当前位置:文档之家› 地震勘探第二章--地震波的产生和类型1

地震勘探第二章--地震波的产生和类型1

第一章 地震波的运动学练习题

第一章地震波的运动学练习题 一、名词解释 1.反射波—— 2.透射波—— 3.滑行波—— 4.折射波—— 5.波前—— 6.射线—— 7.均匀介质—— 8.层状介质—— 9.振动图形和波剖面—— 10.同相轴和等相位面—— 11.时间场和等时面—— 12.地震视速度—— 二、填空题 1物体在作用下,弹性体____________所发生的________或________的变化,就叫做_____________形变。 2 物体在外力作用下发生了____________,若去掉外力以后,物体仍旧其受外力时的形状,这样的特性称为_________.这种物体称为____________。 3 弹性和塑性是物质具有两种互相____________的特性,自然界大多数物质都____________具有这两种特性,在外力作用下既产生____________形变,也产生____________形变。 4 弹性和塑性物体在外力作用下主要表现为____________形变或____________形变。这取决于物质本身的____________物质,作用其上的外力________作用力延续时间的_____________,变化快慢,以及物体所处____________、压力等外界条件。 5 地震波遇到岩层分界面时主要产生两种波是_________和________。 三、选择题 1. 连续介质中,常见的地震波传播速度与深度Z关系是 A)V=V o(1+βZ) B)V=V o(1+β+Z) C)V=V oβZ D)V=(1+2βZ)V o 2. 连续介质地震波射线为 A)直线B)曲射线C)双曲线D)抛物线 3. 费马原理认为,地震波沿 A)最大路径传播B)最小路径传播C)二次抛物线路径传播D)双曲线路径传播 4. 物理地震学认为,地震波是

地震波使用说明

地震波使用说明 此目录下提供了四类场地土的地震波时程曲线和上海人工波。 按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。 采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。 时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。 定义时程函数 用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框 时程函数定义对话框中的条目解释如下: ?函数名 通过在编辑框中直接键入以指定或修改时程函数的名称。 ?函数文件 1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的 文本文件名。注意文件名显示在文件名框中 2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的 行数。 3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中 每行要跳过的字符数。 4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点 数。

地震波的选取方法 (MIDAS内部技术资料)

地震波的选取方法(MIDAS内部技术资料) (GB50011-2001)的 5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg 值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5(1) 有效峰值速度EPV=Sv/2.5(2) 特征周期Tg=2*EPV/EPA(3)

1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数,将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。用纵测线进行观测得到的时距曲线称为纵时距曲线。激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。

