃料电池(D M FC )的发展状态进行调查。分析了各国政府和企业致力于DM FC

的开发与应用研究。

Abstract For the i n vesti g ati o n of direct m ethano l fue l ce ll (D M FC )deve l o pm ent cond ition,th is paper presen ted the situati o n of deve l o p m ent and applicati o n on research DMFCS what governm ents and enterprises dedicated to .

主题词 燃料电池 汽车 发展 甲醇

燃料电池是一种将化学能连续不断地转化为电能的可再生清洁能源。自20世纪60年代初问世以来,就迅速发展成为国际高新技术竞争中的热点之一。我国政府对燃料电池的研发高度重视,将其列为国家科技中长期发展规划中能源、交通、电子等领域的重要研究方向和急需开拓的尖端高技术。本文针对直接甲醇燃料电池(D M FC )的发展状态进行了调查和分析。分别从D M FC 的关键技术发展状态、主要生产商发展状态、在便携式电源中的应用、DMFC 在汽车领域的应用等几个方面进行了分析。

1 D M FC 的工作原理及关键技术发

展状况

目前广泛研发的燃料电池有质子交换膜燃料电池(PE MFC)、直接甲醇燃料电池(DMFC)、碱性燃料电池(AFC )、磷酸盐型燃料电池(PAFC )、熔融碳酸盐型燃料电池(MCFC )、固体氧化物燃料电池(SOFC )等。其中,PE MFC 因其不经过燃烧直接以电化学反应连续地把燃料和氧化剂中的化学能

直接转换成电能,具有能量转换效率高(一般都在40%~50%,而内燃机仅为18%~24%)、无污染、启动快、电池寿命长、比功率及比能量高等优点,成为应用最广的一类燃料电池,尤其是在汽车用燃料方面,PE MFC 的应用接近该市场的100%。各种燃料电池应用情况如图1

所示。

图1 各种燃料电池的应用情况

1.1 D M FC 的工作原理

在阳极区,负极活性物质甲醇水溶液经阳极流场板均匀分配后,通过阳极扩散层扩散并进入阳极催化层中(即阳极电化学活性反应区域),在碳载铂钌电催化剂的作用下发生电化学氧化反应,生成质子、电子和CO 2。产生的质子通过全氟磺酸膜聚合物电解质迁移到阴极,电子通过外电

新能源汽车

路传递到阴极,CO2在酸性电解质帮助下从阳极出口排出[1]。

在阴极区,正极活性物质氧气或空气经阴极流场板均匀配后,通过阴极扩散层扩散并进入阴极催化层中(即阴电化学活性反应区域),在碳载铂钌电催化剂的作用下与从阳极迁移过来的质子发生电化学还原反应生成水随反应尾气从阴极出口排出。其电极反应如下:

阳极反应:C H3OH+H2O CO2+6H++6e

阴极反应:3

2

O2+6H++6e 3H2O

总反应:C H3OH+3

2

O2 C O2+3H2O

1.2 DMFC在催化剂方面的研究进展

D M FC电极的电催化剂采用Pt/C、Pt Ru/C或Pt黑、纯Pt-Ru黑。至今为止,在DMFC中广泛应用的阳极电催化剂是Pt Ru/C或Pt Ru黑,Pt与Ru原子比一般为1 1,阴极催化剂采用纳米级纯Pt黑河Pt/C。

美国某大学教授2008年在 自然-材料学 网络版上发表的论文中描述了一种新型催化剂。它由被一层或两层铂原子包围的钌纳米颗粒组成,是一种高效的室温催化剂,可显著改善关键的氢纯化反应,从而获取更多的氢用于燃料电池的供能。

2007年中科院长春应化所与中科院大连化物所、南京师范大学和南通海阳新材料科技有限公司获得国家 863计划 项目 直接甲醇燃料电池技术 的支持。经过2年多的联合攻关,突破了催化剂制备及性能、电极及膜电极集合体制备工艺、电池结构改进等技术关键,批量制备出性能优良的多种催化剂,部分催化剂性能优于商品催化剂;批量制备出高性能膜电极集合体,组装出自呼吸电池及主动式电堆,实现了自呼吸电池甲醇燃料电池组与笔记本电能连用。目前,长春应化所等单位正在为进一步提高电池性能和整体水平而组织联合攻关,力争通过二三年的时间,研究并掌握批量合成与制备甲醇燃料电池的关键材料、电池堆制作和整体发电系统集成的核心技术,为甲醇燃料电池的产业化奠定重要的技术和材料基础。1.3 D M FC在质子交换膜方面的研究进展

DM FC采用的质子交换膜为全氟磺酸膜,该膜用于DMFC的主要缺点是醇类经电迁移和扩散由膜的阳极侧迁移至阴极侧,导致在阴极产生混合电位,降低DMFC开路电压,增加阴极极化和燃料的消耗,降低DMFC的能力转化效率。为了克服上述缺点,国内外科学家一直在探索开发各种低透醇膜。

日本东亚合成在2006年1月发布了改进型DM FC电解质膜,通过在聚烯烃类多孔质底材中填充电解质聚合物,控制了 甲醇渗透(甲醇通过电解质膜导致DM FC性能下降的现象) 。通过对材料的改进,将质子导电度提高到约1.5倍,连续运行时间由5000h提高到了7000h。该公司将这种采用多孔质膜的电解质膜称为 细孔填充电解质膜 。

除美国杜邦(DuPont)外,美国W.L.Gore& A ssociate公司及德国Fu MA Tec h Gm b H公司也在开发用于直接甲醇方式的电解质膜,并都已经开始了工业样品供货。Fu-MA设计了两种电解质膜,一种是使用温度范围为0~60 的全氟磺酸膜;另外一种是使用温度范围为0~110 的非全氟磺酸膜。但是,该公司并未公布电解质膜的输出密度等数据。Fu MA公司开发出的普通电解质膜如图2

所示。

图2 Fu M A公司的普通电解质膜

1.4 D M FC水管理系统方面的研究进展

MT I微燃料电池公司是获奖的M ob ion微型燃料电池技术的开发者,并且是机械科技公司的一家子公司,该公司在日本东京的第四届国际氢和

新能源汽车

燃料电池博览会上推出用于数码相机市场的燃料电池新原型机 燃料电池充电器(M ob i o n)[2]。M ob i o n技术的核心在于在阴极采用通过化学反应产生的水,并能满足在阳极化学反应的需求。而传统的电池技术中水管理依赖于复杂的 M icro pl u m b i n g ,收集从阴极产生的水,然后循环、并与甲醇混合在阳极。M obion技术简化了传统的产生能源的化学反应所需要的从阴极到阳极的所需水的方法,这项专有技术使得水能满足在水的产生到甲醇燃料电池的空气的内部转让的燃料过程中的需求,而内部水的流动是不需要任何复杂的再循环线路或其他工具。M ob i o n技术可减少在甲醇燃料电池中甲醇的用量,使得甲醇的使用效率达到100%。

