当前位置:文档之家› 卫星通信抗干扰技术的发展趋势

卫星通信抗干扰技术的发展趋势

卫星通信抗干扰技术的发展趋势
卫星通信抗干扰技术的发展趋势

滨江学院

卫星通信

题目卫星通信抗干扰技术的发展趋势

学生姓名

学号

院系

专业

二O一 4 年 6 月9 日

卫星通信抗干扰技术的发展趋势

摘要:列出卫星通信系统可能遭受的各种干扰的类型, 研究已提出的各种抗干扰处理方法包括天线、扩频和星上处理等方法的原理、特点和国外的研究现状。指出研究基于星上信号处理、便于综合运用多种抗干扰处理措施的卫星通信系统新体制是卫星通信抗干扰技术研究的发展方向, 提出今后值得进一步研究的问题。

关键词:军事卫星通信; 抗干扰; 扩频; 星上处理

1 引言

卫星通信系统由于具有覆盖范围广、传输质量好、部署迅速、组网方便、通信系统投资几乎与通信距离无关、通信可到达地点几乎不受地理环境条件限制等特点, 在军事上具有特别重要的实用价值。军事卫星通信系统负责为战时基本需求提供保密、抗干扰的指挥与通信保障, 具有一定的抗干扰能力是其基本要求。深入广泛地研究抗干扰技术,提高它的抗干扰能力和抗毁性, 具有很重要的意义。本文针对军事通信中的战术干扰, 列出卫星通信系统可能遭受的各种干扰的类型, 研究已提出的各种抗干扰处理方法原理、特点和国外的研究现状。最后对卫星通信抗干扰技术研究的发展方向和今后值得进一步研究的问题进行论述。

2 卫星通信系统可能遭受的干扰

对卫星通信而言, 其上行链路可能遭受的电磁干扰源包括陆地固定式干扰机、车载和舰载移动式干扰机、机载干扰机和干扰卫星, 而干扰卫星和机载式、飞航式、伞挂式干扰机则可对下行链路进行干扰。干扰下行链路时, 干扰源对于卫星转发器, 虽然在功率和距离方面容易取得较大的优势, 但是在覆盖面和信号辐射方向上通常都处于明显的劣势。即使采用机载干扰机在10 km 以上的高空施放强干扰, 其影响面也只能达一百多公里的半径, 更远距离的地面站容易采用旁瓣遮挡技术排除其干扰, 况且地面站容易采用综合抗干扰措施排除各种类型的干扰。因此, 相对而言,卫星通信的上行链路比较脆弱, 是敌方干扰的重点, 这样上行链路抗干扰的研究更为重要。无线通信系统中的干扰有很多, 按照不同的分类依据,可以有很多分类方法。如按其形成方式可分为欺骗式干扰、搅扰式干扰和压制式干扰; 按引导方式可分为定频守候式干扰、连续搜索干扰、重点搜索干扰、跳频跟踪干扰、扩频跟踪干扰和转发式干扰; 按频谱形式可分为瞄准式干扰, 阻塞式干扰, 部分频带式干扰和扫频式干扰; 按发射的控制方式可分为人工干扰和自动干扰等。目前, 国外有源电子干扰技术的干扰频率范围已达到0.5 GHz~ 20 GHz, 干扰功率达上百千瓦, 脉冲峰值功率可达1000000W级以上, 可同时产生多种类型的干扰。各种类型的干扰, 特性相差很大, 对通信信号造成的影响很不相同。因此, 为了确保通信能正常进行, 必须综合地采用多种抗干扰处理措施来进行对抗, 从降低干扰压制比和提高系统干扰容限两个方面来增强通信系统的顽存能力。

3 目前卫星通信中常用的抗干扰技术

抗干扰的基本目的是通过对信息、信息的载体及传播方式进行特定的处理, 提高通信接收端的输出信干比, 使其具备较强的区分有用信号和干扰的能力, 从而正确地接收所需的信号。卫星通信中常用的抗干扰技术有: 抗干扰天线技术、扩展频谱技术、编码调制技术、星上处理技术、限幅和线性化技术等。