反应谱理论与人工模拟地震波技术简介

第33卷第26期?106?2007年9月山西建筑 SHANXIARCHITECTURE Vd33No.26 Sep.2007 文章编号:1009—6825{2007)26—0106—03 反应谱理论与人工模拟地震波技术简介 邱玉国王玉富 摘要:介绍了反应谱理论的发展历程和国内外研究现状,分析了研究问题的思路,指出了利用反应谱理论来解决实际工程时遇到的问题,并简单介绍了国外对人工模拟地震波技术的应用和研究,为抗震理论提供了参考依据。 关键词:反应谱理论,地震波,随机振动,非弹性地震波 中图分类号:TU352文献标识码:A 1概述 反应谱理论是建筑结构抗震设计的重要理论基础之一。从20世纪50年代开始,反应谱理论逐渐成为结构抗震设计的重要方法,经过50多年的发展,目前这种方法已经为世界上大多数国家的设计规范所采用。但是,由于地震产生机理和作用效果的复杂性,采用反应谱理论进行分析和设计与工程实践还存在很多与实际不相符合之处。此外,对于反应地震重要特性的时间问题,反应谱法也无能为力。 人工模拟地震波技术是近年来才发展起来的一项新的结构抗震设计的技术手段,目前主要用于计算机模拟和特别重要结构模型的振动台试验。它能够通过模拟地震波的特性来用于对结构进行时程分析,是~种新兴的、具有革命性意义的试验手段。 图2数值模拟结果2.3计算结果分析 通过数值模拟和试验得到瓦斯管承载力等数值如表2所示。 表2数值模拟和试验结果 I研究方法承载力仆但a最大应变/%最大剪应力/SPaI数值模拟7.14O.0842160室内试验6.620.0964 3结语 通过对丁集煤矿瓦斯管材质和整体抗外压的试验研究以及数值模拟分析,可以获得如下重要结论: 1)通过对管材材质的试验研究表明:工作管材质采用Q345,尺寸为柘30rfllTl×14inln,能够满足强度和稳定性要求。 2)瓦斯管整体抗外压试验结果表明:工作管抗外压承载力为6,62MPa;通过大变形有限元数值计算,采用变形稳定性控制其承载力,结果为7.14MPa,两者数值十分接近,说明用文中方法模拟大直径瓦斯管的承载力是可行的。 参考文献: [1]李正来.瓦斯抽排钻孔定向技术的改进[J].安徽科技,2006(3):49—50. [2]汪东生.瓦斯抽排技术治理本煤层采空区瓦斯涌出的实践[J].煤矿安全,2006(1):13—15. [3]张敦伍,任胜杰.瓦斯抽排钻孔防偏斜实践[J].矿业安全与环保,2005(8):67—68. [4]刘克功,范再良,赵新华.采空区瓦斯抽排法治理综放面瓦斯超限[J].煤,1998(2):48—50. Studyingonradialstabilitynumericalsimulationoflargepipeinmine TONGWen-lin Abstract:TheexperimentalandvaluesimulationmethodshavestudiedtheDingiicoalminelargediametergastubeundermechanicscharacter—istie.Resultindicated:thelargediametergastubeispresentedstabilityfailuremodelinencirclespressesshape,itssafetyfactorreaches3.0,itisdesignthelargediametergastubeandtheconstructpmvidesthereference. Keywords:largediametergastube,experimentalinlab,numericalsimulation,stabilityfailuremodel 收稿日期:2007.04.06 作者简介:邱玉国(1973。),男,工程师,辽宁工程技术大学软件学院,辽宁阜新123000 王玉富(1970.),男,工程师,中铁十九局集团第三工程有限公司,辽宁辽阳111000

0为什么能用地震波来探测地球内部的构造

为什么能用地震波来探测地球内部的构造? 地震波是地震发生时,地下岩石受到强烈冲击所产生的弹性震动传播波。地震波是弹性波,它能穿过包括地核在内,在整个地球传播。地震波可分为纵波、横波、面波和界面波四种类型。 纵波(P波),也称疏密波,通过物体时,物体质点的震动方向与地震波传播的方向一致,传播速度最快,周期短,振幅小,能通过固体、液体和气体传播。地震发生后,纵波最先到达地面,引起地面上下颠簸。 横波(S波),通过物体时,物体的质点震动方向与地震波传播方向垂直,在地壳中传播速度比纵波慢,周期较长,振幅较大,只能通过固体介质传播,比纵波到达地面晚,横波能引起地面摇晃。纵波、横波合称体波,体波在地球体内部可以向任何方向传播。 面波(L波),也称地面波,是纵波或横波到达地面后,从震中沿地面表层向四周传播的次生波。面波振幅较体波显著,波速比体波小,周期较体波长。利用面波的波散现象,可推算相应地区的地壳和上地幔的结构状况和性质。 界面波是在两个弹性层之间的平界面附近传播的地震波。由于不同的地震波,具有不同的性质和传播特点,因此可以利用地震波来探测地