1.5 DMFC主要生产商的最新发展状态

目前,全球很多消费类产品的公司都在致力于甲醇燃料电池的研发工作,如东芝、NEC、富士通、松下、夏普、三星、索尼、三洋、日立、LG、BYD 等公司,而目前市场上采用甲醇燃料电池的手机已经由日立、富士、东芝推出。

加拿大巴拉德动力系统公司是世界上最早从事燃料电池技术研发公司,巴拉德公司在汽车燃料电池研制方面处于世界领先地位。2008年,巴拉德公司生产燃料电池汽车1855辆。巴拉德公司最近宣布,该公司将向德国轿车及卡车制造商戴姆勒公司及美国的福特公司出售汽车燃料电池业务。根据协议,戴姆勒和福特将通过设立新的公司来管理燃料电池技术发展项目,并为该项目提供资金,新的公司将被称为汽车燃料电池合作公司。

Po lyFue l提供便携产品中甲醇燃料电池的 心脏 薄膜产品。从2004~2006年,PolyFuel公司的出货量从几千平方米到近3万m2,客户数量也从7个增加到近17个。公司推出的最新的20 m的薄膜产品可比过去延长甲醇燃料电池的40%的能源,加强了甲醇燃料电池中的水循环,继续保持了碳氢化合物的优势。

MT I M icro甲醇燃料电池公司则面向便携产品提供甲醇燃料电池的可充电电源技术,其产品可应用于军事以及消费电子市场中。M ob i o n电源产品可替代锂离子电池以及其它类似的可充电系统,它比现有的电池技术可延长两倍的电池的运行时间。公司与三星、甲醇协会、Dupont、I nter m ac 技术公司、伟创立、SES Am erico m公司等建立了良好的合作关系。

英国I ntelli g ent Ener gy公司是一家专注于燃料电池技术方面的高科技企业,规模不大,历史可追溯于1988年在拉夫堡大学的基础研发。这家企业的服务范围甚广,在交通运输产品领域,客户包括铃木、波音、标致雪铁龙、伦敦出租车国际公司等。

美国U ltraCell公司成立于2002年,总部设在加州,主要研发制造应用于便携式设备的完整微燃料电池系统[3]。迄今为止已经获得了近3000万美元的投资。该公司发展其具有知识产权的甲醛为燃料基础的燃料电池,该技术不同与其他的直接甲醇燃料电池,其利用创新的微重整器,从高纯度的甲醇中提取氢气。这种甲醇重整系统的能量密度是直接甲醇燃料电池系统的2倍。

2 D M FC在便携式电源方面的应用

目前的微型燃料电池中,DMFC以其自身染料价格低、启动迅速、比功率高、无腐蚀性等优点,成为当前微型燃料电池的最佳选择。便携产品的甲醇燃料电池问题正在受到市场的普遍关注,有数据表明,到2010年,市场对能耗的需求速度远远大于电源的技术发展速度。传统的锂离子电池不能满足未来消费产品中丰富的多媒体特性所需求的能源供应,只有甲醇燃料电池由于可以为便携产品带来长时间运转的、干净的、低成本的便携产品电源性能,可以取代传统有线的充电装置,实现真正 无线的 便携产品,将获得市场的极大需求。根据Frost&Sullivan的数据表明,到2012年,消费电子产品需要大约8000万的甲醇燃料电池单元[4]。

2008年4月,美国交通部公布了一项最终规定,允许在客机上携带甲醇燃料电池和甲醇燃料。根据规定,乘客可在搭乘飞机时携带微型燃料电池,且每人最多只能带两个备用燃料盒。包括加

新能源汽车

拿大、中国、日本和英国在内的全球许多国家已将该乘客限制纳入各自的国家标准。

三星SD I公司日前开发出一款用于笔记本电脑的燃料电池原型,这款燃料电池能量密度为200W h/L,大约由200c m3的液态甲醇供能,能持续工作约15h。这与东芝或NEC公司的能量密度为100~130W h/L的笔记本电脑燃料电池相比,持续使用时间更长,而且产品更加小巧和紧凑。

2009年10月26日,日本东京公司宣布从10月29日开始销售直接甲醇燃料电池,该款产品将作为充电装置首先应用于手机、数码相机等USB 接口便携式设备。

德国Sm art Fuel Cell GmbH开发出了可以内置于笔记本电脑使用的直接甲醇燃料电池系统。在笔记本电脑中插入可以容纳150mL甲醇的大约5c m见方的盒式电池,便可使笔记本电脑工作8~ 10h。

东芝甲醇燃料电池Dynario在经过严格测试之后,近日将推向市场。甲醇燃料电池Dynario的尺寸为150 21 74.5mm,重量也达到了280g,并配备了50mL的甲醇燃料瓶,让用户轻松携带。该电池本身的容量为14mL,能快速充满燃料使用,然后就可以通过USB接口向手机、数码相机等数码产品进行供电,并进行电量的简明显示,非常方便。

3 D M FC在汽车行业的应用

D M FC在汽车行业的应用不如质子交换膜燃料电池的应用成熟,但是也有一些成功的案例。2008年奥运会期间,上海大众推出了D M FC燃料电池车,充一次燃料可运行300k m;日本铃木将在第四十一届东京车展展出甲醇燃料电池驱动的M I O轮椅车等全新概念车型。

美国硅谷一家发展迅速的新兴公司Oorja Pro tonics计划将其生产的基于甲醇燃料的燃料电池应用于纯电动汽车及插电式混合动力汽车。该公司正研制一种应用在纯电动汽车或插电式混合动力汽车上的电池,可增加车辆的续驶里程。日产决定在其Sm yr na,Tenn.工厂采用Oorja公司经过18个月测试后的甲醇燃料电池。目前,日产在其工厂内使用装有Oorja燃料电池的拖车运送零部件及其他材料。

由江苏双登集团南京双登科技发展研究院研制的甲醇燃料电池电动自行车已经问世。整车以DM FC为核心,由燃料电池电堆、甲醇进液系统、氧气循环系统、电控部分、系统状态监控等部分组成。行驶速度可达20km/h,一次注入4L甲醇燃料能够骑行30km,与普通电动自行车性能相差无几。

4 结语

直接甲醇燃料电池汽车技术最近几年有了很大提高,其优势表现在不需要对燃料进行二次转化[3]。在能源危机日益严重的今天,各国政府和各大企业都积极致力于新能源的开发与应用研究,直接甲醇燃料电池产业化应用必定指日可待。

参考文献

1 衣宝廉.燃料电池 原理技术应用[M],化学工业出版社,2003.