3. 1 天线抗干扰技术

卫星通信系统分布在不同的地域、空域, 很容易受到干扰, 所以抗干扰的首要目的是实现灵

活的优化的卫星覆盖,使卫星接收天线能在最大限度的接收我方信号的同时零化 方干扰。因此, 天线抗干扰技术是卫星通信中最常用的抗干扰措施, 具体包括多波束天线、自适

应调零天线和智能天线技术。多波束天线( MBA) 可根据战场形势的变化控制星上发射天线指向, 使其波束覆盖范围随用户运动作相应变化, 还可恰当选择卫星天线波束形状来提高通信

系统的抗干扰能力[ 1], 对其的研究已有二十多年的历史, 多波束天线主要有3 种基本类型: 反射式MBA、透射式M BA 和直接辐射相控阵MBA。其中, 反射式MBA 和透射式M BA 结构简单、设计技术比较成熟, 因而最先得到广泛应用。相比前两者, 相控阵MBA 具有一系列的优点,

如较高的口面效率, 无泄漏损失、可靠性高等, 但同时也具有结构和制造工艺复杂、功率损

耗高等缺点。自适应调零天线利用敌我双方信号在幅度、频率和空间方位的不同, 通过对天

线各阵元进行自适应加权处理, 自动控制和优化天线阵的方向图, 在干扰源方向上产生深度

调零, 使信号受到的干扰最少, 调零深度一般可达25 dB~30 dB。它能有效抑制宽带干扰、窄带干扰、同频干扰和邻道干扰等不同形式的干扰。自适应天线传统采用的是最小均方( LMS) 算法及其改进算法, 近年来又出现了MU SIC、M INI- NORMAL、径向基函数( RBF) 神经网络

等新算法,理论上, 调零分辨度可以提高1~ 2 个数量级。在实际应用中, 直接矩阵求逆( DM I) 和递归最小二乘( RLS) 算法均可以在干扰抑制性能方面和收敛速度方面实现很好的兼顾,因

此更适用于通信卫星的天线自适应调零系统[ 2] 。星载智能天线是一种安装在卫星上的能在信号入口处抑制干扰的新型天线。智能天线是吸取了自适应天线的抗干扰原理, 依靠阵列信

号处理和数字波束形成技术发展起来的。其基本思想是天线阵能够同时产生多个子波束( 点

波束) 来覆盖地面上所关心的区域, 并且每个子波束都能依据一定的准则自动地调整指向和

零点, 从而处于最佳工作状态。构成星载智能天线的天线阵, 通常为多波束天线。__从国外

天线卫星的现状来看, 直接辐射式相控阵天线已经开始应用于中、低轨道的移动卫星通信系

统中, 而对于工作在SHF( 超高频) 和EHF( 极高频) 频段且处于静止轨道的军用卫星通信系

统来说, 直接辐射式相控阵天线所需的天线单元和高频通道数目要比反射式和透射式天线多

的多,所以反射式和透射式MBA 为最佳选择。卫星和地球站采用抗干扰天线技术, 可以有效抑制敌方干扰, 地面微波干扰等。这种方法已获得广泛应用。美国的第三代国防卫星通信系统 星DSCS- 星上装载了两副19 波束天线阵用于下行发送, 一副61 波束天线阵用于

接收。星上的探测器能测出各种人为干扰企图, 并告知地面控制站, 待地面测定干扰机的地

理位置后, 指示卫星利用其可控多波束天线的方向控制能力, 避开人为干扰。军事星M

ilstar 2 有8 副可控点波束天线, 两副调零点波束(NSB) 天线( 能针对上行链路干扰自动

调零) , 还有6 副分布式用户覆盖天线( DUCA) 。加拿大国防部曾资助研制一个能实现宽角

覆盖的军用卫星通信系统[3] , 该系统工作频率为45 GHz, 多波束天线采用单口面反射式MBA, 能产生70个点波束, 覆盖俯仰角为8 地面圆形区域, 每个点波束中心峰值增益达到438 dBic( 圆极化增益单位) , 半功率宽度为0。95, 旁瓣电平小于- 30 dB, 交叉极化好于- 26 dB。