球的内部构造。 目前世界上最深的钻井只有10公里多一点,能直接取样观察的最深矿井仅有3公里。目前人们还不能对地球整个内部进行直接观察研究,主要是利用地震波研究地球的内部结构。 在地球内部地震波传播曲线图上,从地球大陆的地表面往下到33公里深处,横波速度每秒约4公里,纵波速度每秒约8公里。从33公里往下到2900公里深处,横波速度由每秒4公里多增快到每秒7公里以上,纵波速度由每秒8公里左右增快到每秒13公里以上。从2900公里往下到5000公里深处,横波完全消失,纵波传播速度突然下降到每秒8~10公里左右。从5000公里往下到地心,无横波传播,纵波速度又逐渐增快到每秒约11公里左右。从地震波在地球内传播的情况表明,在大陆33公里深处以下,横波和纵波的速度明显加快,证明是密度很大的可塑性固体层,因此地下33公里深处是地震波传播的一个不连续面,这个不连续面是莫霍洛维奇发现的,所以叫莫霍面。在2900公里深处往下,横波完全消失,纵波速度突然下降,证明到了液态层,这个地震波传播的不连续面,是古登堡最早研究的,所以叫古登堡面。5000公里以下纵波速度又加快,证明是固态层。根据地震波的传播情况,说地球内部构造是不同的物质圈层组成的。据此,人们以莫霍面和古登堡面为分界面,把地球的内部构造划分为地壳、地幔和地核三个圈层,并将地下2900~5000公里深处,推测

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

地震波的定义

地震波的定义 地震是地壳的一切颤动,是一种自然现象。其主要能源来自地球的内部,是由地球内部自然力冲击引起的。地壳或地幔中发生振动的地方称为震源。震源在地面上的垂直投影称为震中。震中到震源的距离称为震源深度。地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。 发生原理 英文seismic wave.由地震震源发出的在地球介质中传播的弹性波。地球内 地震波 部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。地震震源发出的在地球介质中传播的弹性波。地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。 概念介绍 地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。传播方式 地震波按传播方式分为三种类型:纵波、横波和面波[1]。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。 纵波和横波 现象介绍 我们最熟悉的波动是观察到的水波。当向池塘里扔一块石头时水面被扰乱,

第一章地震波动力学

第一章地震波的动力学 人工激发的地震波随着时间增加向地下岩层中传播,地震波传播的动态特征反映在两方面: 地震波的运动学特征——指波传播的时间与空间的关系。 地震波场特征地震波的动力学特征——指波传播过程中振幅、频率、相位的变 化规律。 地震勘探的基本任务是研究地震波场特征。以指导找油找矿和解决其它地质问题。 本章重点: 1.地震波的反射、透射和折射 2.地震波的射线、波前、波剖面、振动曲线 3.克希霍夫公式 4.诺特方程 5.斯奈耳定律 6.褶积模型 7.横向分辨率 8.纵向分辨率 9.影响速度的因素 §1.1地震地质模型的理想化 一、理想化的原因 地震勘探主要在沉积岩中进行。与火成岩和变质岩相比,沉积岩具有沉积稳定、横向变化小,成层性好等特点。但各种构造运动等使地下地质结构复杂化,这就需要从实际介质出发,在不同的条件下,建立不同的地震地质模型,使问题得到简化,这在自然科学中是常见的,例如:气体——理想气体。 二、理想的弹性介质和粘弹性介质 1.理想弹性介质 任何一种固体,受外力作用以后,内部质点就会发生相互位置的变化,使固体

的大小和形状发生变化。外力取消后,由于内力的作用,使固体恢复到原来的状态, 即固体具有弹性。 (1)理想弹性体——外力取消后能完全复原的物体。 (2)理想塑性体——外力取消后,固体保持其受力时的形态。 (3)瞬时作用力小变形假设 一般物体在外力作用下,有弹性的一面,又有塑性的一面。如果作用力很小,作用时间很短,在外力去掉后,一般物体都能复原,即在瞬时作用力小变形的条件下,大部分物体都能被近似成弹性体。 (4)地震勘探满足瞬时作用力小变形假设,地下岩层可近似成弹性体爆炸点附近是破碎带,然后是塑性带,大约几百米以外是弹性带,在弹性带内形成弹性波。这是因为远离震源处岩石受的作用力非常小(位移小于1μm),且作用时间短(小于100ms),所以远离震源的岩石可以看作弹性体。 弹 性 带 (5)地震子波 弹性带内形成的弹性波,一般波形较稳定,具有2-3个相位。延续时间60— 100ms,叫地震子波 ....,在传播过程中,其振幅由于吸收等原因而衰减,但波形变化不大。 (6)把岩层看作弹性体的重要用途 弹性力学,光学的基本理论可以直接引用到地震勘探中来。 2.粘弹性介质 (1)介质的吸收作用 波在传播过程中一部分能量不可逆地转化成热能散掉。