2 https://www.doczj.com/doc/a115457957.html,/c m s/h t m l/zhongguos hey i ngbao/q i c ai/20081211/34692.ht m.l

3 h tt p://i nfo.c h i na.ali baba.co m/ne w s/det ail/v0 d1005420109. ht m.l

4 h ttp://www.port ab ledesi gnch i na.co m/ne w s.as p?i d=3072.

5 齐占宁,赵立按,傅春江,胡卫华,张兴业.甲醇燃料电池汽车[J].世界汽车,2002,(7

).

燃料电池的应用及发展状况

简述燃料电池的应用及发展状况 摘要:燃料电池是一种高效、清洁的电化学发电装置,近年来得到国内外普遍重视。目前燃料电池在宇宙飞船、航天飞机及潜艇动力能源方面已得到应用,在汽车、电站及便携式电源等民用领域成功地示范,但低成本、长寿命仍是商业化面临的瓶颈问题。而且我国在燃料电池方面的研究与外国还有一定差距,需要科研工作者更多的努力。 关键字:燃料电池分类应用发展状况 1. 燃料电池的概念 燃料电池(Fuel Cell)是一种电化学设备,它直接、高效地将持续供给的燃料和氧化剂中的化学能连续不断地转化为电能。燃料电池的基本物理结构由一个 电解质层组成,它的一边与一个多孔渗透 的阳极相连,另一边与一个多孔渗透的阴 极相连,气态燃料电池连续不断地输入阳 极(负电极),同时氧化剂连续不断地输 入阴极(正电极),在两个电极上发生电 化学反应,产生电流[1]。其基本结构如图 所示: 2. 燃料电池的分类及其优点 随着现代文明发展,人们逐渐认识到传统的能源利用方式存在两大弊病:一是储存于燃料中的化学能要首先转变成热能后才能被转变成电能或机械能,受卡诺循环及现代材料的限制,转化效率低(33~35%),造成严重的能源浪费;二是传统的能源利用方式造成了大量的废水、废气、废渣、废热和噪声污染,严重威胁着人类的生存环境。现代社会所建立起来的庞大的能源系统已无法适应未来社会对高效、清洁、经济、安全的能源体系的要求,能源发展正面临着巨大的挑战:能源短缺与环境污染,因此探索新能源以及新的能源利用方式,是全球可持续发展迫切需要解决的重大课题。 燃料电池是一种电化学发电装置,等温地按电化学方式将化学能转化为电

微型直接甲醇燃料电池概述

微型直接甲醇燃料电池概述 课题背景 在社会高速发展的今天,能源和人类社会的生存发展休戚相关,是经济发展进步的动力源泉,也是衡量一个国家的综合国力、科学发达程度以及人民生活水平的重要指标[1-2]。当前全球消耗的能源,主要以非可再生能源——煤、石油、天然气等为主,而各国的工业化的急速发展使得这些非可再生能源消耗的每况愈下,人类对这些能源的依附却有增无减[3-4]。与此同时,这些能源的消耗过程中排放物给生态环境带来了很大的负面影响,使环境污染问题成为日前全球性的问题[5],对人类生存环境的威胁日趋严重,更关系到未来人类社会的可持续发展与生存[6-8]。故亟需找到一种理想的能源资源或动力装置,来代替现有的能源资源[9]。“氢”能清洁、高效、可持续,是能源系统的重中之重[10],而甲醇燃料电池是“氢”能技术的最佳代表之一,其研究开发受到世界各国的青睐,被认为是本世纪首选的清洁的、高效的发电装置[11-13]。尤其是微型甲醇燃料电池,它低污染、质量轻、体积小、容易操作、比能量密度高,更是成为了便携式电子装置的理想动力装置之一[14-15]。近些年MEMS技术的迅猛发展为微型甲醇燃料电池的制造及应用提供了新的实现方法。基于MEMS技术制造的微型甲醇燃料电池主要具有以下优势: (1)燃料电池结构可以简化[16],体积和重量减小; (2)可制作复杂的微流场结构[17],控制燃料流动,提高电池性能; (3)易批量生产,并成本降低; (4)安全性、可靠性更高[18],更换燃料方便简易。 (5)可将微型燃料电池和传感器、电子器件等集成在芯片上,节省系统体积,使燃料电池的系统结构更简单[19-21]。 因此, 微型直接甲醇燃料电池的研发和生产,必成为电化学和能源科学研究与发展的一个备受关注热点和主要方向[22]。目前小型DMFC的研发的重点主要集中在燃料来源和降低成本,要想使μDMFC尽快实现商业化还需要大量细致的研究工作,如MEA新的制备工艺及结构优化技术,高效抗CO中毒的阳极催化剂、高质子电导率的阻醇质子交换膜的研制,DMFC电池组的封装及系统集成等。现在,DMFC单电池及电池组的样机已经问世,对于样机在实际应用中的工作状态、寿命及有效降低成本等方面已经成为微型DMFC研究中的新热点。微型DMFC的应用如图1-1所示。 图1-1 微型DMFC的应用 微型直接甲醇燃料电池概述 1.2.1国内外研究现状 近年来,世界各国对微型甲醇燃料电池的研发,都投入了大量的经费,很大程度上推动了微型直接甲醇燃料电池的发展。 Kah-YoungSong [23]等提出在阴极扩散层基底上引入微孔层,降低阴极扩散层基底的憎水

燃料电池客车发展情况与技术发展趋势

燃料电池客车发展情况及技术发展趋势一、燃料电池汽车政策分析 《关于2016-2020年新能源汽车推广应用财政支持政策方的通知》(财建(2015)134号)中明确:“2017-2020年,除燃料电池汽车外,其他车型补助标准适当退坡”,明确了国家对燃料电池汽车产业发展的支持态度。而《“十三五”国家战略性新兴产业发展规划》中提出,要系统推进燃料电池汽车研发与产业化,到2020年,实现燃料电池汽车批量生产和规模化示应用。 在财政补贴层面,国家也给予了大力支持,包括整车补贴、加氢站补贴、免征购置税以及运营补贴等。其中,整车补贴额度从20万到50万每辆不等,一个加氢站则补贴400万元,运营补贴中,燃料电池客车补贴为6万元/辆/年。 二、氢燃料电池产业链概述 氢燃料电池汽车产业链包括制氢、储氢、运氢、加氢、应用(燃料电池汽车/有轨电车)等环节。 氢气制造一般是通过将化石原料、化工原料、工业尾气、可再生能源以及水等经过处理来获取,每种获取途径其成本和环保属性都不同。中国目前主要通过工业尾气处理以及电解水来制氢。长河认为,对于燃料电池来说,现在配套基础设施还有待进一步完善,需要政府以及行业机构以及专家尽快推进立法和相应的技术标准予以规。