3. 2 扩展频谱抗干扰技术

对无线通信来说, 扩频技术和天线阵列技术相结合, 就可以基本上满足抗干扰的要求。但对

卫星通信来说, 扩频技术在抗干扰中更加重要, 因其跟用户和干扰的相对位置无关, 更具有

顽健性。扩频抗干扰技术已成为卫星通信中最基本的抗干扰技术[ 4] , 它包括直接序列扩频和跳频两种基本技术及其组合。采用直接序列扩频, 接收端解扩后有用信号变成了窄带信号, 而原来频带较窄的干扰却被展宽为宽带信号, 以至于大部分能量被窄带滤波器滤除, 从而有

效地提高信干比。直接序列扩频(DS) 抗干扰技术由于提出较早, 理论较成熟且易于实现, 因此在卫星通信抗干扰初级系统中广泛采用。早在1966 年, 美国的第一颗军事通信卫星DSCS 就使用了扩频多址技术。美军目前正在使用的Milstar、租赁卫星LEASAT 和舰队通信卫星FLTSAT COM 系统也采用了直接扩频和星上解扩技术。近年来利用混沌理论产生直接序列扩频码已取得了许多成果, 为超宽带DS 扩谱的实现创造了条件[ 5] 。目前采用CMOS 产生PN 码

_______的最大码片速率可达70 Mchip/ s, 而采用砷化钾FET 器件, 则可高达2 Gchip/s, 然

而由于器件水平、捕获同步和宽带均衡等实际条件的限制, 其处理增益目前最高只能做到36 dB 左右。并且它无法对抗宽带阻塞式干扰。跳频( FH) 采用多个载波频率并在这些频率间随机跳变, 由于载频切换需要时间, 故又工作在突发传输状态, 所以具有很强的抗干扰能力。对扩频带宽较宽的情况, 跳频比直接序列扩频更为实用。美军目前正在使用的Milstar和AFSATCOM 系统就采用了跳频技术, 其中M ilstar2 的跳频范围达2 GHz 带宽。在美国等西方国家提出的新一代军用卫星通信的两个方案弯管卫星/ 中心主站系统和多用户透明跳频解跳系统中均采用了跳频技术,跳频速率为4 000 跳/ s。跳频系统的重要参数是扩频增益和跳频速率, 跳频范围越宽, 抗宽带阻塞式干扰能力越强;跳频速率越高, 抗跟踪式干扰能力越强。对跳频系统的限制在于频率合成器的高速转换而无杂波产生, 现在在20 MHz带宽内跳频速率可达106 跳/ s。目前我国对中速跳频技术已基本掌握, 对快速跳频还在跟踪研究。直扩/ 跳频( DS/ FH) 混合扩频技术在直接序列扩频的基础上增加了载波频率跳变的功能, 综合了DS 和FH 两种扩频方式的优点, 因而能更有效地对抗干扰。目前对DS/FH 信号电子对抗手段还不成熟, 所以DS/ FH 抗干扰技术是目前研究较多的扩频抗干扰技术。但在具体设计DS/FH 混合扩频系统时, 需要考虑跳频频点数的选择、跳频速率的选择、直扩/ 跳频处理增益的折衷、混合扩频同步等技术问题。目前, DS/ FH 系统的跳速多为( 500~ 1 000) 跳/ s。采用两维甚至三维的混合扩频技术体制是国外抗干扰通信发展的一个趋势, 美国的Milstar 和FLT SATCOM 就采用了跳频/ 直扩混合体制。扩频技术和自适应技术相结合, 能够更灵活地对抗敌方干扰。具体包括自适应地改变扩频码长, 跳频频率图案和跳频速率等。一般地说, 扩频码长可以在0~ 4 095 自适应地变化。但实现上有相当大的难度, 有待于进一步的研究。另外, 把随机变速跳频和跳时( TH) 的概念引入DS/ FH体制, 将猝发传输技术与DS/ FH/ TH 结合, 在猝发通信之外的跳频间隔中填上欺骗信号等, 都可进一步提高系统的反对抗能力。