地震波数据生成器SGSw

地震波数据生成器 除了程序提供的30多条实测地震波,一些复杂超限工程在做时程分析时往往需要利用当地安评报告的地震波数据生成自己的时程函数,具体的转换过程是被经常提到的一个问题。 相关命令 工具〉地震波数据生成器... 问题解答 midas提供地震波数据生成器这个专门的工具用于生成自己的时程函数,具体操作步骤如下: 1)打开已安装midas软件的文件夹,找到Dbase文件夹,用记事本打开其中任何 一个后缀为dbs的文件;

2)将安评报告的实测地震波数据完全按上述dbs文件的格式输入后另存,修改后 缀txt为dbs; 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Record;

4)点击Import,导入第2)步中生成的dbs文件,同时可修改地震波三要素中的 有效峰值和持时,保存为一个sgs文件; 5)midas软件中添加时程函数时,导入第4)步生成的sgs文件即可。 相关知识 时程分析往往作为多遇地震的补充计算手段,规范中要求每条时程曲线计算底部剪力结

果不应小于振型分解反应谱法相应结果的65% ,多条时程曲线计算所得底部剪力结果平均值不应小于振型分解反应谱法计算结果的80%。所以选择合适的波很重要,地震波数据生成器还提供时程函数到反应谱的转换,可以和反应谱分析中地震影响系数曲线进行大致的比较,对结果的正确性给予一定的保证。 具体操作步骤如下: 1)同上。 2)同上。 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Response Spectra;

4)点击Import,导入第2)步中生成的dbs文件,可选择生成多种形式的反应谱,如绝对加速度、相对速度、相对位移等,保存为sgs文件; 5)和时程函数一样,也可以在定义反应谱函数的时候导入第4)步生成的sgs文件。

反应谱生成人工地震波

反应谱生成人工地震波 一、软件SIMQKE_GR使用说明 1.先安装程序 2.使用方法 双击,打开程序,可以得到如图1界面。 图1 程序开始界面 如图1所示,由于程序本身提供的反应谱是适用于欧洲规范的,不适合于我国的规范反应谱,因此不能通过调整参数来获得符合我国规范的反应谱。可以采用导入的方法来输入反应谱。 3.点击菜单栏“file”—“Import spectra data”,出现打开对话框,如图2所示, 要求打开一个已经存在的反应谱文件(如 1.srf)。

图2 导入反应谱文件对话框 4.文件格式如下所示(红字部分不能修改,注意反应谱单位为g),下面部分 可以替换。 response spectrum time(s) acc(g) 0 0.1215 0.01 0.13635 0.02 0.1512 0.03 0.16605 0.04 0.1809 0.05 0.19575 0.06 0.2106 0.07 0.22545 0.08 0.2403 0.09 0.25515 0.1 0.27 0.15 0.27 0.2 0.27 0.25 0.27 0.3 0.27 0.35 0.27 0.4 0.27 0.45 0.27

0.5 0.243 0.6 0.2025 0.7 0.173571429 0.8 0.151875 0.9 0.135 1 0.1215 1.1 0.110454545 1.2 0.10125 1.3 0.093461538 1.4 0.086785714 1.5 0.081 1.6 0.0759375 1.7 0.071470588 1.8 0.0675 1.9 0.063947368 2 0.06075 2.1 0.057857143 2.2 0.055227273 2.3 0.052826087 2.4 0.050625 2.5 0.0486 2.6 0.046730769 2.7 0.045 2.8 0.043392857 2.9 0.041896552 3 0.0405 3.1 0.039193548 3.2 0.03796875 3.3 0.036818182 3.4 0.035735294 3.5 0.034714286 3.6 0.03375 3.7 0.032837838 3.8 0.031973684 3.9 0.031153846 4 0.030375 4.1 0.029634146 4.2 0.028928571 4.3 0.028255814 4.4 0.027613636 4.5 0.027 4.6 0.026413043 4.7 0.025851064 4.8 0.0253125