长河表示,制氢的方法和方案比较多,而目前燃料电池汽车使用最大瓶颈和最大的障碍是缺乏加氢站。据其统计,截止到2013年底,全球加氢站只有228座,对于我国来说,我国真正投入商业化、用于燃料电池的加氢站只有两座,仅仅限于国比较大的城市,就是和,处于示运营阶段,与国外说的氢高速公路,也就是一条高速公路有多个加氢站相比,差距比较大。 在整个氢燃料电池产业链中,氢燃料电池发动机处于绝对的核心地位,氢燃料经过发动机转化为电能应用到终端。长河表示,目前制约中国燃料电池汽车发展的瓶颈,就是氢燃料电池发动机。虽然国有不少高校和相应科研机构以及企业,在就燃料电池发动机技术展开相应研究和示性运营应用,但是氢燃料电池发动机核心技术,这两年通过评估,能够达到产业化或者达到工业化应用的,核心技术仍然掌握在国外企业手中。

甲醇燃料电池

甲醇燃料电池 22.据报道,最近摩托罗拉(MOTOROLA)公司研发了一种由甲醇和氧气以及强碱做电解质溶液的新型手机电池,电量是现用镍氢电池和锂电池的10倍,可连续使用1个月充电一次。假定放电过程中,甲醇完全氧化产生的CO2被充分吸收生成CO32- (1)该电池反应的总离子方程式为___________________________________。(2)甲醇在____极发生反应(填正或负),电池在放电过程中溶液的pH将____(填降低或上升、不变);若有16克甲醇蒸气被完全氧化,则转移的电子物质的量为________。 22.(1)2CH3OH+3O2+4OH-=2CO32-+6H2O (2)负下降8mol 28.据报道,最近摩托罗拉(MOTOROLA)公司研发了一种由甲醇和氧气以及强碱做电解质溶液的新型手机电池,电量是现用镍氢电池和锂电池的10倍,可连续使用1个月充电一次。假定放电过程中,甲醇完全氧化产生的CO2被充分吸收生成CO32- (1)该电池反应的总离子方程式为______________________________________。(2)甲醇在____极发生反应(填正或负),电池在放电过程中溶液的pH将____(填降低或上升、不变);若有16克甲醇蒸气被完全氧化,产生的电能电解足量的CuSO4溶液,(假设整个过程中能量利用率为80%),则将产生标准状况下的O2________升。 28.(1)2CH3OH+3O2+4OH-=2CO32-+6H2O (2)负下降13.44 6.(广东省惠州市2006届高三第一次调研考试·9)2004年美国圣路易斯大学研制了一种新型的乙醇电池,它用磺酸类质子溶剂,在200o C左右时供电,乙醇电池比甲醇电池效率高出32倍且更安全。电池总反应为: C2H5OH+3O2=2CO2+3H2O,电池示意如图,下列说法不正确 ...的是()。 A.a极为电池的负极 B.电池工作时电流由b极沿导线经灯泡再到a极 C.电池正极的电极反应为:4H+ +O2+4e-=2H2O D.电池工作时,1mol乙醇被氧化时就有6mol电子转移 解析:根据反应C2H5OH+3O2==2CO2+3H2O,得到C2H5OH被氧化,所以a极为电池的负极;O2被还原,所以b极为电池的正极。电流由b极(正极)沿导线经灯

新能源大作业 燃料电池的发电技术

题目名称: 姓名: 班级: 学号: 日期: 机电工程学院

燃料电池发电技术 摘要: 介绍了各种类型燃料电池( 碱性燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、磷酸燃料电池及质子交换膜燃料电池) 的技术进展、电池性能及其特点。其中着重介绍了当今国际上应用较广泛、技术较为成熟的磷酸燃料电池。对燃料电池的应用前景进行探讨, 并对我国的燃料电池研究提出了一些建议。 关键词: 燃料电池; 磷酸燃料电池; 燃料电池有多种类型, 按使用的电解质不同来分类, 主要有碱性燃料电池(AFC) 、熔融碳酸盐燃料电池(MCFC) 、固体氧化物燃料电池( SOFC) 、磷酸燃料电池( PAFC)等。 燃料电池的发展过程: 1889:L.Mond和https://www.doczj.com/doc/a115457957.html,nger以多孔非传导材料为隔膜,组装出采用氢气-氧气的燃料电池,接近现代的FC 1923:A.Schmid提出多孔气体扩散电极的概念,在此基础上: 1950:培根(Francis Bacon)研制成功碱性燃料电池,并被NASA确定为其太空计划的动力源. ——成功作为60年代Apollo登月飞船的主电源 1960:美国通用电气研制出采用聚苯乙烯磺酸膜的质子交换膜燃料电池PEMFC,且于1960年10月首次用于双子星座(Gemini)飞船的主电源 ——由于膜的降解,缩短了电池寿命,污染了宇航员的饮用水 1962:杜邦(Du Pond)公司开发成功全氟磺酸膜,并被通用组装成长寿命(57000h)的PEMFC,并在卫星上做了小电池的搭载实验。解决了以上问题 ——因价格原因,未能中标美国航天飞机电源,导致PEMFC研究停滞 ——让位于石棉膜型碱性氢氧燃料电池 1970年代:其它燃料电池陆续面世——磷酸(Phosphoric Acid) PAFC、溶融碳酸盐 (Molten Carbonate) MCFC、固体氧化物(Solid Oxide) SOFC 1983:Ballard在加国防部支持下,研制成功新型全氟磺酸膜,实现“电极-膜-电极”三合一组建(MEA) 各种燃料电池发展状况 1. 1 碱性燃料电池(AFC) 20 世纪50 年代起美国就开始对碱性燃料电池进行研究, 并在60 年代中期