3. 3 编码调制技术

适用于卫星通信系统差错控制的主要方式是前向纠错( FEC) , 可供选用的FEC 码主要有卷积码Viterbi 译码、自正交卷积码门限译码、BCH 码、R- S 码、卷积码序列译码和级联码。卷积码软判决Viterbi 译码具有最佳译码性能[ 6] , 误码率为10- 6条件下, 编码增益大于5.8 dB, 目前已用于INTELSAT 商业服务卫星体系、DSCS时分多址系统、国际海事卫星组织的INMARSAT 系统等。干扰条件下, 常采用级联编码技术, 级联码由两种简单码级联构成, 它与单一码相比更易获得高的编码增益, 随着数字卫星通信的发展, 级联码将获广泛应用。适用于卫星通信的调制方式为恒包络调制方式, 包括各种PSK 技术, 如QPSK、IJF QPSK、DQPSK 等, 以及各种连续相位调制( CPM ) 方式, 如M SK、GMSK 等。另外还有格状编码调制技术( T CM ) 。在跳频信号中, 可选用MFSK和DPSK 等调制方式。选用合适的编码调制方式可以提高系统的性能, 从而提高其干扰容限。如采用8PSK 与TCM编码相结合传输的新国际标准, 与相干解调QPSK 相比的误码特性要好5 dB。在非线性卫星信道中, IJFOQPSK 在同类的恒包络调制中, 具有最好的功率谱特性: 主瓣窄, 旁瓣滚降快。和TFM 相近, 但实现的复杂度低的多[ 7] 。

3. 4星上处理技术

从抗干扰的角度来说, 透明转发器是卫星通信系统最脆弱的环节, 它很容易被敌方的强干扰推向饱和甚至摧毁,因此采用星上处理技术十分必要。星上处理可以使上、下行链路之间去耦, 使上行干扰不能再对下行链路产生作用,同时设法避免转发器被推向饱和。星上处理技术包括有:星上信号解调再生、解跳/ 再跳、解扩/ 再扩、译码/ 编码、速率变换、多波束交换、SMART AGC, 以及多址/ 复用方式转换( 如上行CDMA 或FDMA 变换成T DM) 等等。随着电子对抗的不断升级, 星上处理技术不仅已成为卫星通信抗干扰的主要技术, 也是通信卫星未来生存和发展的要求, 美国的先进通信技术卫星( ACTS ) 、DSCS -卫星、Milstar 和铱卫星都采用了星上处理技术。前面提过的弯管卫星/中心主站系统和多用户透明解跳军用卫星通信系统, 星上均有解跳/ 再跳的处理装置。美军FLT SATCOM系统可以进行星上解扩, AFSATCOM 系统可以进行星上解跳解调再跳频后下行发送。星上首先进行解跳解调, 再跳频调制后向下发送, 则星

上不需限幅器, 不存在小信号抑制问题, 与透明转发器相比, 再生式转发器的抗干扰性能随扩频增益线性增加, 不存在饱和效应[ 8] 。Milstar 上行采用FDMA, 下行采用TDM 。这样就可充分利用行波管放大器的功率, 功率的增加可减小下行用户端的天线尺寸。同时因为采用星上处理, 上行的功率不需要很大就可满足需要,从而降低了对地面站设备的要求。

3. 5限幅和线性化技术

限幅技术是目前星上广泛采用的一种抗干扰措施, 美军的军用通信卫星上基本都有限幅控制。其作用是避免转发器中的功率放大器被上行干扰推向饱和, 分为软限幅和硬限幅。硬限幅转发器完全工作在非线性状态, 大信号压缩小信号, 压缩比跟输入的信干比有关和干扰类型也有关,连续波干扰引起的压缩比最为严重。软限幅转发器工作在两个区域, 即线性区和限幅区。因此, 软限幅的压缩比不仅同干信比和干扰类型有关, 还跟限幅门限有关。相对而言,软限幅较硬限幅有大约4 dB 的性能改善[ 9] 。限幅加窄带滤波可以有效抵消脉冲干扰, 同时还可抑制高斯白噪声干扰。当输入干信比为40 dB 时, 软限幅器抗脉冲调幅干扰效果最佳( 改善31~48 dB) , 抗双频干扰效果最差( 改善22~49 dB) 。但是透明转发器在干扰条件下限幅转发器工作于饱和区, 从而产生功率掠夺效应, 降低了扩频信号的抗干扰能力, 使其远达不到理论上的干扰容限, 这时可采用转发器线性化技术来提高功率的线性范围, 从而提高通信卫星的抗干扰能力。