八层框架的地震响应计算和人工波生成的matlab实现及所需曲线图的自动存储

一、 作业概况 结构基本参数:层间剪切型结构,采用Rayleigh 阻尼,第一、第二阶阻尼比分别取3%、5%。 图1 结构基本形状 表1 各层集中质量 ( 105kg) 层号 1 2 3 4 5 6 7 8 质量 3.40 3.40 3.20 3.20 2.80 2.80 2.70 2.60 表2 各层层间刚度 (×108N/m) 层号 1 2 3 4 5 6 7 8 层间刚度 2.00 2.00 1.80 1.80 1.80 1.80 1.60 1.60 m m m m m m m m &&g x

二、 频率及振型计算 根据层间模型的假定,可以建立结构的质量矩阵以及刚度矩阵如下。 1234567800000000000000000000000000000000000000000000000000000000 3.40 0000000 3.400000000 3.200000000 3.20000 =0000 2.800000000 2.800000000 2.700000000 2.6m m m m m m m m ?? ? ? ? ? ?= ? ? ? ? ? ?? ? ?? ?M 510kg ????????????? 1112131415161718212223242526272831323334353637384142 4344454647485152535455565758616263646566676871727374757677788182838485868788k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k ? =?K 8420000002 3.8 1.8000000 1.8 3.6 1.8000000 1.8 3.6 1.8000 =10/000 1.8 3.6 1.8000000 1.8 3.4 1.6000000 1.6 3.2 1.6000000 1.6 1.6N m ????? ? ? ? ? ? ? ??-?? ?-- ? ?-- ?-- ?? ?-- ?-- ? ?-- ? ?-??

地震波的选取方法

地震波的选取方法 2010-10-20 22:32:00| 分类:默认分类|举报|字号订阅 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话 的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件) 应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期 Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以 地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对 值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最 后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般 持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5 (1) 有效峰值速度EPV=Sv/2.5 (2) 特征周期Tg = 2π*EPV/EPA (3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平

为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度 反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采 用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中 同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周 期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期 T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2 之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式 (1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震 波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所 述方法计算Sv、Sa、Tg。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将 抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数,将其代入到地震波调整系数中。将地 震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组 选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲

地震波方程人工边界的两种处理方法

第42卷第4期2003年12月 石 油 物 探 GEOPHYSICAL PROSPECTIN G FOR PETROL EUM Vol.42,No.4 Dec.,2003 文章编号:100021441(2003)0420452204 地震波方程人工边界的两种处理方法 崔兴福1,2,张关泉2 (1.中国石油辽河油田分公司勘探开发研究院计算所,辽宁盘锦124010;2.中国科学院数学与系 统科学研究院计算数学与科学工程计算研究所,北京100080) 摘要:在分析以往人工边界处理优缺点的基础上,提出了利用波动方程的频散关系式,得到可以吸收任何方向入射波的自适应校正吸收边界条件和旋转校正吸收边界条件。同时,采用波阵面法和能流密度法判别入射波方向,克服了Pad e近似吸收边界只对正入射波具有较好吸收性,而对非正入射的波吸收性不好的缺点。数值试验结果表明了本方法的有效性。 关键词:自适应校正;旋转校正;波阵面;能流密度 中图分类号:P63114 文献标识码:A Two processing methods for artif icial boundary of seismic w ave equation Cui Xingfu1,2,Zhang Guanquan2 (https://www.doczj.com/doc/a115238066.html,puting Center of Exploration&Development Research Institute of CNPC Liaohe Oilfield Com pany,Panjin 124010,China;2.Institute of Com putational Mathematics and Scientific/Engineering Computing,Academy of Math2 ematics and System Sciences,Chinese Academy of Sciences,Beijing100080,China) Abstract:In this paper,two absorbing boundary conditions,adaptive correction condition and rotation correction condi2 tion,were derived to absorb incident waves coming from any directions by using dispersion relation,based on an analy2 sis of the advantages and disadvantages of existing boundary conditions.The determination of incident wave direction by wave front and energy flux density was also described.Numerical ex periments were performed and their results were presented,which indicated the efficiency of these methods. K ey w ords:adaptive correction;rotation correction;wave front;energy flux density 实际人工模拟地震勘探是在半无界空间中进行的,而在计算机上进行数值模拟地震波在介质中的传播,只能在有限的模型空间中实现。地震波到达人工边界将产生虚假的反射波,干扰了实际地震波传播的机理,使仿真剖面变得模糊不清,不利于地下地层构造信息的解释。自1969年Lysmer和Kuhlemeyer[1]首先提出人工边界处理问题,发展至今,已形成多种人工边界的处理方法,如阻尼边界[1~3]、吸收边界[4~6]、透射边界[7]、移动边界等,用Pad e近似法得到的吸收边界条件[4,5]是目前边界处理效果比较好的一种。我们正是在分析这种边界处理优缺点的基础上,从不同的侧面提出了这种边界的2种校正方法,即自适应校正法和旋转校正法。 1 声波方程自适应校正吸收边界条件 1.1 二阶精度吸收边界的推导 由二维声波方程 u t t=c2(u x x+u zz)(1)进行三维Fourier变换得到频散关系式 ω2=c2(k2 x +k2z)=k2c2(2)式中,k2=k2x+k2z,k x=k cosθ,k z=k sinθ,θ是波前k和k z的夹角。引进中间参量 a(θ)= 1-cosθ 1-cos θ 2 (3)由图1表示的方向波数与波前关系可以推得 cos θ 2= (α-1)k+k x αk(4)利用k x=k cosθ,cosθ=2cos2 θ 2- 1和2 α2-4α+4= 1 1+cosθ 及方程(4)得到在频率波数域右行波的边界条件 ωk x - 1 c ω2+1 1+cosθk 2 z =0(5) 收稿日期:20021113;改回日期:20030323。 作者简介:崔兴福(1965—),男,高级工程师,博士在读,现从事地震资料处理方法研究工作。 基金项目:本文得到国家973重点基础研究项目(G199903280)资助。