直接甲醇燃料电池资料

直接甲醇燃料电池研究进展 摘要: 介绍了直接甲醇燃料电池的工作原理、研究现状及最新进展, 认为直接甲醇燃料电池是目前较理想的燃料电池, 有广阔的发展前景。直接甲醇燃料电池(DMFC) 具有燃料易运输与存储、重量轻、体积小、结构简单、能量效率高等优点,以固体聚合物作为电解质的直接甲醇燃料电池是理想的车用动力电源,具有广阔的发展前景。 关键词:直接甲醇燃料电池;甲醇;渗透;膜;电催化剂 Performance study on direct methanol fuel cell Abstract: Working principle, current research situation and latest progress of direct methanol fuel cell are introduced .Fuel cell of this kind is regarded as a perfect one so far, with bright prospects to be expected. Direct methanol fuel cells (DMFC) had several advantages including ease transportation and storage of the fuel, reduced system weight, size and complexity, high energy efficiency. Polymer electrolyte membrane direct methanol fuel cells (PEMDMFC) were ideal power source for vehicles with bright prospects to be expected. . Key words: DMFC; methanol; crossover; membrane; electrocatalyst 0引言 由于汽车尾气污染越来越严重, 从而引起世界各国的关注。汽车尾气污染的根源在于汽车发动机使用的汽油。甲醇是一种易燃液体, 燃烧性良好, 辛烷值高,抗爆性能好。甲醇又是一种洁净燃料, 燃烧时无烟,燃烧速率快, 排气污染少。不管燃烧汽油还是燃烧甲醇作汽车的动力都需要使用内燃机, 因此其噪音污染及燃料燃烧不完全引起的排放物污染是不可避免的。使用电动汽车是解决汽车尾气污染的根本办法, 同时还可以减少内燃机造成的噪音污染。燃料电池有内燃机使用燃料重量轻, 补充燃料方便等优点, 无需充电, 它的最大优点在于可把燃料的化学能直接转变成电能, 其效率不受卡诺循环限制。直接甲醇燃料电池( Direct Methanol Fuel Cell,简称为DMFC) 无需将甲醇转变成氢源, 利用甲醇

燃料电池的应用和发展现状

收稿日期:2005-11-03 作者简介:杨润红(1974-),女,北京交通大学机械与电子控制工程学院工程热物理专业硕士研究生,研究方向为能量转换与工质热物性. 燃料电池的应用和发展现状 杨润红,陈允轩,陈 庚,陈梅倩,李国岫 (北京交通大学,北京100044) 摘 要:能源和环境是全人类面临的重要课题,考虑可持续发展的要求,燃料电池技术正引起能源工作者的极大关注.主要在介绍燃料电池的工作原理、发展简史、分类及特性的基础上,详细分析和论述了燃料电池的应用和研发现状,并对其发展前景作了展望. 关 键 词:燃料电池;工作原理;特性;研发现状 中图分类号:TM911.4 文献标识码:A 文章编号:1673-1670(2006)02-0079-05 1839年,英国的William Grove 首次发现了水解过程逆反应的发电现象[1],燃料电池的概念从此开始.100多年后,英国人Francis T.Bacon 使燃料电池走出实验室,应用于人们的生产活动[2].20世纪60年代,燃料电池成功应用于航天飞行器并逐步发展到地面应用[3].今天,随着社会经济的飞速发展,随之而来的不仅是人类文明的进步,更有能源危机,生态恶化.寻求高效、清洁的替代能源成为摆在全人类面前的重要课题.继火力发电、原子能发电之后,燃料电池发电技术以其效率高、排放少、质量轻、无污染,燃料多样化等优点,正进一步引起世界各国的关注. 1 燃料电池的工作原理 人们常用的普通电池有碱性干电池、铅酸蓄电池、镍氢电池和锂离子电池等.燃料电池和普通电池相比,既有相似,又有很大的差异.它们有着相似的发电原理,在结构上都具有电解质,电极和正负极连接端子.二者的不同之处在于,燃料电池不是一个储存电能的装置,实际上是一种发电装置,它所需的化学燃料也不储存于电池内部,而是从外部供应.在燃料电池中,反应物燃料及氧化剂可以源源不断地供给电极,只要使电极在电解质中处于分隔状态,那么反应产物可同时连续不断地从电池排出,同时相应连续不断地输出电能和热能,这便利了燃料的补充,从而电池可以长时间甚至不间断地工作.人们之所以称它为燃料电池,只是由于在结构形式上与电池有某种类似:外特性像电池,随负荷的增加,它的输出电压下降[4]. 燃料电池实际上是一个化学反应器[5],它把燃料同氧化剂反应的化学能直接转化为电能.它没有传统发电装置上的原动机驱动发电装置,也没有直接的燃烧过程.燃料和氧化剂从外部不断输入,它就能不断地输出电能.它的反应物通常是氢和氧等燃料,它的副产品一般是无害的水和二氧化碳.燃料电池的工作不只靠电池本身,还需要燃料和氧化剂供应及反应产物排放等子系统与电池堆一起构成完整 的燃料电池系统.燃料电池可以使用多种燃料,包括氢气、碳、一氧化碳以及比较轻的碳氢化合物,氧化剂通常使用纯氧或空气.它的基本原理相当于电解反应的逆向反应,即水的合成反应.燃料及氧化剂在电池的阴极和阳极上借助催化剂的作用,电离成离子,由于离子能够通过二电极中间的电解质在电极间迁移,在阴电极、阳电极间形成电压.当电极同外部负载构成回路时,就可向外供电(发电).图1是燃料电池的工作原理图[6]. 2 燃料电池的发展简史、分类及各自特性 1839年,William Grove 提出了氢和氧反应可以发电的 原理,并发明了第一个燃料电池.他把封有铂电极的玻璃管浸入稀硫酸中,电解产生氢和氧,连接外部装置,氢和氧就发生电池反应,产生电流. 1896年,W.W.Jacques 提出了用煤作为燃料电池的燃 料,但由于无法解决环境污染的问题,没有取得满意的效果. 1897年,W.Nernst 用氧化钇和氧化锆的混合物作为电 解质,制作成了固体氧化物燃料电池. 1900年,E.Baur 研究小组发明了熔融碳酸盐型燃料 电池(MCFC ).此后,I.Taitelbaum 等人就此进行了一些拓展性的研究. 1902年,J.H.Reid 等人先后开始研究碱质型燃料电 池(AFC ). 1906年,F.Haber 等人用一个两面覆盖铂或金的玻璃 圆片作为电解质,与供气的管子相连,做出了固体聚合物燃料电池(SPFC )的雏形. 1952年,英国学者F.T.Bacon 在借鉴前人研究经验 的基础上研制出具有实用性的培根电池并获得专利.它的研制思路是避免采用贵金属并设法获得尽可能高的输出功率.采用双层孔径烧结镍做电极,氢氧化钾水溶液做电解质,以纯氢和纯氧为燃料及氧化剂.副产物是纯水.培根电 第21卷第2期2006年4月 平顶山学院学报Journal of Pingdingshan University Vol.21No.2 Apr.2006