3. 6 扩展频段、发展EHF( 极高频) 通信和光通信

EHF 对应频段为30 GHz~ 300 GHz, 对它的研究开始于20 世纪70 年代, 经过几十年的努力, 已经日趋成熟, 进入实用阶段。美军M ilstar 计划是EHF 军用卫星通信系统的典型代表。1994 年发射了第一颗卫星, 其上行频率为44__GHz, 下行频率为20 GHz。采用了先进的变轨技术、星上处理技术、自适应多波束调零技术、自主控制技术, 具有很强的抗干扰、抗摧毁能力。目前正在研制的Milstar , 对高频技术进行了改进, 其中包括星上有效载荷处理技术、60GHz 星际链路技术、轻型多功能通信天线的组合阵列和宽带频率合成等技术, 计划于2006 年发射。除此之外, 主要EHF 军用卫星通信系统还有英国的Skynet 系统( 目前正在研制Skynet5, 计划2005 年替代Skynet4) , 法国正在研制的Syracuse 系统, 加拿大的FASSET

系统等[ 10] 。由于卫星采用光通信时和电波之间不存在干扰问题,而且光通信能实现1 Gbit/ s 以上的大容量卫星通信, 美国NASA、欧洲ESA、日本等国正在大力研究光通信技术。目前, 激光空间链路技术正向长波长、大容量、远距离、低功耗、小型化、一体化以及星间组网的方向发展。

3. 7 其它抗干扰处理方法

干扰抵消技术一般与扩频技术相结合, 置于解扩处理之前, 用于削弱强干扰, 使信干比降低到解扩门限以下, 以便解扩能够正常发挥作用, 具体包括时域自适应滤波干扰抑制技术、变换域干扰抑制技术和时频分布抗干扰技术。其中, 时域自适应滤波包括预测/ 估计滤波器和判决反馈滤波器, 都是利用窄带干扰的相关性强而扩频信号的相关性弱实现对窄带干扰的抑制。前者是对整个接收信号进行白化处理, 处理相对简单, 但引入了一些信号失真; 后者仅对干扰进行白化处理, 增加了处理复杂度, 提高了抗干扰性能。对于自适应滤波来说, 非线性处理技术比线性技术更有效。非线性函数被引入滤波器构成非线性滤波系统[ 11,12] , 进化算法和神经网络算法也被引入用于改善非线性滤波器系统的稳定性[ 13] 。变换域干扰抑制技术用于抵消单频、多频和窄带干扰; 可以分为离散傅立叶变换(DFT) , 离散余弦变换( DCT) , 重叠变换( LT ) , 子带变换( ST) , 小波包变换( WPT ) 等[ 14~ 17] 。时频分布理论的抗干扰技术则主要对抗非稳态多分量宽带干扰, 具体实现包括ATF ( adaptive timefrequency ) 、DET ( discrete evolutionarytransform) 变换、Hough 变换以及正交子空间映射技术等[ 18~ 20] , 随着干扰抗干扰斗争的不断发展, 基于时频分布的抗干扰技术成为目前研究的热点。Smart AGC( 智能自动增益控制) 技术是20 世纪90 年代初外军开始应用的一种新型抗干扰技术, 其基本原理是:利用弱信号( 如DS 信号) 与包络呈慢变化的强干扰在幅值上的差异, 检测和提取强干扰的包络, 并用于自适应地调整具有截止限幅特性的

放大器的工作点, 使干扰大部分幅度落在截止区内, 而较弱的有用信号落在线性放大区内,

从而改善输出信干比。这种方法能有效地削弱强干扰, 干扰越强, 其抑制效果越明显[ 21] 。可以用来对抗恒包络干扰、单个或多个连续波干扰和AWGN 等干扰, 其处理增益可达20 dB- 30 dB。随着扩频技术和CDMA 研究进展, 1994 年开始, McCarthy, J. R. 和Kazama 等人陆续提出了混合多址技术, 即在一个转发器上共用两种多址方式, 包括CDMA 叠加在窄带FDMA 之上, 直扩CDMA 和直扩FDMA 共用一个转发器, 直扩FDMA 叠加在高速TDM 信号之上[ 22, 23] 等。TDM/ CDMA 已在VSAT 系统中得到应用, TDMA 配合多