人工地震波生成程序简介

姓名:郭勇 学号:022******* 人工地震波生成程序简介 一、程序设计内容及方法 1、程序内容 本程序根据特征周期、水平地震波影响系数最大值和地震波幅值等初始条件生成人工地震波,为结构动力分析的时程分析法提供地震波来源。 2、程序设计方法 (1) 理论依据 本程序采用三角级数法生成人工地震波。 对于给定的功率谱密度函数,按照下面的公式可以方便的生成以为功率谱密度函数、均值为零的高斯平稳过程。 (1) 式中: (2) 为内均匀分布的随机相角;,分别为正域内的上、下限值,即认为的有效功率在范围内,而范围外的值可视为零。 为了反映地面运动的非平稳性,采用包络函数乘以平稳过程, (3) (3)式即为人工地震波模型。 可根据下式确定: (4) 式中:为衰减系数,通常取值范围为0.1~1.0,本程序取0.15;,和根据不同实际情况取值,为地震波持时,本程序取,分别为4s,15s,和均为40s。 本程序采用《建筑抗震设计规范》(GB50011-2001)中的反应谱作为目标谱,通过Kaul 提出的平稳过程反应谱与功率谱的近似关系 (5) 式中:为规范反应谱;为阻尼比;为地震动持时;为反应不超过反应谱值的概率,本程序取0.85。通过(3)式和(5)式即可生成人工地震波。 (2) 程序实现方法 首先建立基于对话框的应用程序框架,添加的主要控件为3个编辑框和4个按钮。3个编辑框分别作为程序中的特征周期(对应成员变量为m_dTg)、水平地震影响系数最大值(对应成员变量为m_dAmax)和地震波幅值(对应成员变量为m_pd)3个数据的交互输入处;4个按钮分别为"生成地震波"、"输出地震波"、"输入地震波"和"退出"。 添加的成员函数有:Wavegener()(生成地震波)、Wavedrawing()(绘制地震波加速度时程曲线)、OnSTART()(对应"生成地震波"按钮,实现生成地震波的功能)、OnOutput()(对应"输出地震波"按钮,实现输出数字化的地震波记录的功能)和OnInput(对应"输入地震波"按钮,实现输入数字化的地震波记录并绘制其加速度时程曲线的功能)。 几点说明: a 生成随机相角的程序如下: srand((unsigned)time( NULL ));