直接甲醇燃料电池实验报告

研究生专业实验报告 实验项目名称:被动式直接甲醇燃料电池学号: 姓名:张薇 指导教师:陈蓉 动力工程学院

被动式直接甲醇燃料电池 一、实验目的 1、了解和掌握被动式空气自呼吸直接甲醇燃料电池(DMFC)的基本工作原理; 2、了解和掌握对燃料电池进行性能测试的基本方法; 3、了解和掌握燃料电池性能评价方法; 4、观察和认识影响燃料电池性能的主要因素。 二、实验意义 燃料电池是一种将燃料的化学能直接转化为电能的能源转化装置,具有环境友好、效率高、工作安静可靠等显着优点,被誉为继核能之后新一代的能源装置。在众多燃料电池种类中,空气自呼吸式直接甲醇燃料电池(DMFC)因具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,成为便携式设备最有前景的可替代电源,是电化学和能源科学领域的研究热点。本实验旨在对被动式空气自呼吸直接甲醇燃料电池进行实验研究,使同学们了解和掌握燃料电池测试的基本方法,加深对燃料电池基本工作原理的认识和理解。 三、实验原理 燃料电池是将燃料的化学能直接转化为电能的能源转化装置。一个典型的直 接甲醇燃料电池的示意图如图1所示。 图1: 直接甲醇燃料电池的典型结构 从图1中可以看出,典型的直接甲醇燃料电池包括阳极扩散层、阴极扩散层、阳极催化剂层、阴极催化剂层、质子交换膜、集流体等部件。在被动式空气自呼吸直接甲醇燃料电池中,电池阳极发生的是甲醇的氧化反应: CH 3OH+H 2 O→CO 2 +6H++6e-,E0=0.046 V (1) 电池阴极发生的是氧气的还原反应: 3/2O 2+6H++6e-→3H 2 O,E0=1.229 V (2) 总反应式为: CH 3OH+3/2O 2 →CO 2 +2H 2 O,△ E=1.183 V (3) 在被动式直接甲醇燃料电池阳极,甲醇水溶液扩散通过阳极扩散层到达阳极催化层,甲醇在阳极催化层被氧化,生成二氧化碳、氢离子和电子,如式(1)所示。氢离子通过质子交换膜迁移到阴极,电子通过外电路传递到阴极;在阴极侧,氧气通过暴露在空气中的阴极扩散层传输至阴极催化层,在电催化剂的作用下,氧气与从阳极迁移过来的质子以及从外电路到达的电子发生还原反应生成水,如式(2)所示。理论上直接甲醇燃料电池的开路电压能达到1.183 V,但实际上DMFC 的开路电压一般只有0.7 V左右,其主要原因是部分燃料(甲醇)在浓度差的作

燃料电池研究现状与未来发展

燃料电池研究现状与未来发展香山科学会议第59次学术讨论会于1996年8月24~27日举行。会议主题是“燃料电池研究现状与未来发展”。会议执行主席路甬祥与王佛松院士主持了会议。42位来自中国科学院、全国高校及公司等25个单位的燃料电池及相关学科的专家学者共同研讨燃料电池的发展现状和未来走向,以及发展我国燃料电池技术大计。 会议综述报告及中心议题讨论内容主要包括3部分:(1)燃料电池的总体评价;(2)目前处于研究开发阶段的3种类型燃料电池的评价;(3)我国发展此技术应采取的战略与策略。 一、燃料电池的技术评价 燃料电池(Fuel cell缩写FC)是将气体燃料的化学能直接转化为电能的电化学连续发电装置。电池电化学基本反应:H2十l/202=H20和CO十1/202=C02。自150余年前被发明以来,现已发展了6种形式。它们分别为碱性(AFC)、磷酸(PAFC)、熔融酸盐(MCFC)、固体氧化物(SOFC)、聚合物离子膜(PEMFC或SPFC)及生物燃料电池(BEFC)。 概括而言,燃料电池具有以下优点:(1)能量转换效率高达45—60%。而火电和核电为30一40%;(2)有害气体SO x、NO x及噪音排放很低;CO2排放因能量转换效率高而大幅度降低;元机械振动;(3)燃料适用范围广,凡能

转化为H2和CO燃料均可使用;(4)积木性强;规模及安装地点灵活;规模小(数十千瓦级)影响能量转换效率不明显。 现PAFC在发达国家已商业化;AFC在60年代末即用于航天器。其它方面的应用不如PEMFC更具优势;BEFC尚处于实验室的探索性基础研究阶段。目前各国的燃料电池的研究开发重点主要集中在MCFC、SOFC和PEMFC上。 1.MCFC运行温度650℃,燃料适用范围广,电催化剂为非贵金属,余热可为燃气轮机所利用,适用于固定式发电电站。在各国对燃料电池的经费投入中,MCFC所占比例最大。现国外(美、日、西欧)已有100kW级发电系统的运行,预计美国2000年实现商业化,日本计划2005年实现商业化。目前MCFC研究需要解决的关键技术问题有:(1)阴极(NiO)溶解,这是影响电池寿命的主要因素;(2)阳极蠕变;(3)熔盐电质对电池双极板的腐蚀;(4)电解液流失。 2.SOFC作为运行温度最高的燃料电池(800—l000℃),功率密度高,采用全固体结构,无腐蚀性液体,燃料适用范围广,天然气可不经重整直接使用。其尾气温度高达900℃,可为燃气轮机和蒸汽轮机所用,发电效率可达70%,如加上余热利用其燃料利用率可达90%,可用于大中小型电站,作为运载工具的驱动电源也有应用前景。目前SOFC研究十分活跃,电池模块的制备规模在美、日、德三国已达20一30kW。2000一2010年间可实现商业化。目

燃料电池发展现状研究报告进展资料

应用电化学论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。

燃料电池发展现状与应用前景

燃料电池发展现状与应用前景 摘要: 介绍了各种类型燃料电池( 碱性燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、磷酸燃料电池及质子交换膜燃料电池) 的技术进展、电池性能及其特点。其中着重介绍了当今国际上应用较广泛、技术较为成熟的磷酸燃料电池和质子交换膜燃料电池。对燃料电池的应用前景进行探讨, 并对我国的燃料电池研究提出了一些建议。 关键词: 燃料电池; 磷酸燃料电池; 质子交换膜燃料电池 燃料电池有多种类型, 按使用的电解质不同来分类, 主要有碱性燃料电池(AFC) 、熔融碳酸盐燃料电池(MCFC) 、固体氧化物燃料电池( SOFC) 、磷酸燃料电池( PAFC) 及质子交换膜燃料电池( PEMFC) 等。 1 各种燃料电池发展状况 1. 1 碱性燃料电池(AFC) 20 世纪50 年代起美国就开始对碱性燃料电池进行研究, 并在60 年代中期成功地用于Apollo 登月飞行。AFC 的优点在于除贵金属外, 银、镍以及一些金属氧化物都可以作电极催化剂, 它的阴极性能也比酸性体系要好, 而且电池的结构材料也较便宜。缺点在于对CO2 和N2 十分敏感, 故不适用于地面。在国外, 将AFC 用于潜艇及汽车的尝试已不再继续, 目前AFC 主要用作短期飞船和航天飞机的电源。 中科院长春应用化学研究所1958 年就开始研究培根型燃料电池。60 年代初开展碱性石棉膜型燃料电池的研究, 1968 年承担航天用碱性石棉膜型燃料电池的研制。中科院大连化学物理研究所在60 年代初也开始研究碱性石棉膜型燃料电池。70年代初承担了航天用碱性石棉膜型燃料电池的研制, 研制成两种类型的电池。80 年代初, 研制了潜艇用20kW的大功率碱性石棉模型燃料电池样机。 1. 2 熔融碳酸盐燃料电池( MCFC) MCFC 的电解质由Li2CO3 和K2CO3 组成, 工作温度在650 e 左右, 阴极、阳极电化学反应快, 无需贵金属催化剂。由于在较高温度工作, 可以对天然气、煤炭气化燃料进行内部重整, 直接加以利用。不需要复杂昂贵的外重整设备。另外, 燃料转换效率高, 余热利用效率也较高。但MCFC 在高温下长期工作时电解质损失造成的电池失效、隔板腐蚀对电池寿命的影响, 以及镍电极缓慢溶解所造成的性能下降都是有待解决的课题。 由美国能源研究公司(ERC) 建造, 使用内部重整的2MWMCFC 装置已经安装在加利福尼亚并入电网运行了720h, 供电1710MWh, 1997 年3 月停运,为建造和运行这类电站提供了宝贵经验。日本熔融碳酸盐研究协会在日本月光计划和新日光计划的支持下, 一个1000kW系统正在组装以评价此技术。 长春应用化学研究所于90 年代初开始研究MCFC, 在LiAlO2 微粉的制备方法和利用金属间化合物作MCFC 的阳极材料等方面取得了很大的进展。大连化学物理所从1993 年起在中科院资助下开始研制, 自制LiAlO2 微粉制造的MCFC 单体电池性能已达国际80 年代初的水平。 1. 3 固体氧化物燃料电池( SOFC) SOFC 工作温度高达1000 e , 反应速度快, 不需要贵重金属做催化剂, 不存在电解质腐蚀金属问题。碳氢化合物燃料可自动在燃料电池内部重整, 并迅速地在电极上被氧化, 燃料中杂质对电池的性能、寿命影响均很小。其燃料转换效率高, 高温余热可很好利用, 从而提高燃料的总利用效率。SOFC 可以与燃气轮机相结合, 即用燃料电池的动力代替燃气轮机的燃烧段, 总效率可望达到60%~ 70% 。SOFC 的主要问题是固体氧化物电解质所用的陶瓷材料脆性大, 目前仍很难制造出大面积的固体电解质膜, 这严重制约了建造大功率SOFC。另外, SOFC 还存在诸如电流密度小、电压降高、制造工艺复杂、成膜设备昂贵等问题。

燃料电池的发展现状及研究进展

应用电化学 论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了100 多年的历程。于能源与环境已成为人

燃料电池电动汽车发展现状与前景

燃料电池电动汽车发展现状与前景 随着社会的进步和人员移动性增强,全球汽车需求 量快速增长,迄今世界上的汽车保有量达到创纪录的10 亿 辆以上且还在不断大幅增长,使得基于传统的内燃机 Internal Combustion Engine ,ICE )汽车的轻量化与节能减排等技术进步难以降低汽车燃料的消耗和减少污染物的排放。2020 年之前温室气体(Greenhouse Gas ,GHG) 排放在1990 年水平基础上下降20% 的任务日益艰巨。如果再不采取有效措施,公路交通运输车辆的GHG 温室气体排放将会持续不断增长。通过研讨纯电动汽车( Battery Electric Vehicle ,BEV )、混合动力汽车(Hybrid Electric Vehicle HEV )、或燃料电池电动汽车( Fuel Cell Vehicles ,FCVs ; Fuel Cell Electric Vehicles ,FCEVs )等多种类型的电动汽车( Electric Vehicle ,EV )技术[3-5]有望明确实现节能减排 的理想途径。自1966 年通用汽车推出了世界上第1 款燃料电池电动汽车GMC Electrovan ,尤其是本田在1999 年推出了世界上第1 台商用的燃料电池电动汽车FCX-V4 以来,世界上EV 电动汽车型号不断丰富和租赁销售量明显增长,太、北美和欧洲成长为全球EV 电动汽车重要的新车研发制造和租赁销售市场,2014 年全世界的EV 电动汽车销售量达到34.6 万辆以上,年增长率达到86% 。

燃料电池是一种高效、清洁的电化学发电装置,近年来 得到国内外高度重视,成为最被看好的可用于替代汽油和柴 油等传统的 ICE 内燃机发动机技术的先进新能源汽车技术。 日本政府希望其到 2020 年的 FCVs 燃料电池汽车销量达到 500 万辆,再通过 10 年的研发推广实现全面普及 FCVs 燃 料电池汽车。 美国政府在 2003 年投入 12 亿美元大力推进氢 技术和燃料电池技术,其中重要项目之一就是美国能源部 Department of Energy , DOE )在北加州、南加州、密歇 展的氢技术和基础实施验证与示范综合工程,吸引了 Hyundai-Kia/Chevron 、 DaimlerChrysler/BP 、 Ford/BP 和 GM/Shell 等多家汽车制造 /能源供应商参与。 美国能源部大力推进氢经济和燃料电池技术,尤其是商 业化推广应用方面取得显著进展,比如目前高容量和低容量 燃料电池制造成本分别为 55 美元 /kW 和 280 美元 /kW[6] , 汽车燃料电池 2014 年的制造成本自 2006 年下降 50% 并自 2008 年以来进一步下降 30% 以上(基于高容量电池制造) 这必将带动创造工作岗位、投资机会和可持续、安全的能源 供应。为了在 2020 年前争取把欧盟建立成一个具有全球领 先水平的燃料电池 (Fuel Cell ,FC )系统和氢能源 (Hydrogen Energy ,HE ) 经济的巨大市场,欧盟高度重视燃料电池技术 和氢能源技术并把之视作能源领域的战略高新技术大力推 根州东南部、大西洋区中部和佛罗里达州中部等 5 个区域开 f It 步