FLAC3D动力分析中的人工透射边界和地震波施加方法

FLAC3D动力分析中的人工透射边界和地震波施加方法从动力学的角度上看,动力响应是确定惯性(质量效应)和阻尼起着重要作用时质点或质点系动力学特性和响应的技术,它包括自振、冲击、谐振动、随机振动等分支。动力学最早应用于结构抗震设计,自上世纪50年代逐步借鉴到岩土抗震设计中。动力发展历程可总结为静力理论,反应谱理论和时程分析理论三个阶段。我们知道,地震的三要素为振幅、频谱和持时。静力理论只考虑了地震引起的最大振幅,属于拟静力法;反应谱理论考虑了振幅和频谱,但在设计中仍然把地震惯性力视为静力,只能算准动力法;时程分析理论考虑了振幅、频谱和持时,是严格意义上的动力分析法。 通常时程动力分析选用的地震波来自:(1)根据设计反应谱人工合成的场地波;(2)场地附近地震台记录的实测地震波。由于实测地震波中掺杂了许多噪声和干扰信号,因此在使用前必须滤波去噪、频谱分析、积分变换和基线修正。滤波去噪是为了消除噪声和高频波,频谱分析是为了检测地震波持时内所含的频率分量和振幅,积分变换可以转换地震加速度波为速度波或位移波,基线修正则是为了消除非平稳地震波中的弹性位移零线漂移、基线偏移等现象,大崎顺彦在其著作《地震动的谱分析入门》中做了详细而生动的说明,并附出了地震波处理的Fortran源程序。鉴于FLAC3D软件是岩土领域广泛应用的时程动力分析软件,这里以著名的埃尔森特罗波(El Centro)为输入激励,研究基于FLAC3D软件的地震波处理和计算方法。网站“http://www. https://www.doczj.com/doc/a115238066.html,/data.htm”提供了31秒的El Centro加速度波数据。有兴趣者可按《地震动的谱分析入门》的方法选取了前8秒的地震加速度波(共401个记录),然后补零配成了512个记录的加速度波以采用快速傅里叶变换法,首先采用FLAC3D Fish函数库的filter函数进行滤波去噪,然后采用fft函数进行快速傅里叶变换,得到傅里叶加速度谱和功率谱,接着采用integrate函数积分两次求得速度波和位移波,并计算地震位移零线漂移值。具体可细查flac中的帮助和fish命令流。由于频谱分析,看似混乱无章的地震波也可以分解成不同频率不同振幅的简谐波的组合,因此,只要我们把握了最简单的简谐波动力响应,对地震波时程响应分析也一目了然了。 动力计算是较复杂的力学分析过程,影响因素包括:输入激励(频谱、振幅、持时)、岩土参数、本构模型、透射边界、模型网格、求解方法等。直接进行一个复杂边坡的动力计算,由于影响计算结果的因素较多,不利于工程师把握本质的规律,以致无法判定结果的适宜性。对于大型边坡工程来说,抗震分析需要引起足够的重视,每一步动力计算和响应模拟都必须经得起考证。因此,本文首先从概念模型出发(简单边坡模型),定量分析边坡的动力响应规律,采用理论解进行验证,考证动力计算过程的正确性。在此基础上,再计入更复杂的地质条件、边界条件和实际边坡模型,最终达到合理可靠地应用于实际边坡工程中的愿景。 此主题相关图片如下:边坡概念模型.jpg 可以从四种典型的概念边坡模型来理解边坡动力响应,①代表退化为一竖直柱体边坡;②代表发育有一个软弱夹层的竖直柱体边坡;③代表发育有一软弱夹层的边坡;④代表发育两组正交优势节理的边坡。①、②模型中坡顶仅一个自由面,是最简单的概念模型;①、②、③模型都是考虑少数结构面的连续介质模型,是目前数值方法中最常用的形式,本文拟采用Flac3D软件模拟;④模型考虑了较多的结构面,常规有限

相关主题
文本预览
相关文档 最新文档