燃料电池的发展现状及研究进展

应用电化学 论文作业题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展 1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池 ( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly, MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次 电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了 100 多年的历程。于能源与环境已成为人类社会赖以生存的重点问题。近20 年以来,燃料电池这种高效、洁净的能量 转化装置得到了各国政府、开发商及研究机构的普遍重视。燃料电池在交通运输、便携式电源、分散电站、航空及水下潜器等民用与军用领域展现出广阔的应用前景。目前,燃料电池汽车、电站及便携式电源等均处于示范阶段,在商

20190327国内外甲醇燃料电池汽车发展历程 (下)

国际甲醇燃料电池汽车发展史(下篇) 上文说到,甲醇重整制氢在海外经历了长达10年(2006-2016年)的低潮期,仅仅在备用电源领域有所应用。国内从2010年起,开始有企业对此关注,做相应的研究,但没有企业有念头和实力,将甲醇重整燃料电池系统集成到汽车上。 直到2014年,深圳开始出现2012年大运会期间投入的纯电动大巴车续航里程衰减严重的现象,迫切需要解决方案,有人开始考虑用燃料电池给锂电池随车充电——增程式。 2015年,Mirai横空出世,7万美元的售价,113kW的电堆,一下子打开了中国氢燃料电池工作者的思路:燃料电池可以做到很便宜。性能上不需要一步到位到100kW以上,可以从30kW开始。 在这个技术路线的指导下,基于甲醇重整燃料电池发电系统开始登上历史舞台,并开始在中国得到深入研究。 甲醇重整制氢+氢燃料电池系统作为“发电机”系统,主要有三种技术路线: A.第一类技术是甲醇重整+高温燃料电池,这类技术是现阶段发展最快的技术路径,已在电动车和特殊领域得到了众多成功应用。 高温燃料电池是指工作温度在160℃以上的质子交换膜技术。相比于常温/低温的系统85℃左右工作温度,高温燃料电池的160℃工作温度可以保证氢气在电堆内反应后的产物都是水蒸气,而不存在液态水的可能。这样可以避免淹堆、反极等低温燃料电池电堆会碰到的问题。从硬件配置上来讲,可以规避氢气循环泵、增湿器等,对于空压机的要求也会低很多,可以大大简化系统的设计。 图1:典型的甲醇重整高温燃料电池系统图 这类高温燃料电池兼顾了PAFC磷酸燃料电池和PEM质子交换膜燃料电池的优点,采用了PEM燃料电池的结构,通过使用PBI(聚苯并咪唑)膜和H3PO4磷酸传导质子,虽然功率密度比基于Nafion(全氟磺酸膜)的低温质子交换膜小,但是系统效率高。最重要的是,高温堆能耐受2%的CO,不会形成铂催化剂中毒。 这套系统中,甲醇和水的混合液重整制氢的过程是一个吸热的过程,相比之下,还有其他的重整技术,可以实现甲醇自热重整反应:导入一定量的氧气参与氧化,这样重整器当中

燃料电池的发展研究应用概况

燃料电池的发展研究应用概况 摘要:燃料电池是一种高效、清洁的电化学发电装置,近年来得到国内外普遍重视。本文详细阐述了燃料电池的近期研究进展与面临的挑战及未来发展方向。燃料电池在宇宙飞船、航天飞机及潜艇动力源方面已经得到应用,在汽车、电站及便携式电源等民用领域成功地示范,但低成本、长寿命仍然是商业化面临的瓶颈问题。未来我国应大力推进燃料电池在水下潜器、航天飞行器等特殊领域的应用,解决高可靠性与安全性及环境适应性等关键问题;同时,在民用领域要实现燃料电池寿命与成本兼顾,从材料、部件及系统等3个层次深入技术改进与创新,尽快推进燃料电池的商业化。 关键词:燃料电池;发展;应用 能源是国民经济的动力,也是衡量综合国力和人民生活水平的重要指标。随着世界范围内工业的高速发展,全世界对能源的需求日益增加。另外,能源的使用以化石燃料为主,排放了大量CO2、N2O及硫化物等污染物,造成了环境污染,严重危害人民健康。因此,采用清洁、高效的能源利用方式,积极开发新能源,有利于国家和社会经济的可持续发展。燃料电池是一种电化学的发电装置,等温的按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,正在成为理想的能源利用方式。同时,随着燃料电池技术不断成熟,以及西气东输工程提供了充足天然气源,燃料电池的商业化应用存在着广阔的发展前景。 一、燃料电池的原理 燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应,其工作原理如下图所示。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极和阴极通入。燃料气在阳极上放出电子,电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。

中国的燃料电池技术现状及未来发展

中国的燃料电池技术现状及未来发 展 关于《中国的燃料电池技术现状及未来发展》,是我们特意为大家整理的,希望对大家有所帮助。 近几年我国燃料电池的研究开发取得了长足的进展,特别在质子交换膜燃料电池方面,达到或接近了世界水平;在熔融碳酸盐燃料电池、固体氧化物燃料电池技术等方面也取得一些进展。但在总体上,我国燃料电池仍处于科研阶段,与国外相比,水平较低。发达国家都已将大型燃料电池的开发作为重点研究项目,并取得了许多重要成果,各等级的燃料电池发电厂相继建成,即将取代传统发电机及内燃机而广泛应用于发电及汽车动力。我国应集中研究力量,加大投入,大力推动燃料电池发电技术的研究开发和

应用工作。 燃料电池是一种不经过燃烧而以电化学反应方式将燃料的化学能直接变为电能的发电装置,可以用天然气、石油液化气、煤气等作为燃料。也是煤炭洁净转化技术之一。按电解质种类可分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)、再生氢氧燃料电池(RFC)、直接醇类燃料电池(DMFC),还有如新型储能电池、固体聚合物型电池等。 氢和氧气是燃料电池常用的燃料气和氧化剂。此外,CO等一些气体也可作为MCFC与SOFC的燃料。从长远发展看,高温型MCFC和SOFC系统是利用煤炭资源进行高效、清洁发电的有效途径。我国丰富的煤炭资源是燃料电池所需燃料的巨大来源。 燃料电池具有高效率、无污染、建设周期短、易维护以及成本低的诱人特点,它不仅是汽车最有前途的替代清洁能源,还能广泛用于航天飞机、潜艇、水下机器人、通讯系统、中小规模电站、家用电源,又非常适合提供移动、分散电源和接近终端用户的电力供给,还能解决电网调峰问题。随着燃料电池的商业化推广,市场前景十分广阔。人们预测,燃料电池将成为继火电、水电、核电后的第四代发电方式[1],它将引发21世纪新能源与

相关主题
文本预览
相关文档 最新文档