波束天线, 可实现星上交换时分多址( SS- TDMA) 。4卫星通信抗干扰技术的发展趋势干扰/ 抗干扰技术的研究仍将是今后军事卫星通信研究非常重要的长期任务, 本文认为, 卫星通信

抗干扰技术的研究最重要的问题是: 在继续探索新的抗干扰方法的基础上, 努力探索出一种

或多种新的通信体制, 设计出顽存能力很强, 并有最低限度通信保障的卫星通信系统。要求

它既要具有星上信号处理技术能力, 在星上能够综合运用多种今后值得进一步研究的方向有

以下几个方面。

( 1) 智能天线技术, 包括天线反射面的形状设计以获得理想波束; 微带平面天线的研

究;MBA 中振幅相位的控制和异幅异相的分配; 相控阵MBA 技术和盲波束形成技术等。

( 2) 研究混合扩频技术和自适应扩频技术, 如借助混沌序列和密码序列设计原理, 寻找性

能更佳的跳扩频码, 并结合自适应技术, 设计相应的同步算法等。

( 3) 针对卫星信道的特点, 寻找最佳的信号调制方式,并研究多制式、多数据率的调制解调器, 灵活控制信号形式且与不同制式的地面终端相兼容。

( 4) 研究复杂度低且能对抗多种复杂干扰的时频域干扰抵消算法, 使其能在星上应用。

( 5) 考虑更易于与各种抗干扰技术相结合的信号传输体制和复用方式。

参考文献:

[1] 周乐柱, 李斗, 郭文嘉. 卫星天线多波束天线综述[ J] . 电子学报, 2001, 29( 6) : 824- 828.

[ 2] 王华力, 陈长征, 韩锋, 等. 应用于卫星多波束天线的自适应波束形成算法比较[ J] . 电子学报, 2001, 29( 3) : 358- 360.

[ 3] Sudhakar Rao K, Morin G A, T ang M Q, et al. Development of a45GHz multiple-beam antenna f or milit ary sat ellit e communicat ions[ J] . IEEE T rans on AP, 1995, 43( 10) : 1036- 1047.

[ 4] Last er J D, Reed J H . Interferen ce reject ion in digit al w ireless com- municat ions [ J] . IE EE Signal Processing Magazin e, 1997, 14( 3) :37- 62.

[ 5] Leon D, Balkir S ,Hof fman M W, et al. Robust chaot ic PN sequencegenerat ion t echniques [ A] . The 2001 IEEE Int ernational Sym po-sium on Circuit s and Syst ems[ C] . 2001, 4: 53- 56.

[ 6] Ezers, Rolands, Farserotu, et al. Performance evaluat ion of com-mercial SATCOM modems w ith respect t o int erf erence and nuisancejamming[ A] . MILCOM- 95[C] , 1995. 864- 868.

[7] 陈海强. 现代卫星通信中的调制技术和卫星TCP 的研究[ C] .广西大学, 2002.

卫星导航抗干扰技术应用

卫星导航抗干扰技术应用 发表时间:2018-11-15T20:03:58.540Z 来源:《基层建设》2018年第28期作者:倪大森 [导读] 摘要:抗干扰技术一直是卫星导航领域的研究热点。 天津七六四通信导航技术有限公司天津 300210 摘要:抗干扰技术一直是卫星导航领域的研究热点。在众多的抗干扰方法中,采用基于空时联合处理的阵列天线抗干扰是目前最有效且应用最广的一种方法。而对于阵列天线抗干扰,权值精度和权值更新速度是决定其抗干扰性能优劣的重要因素。当采用相同的自适应算法时,权值精度越高,权值更新速度越快,则抗干扰处理的效果越好。为此,在接下来的文章中,将围绕卫星导航抗干扰技术应用方面展开详细分析,希望能够给相关人士提供重要的参考价值。 关键词:卫星导航;抗干扰技术 引言:卫星导航定位系统提供精确的位置、时间和速度的同时,存在着信号微弱,易受干扰的天然弱点。在定位导航过程中,导航接收机的抗干扰能力是决定导航定位服务可用性的关键因素,伴随着卫星导航的推广应用和深入研究,抗干扰技术不断迭代更新。文章对卫星导航系统的抗干扰接收技术进行分析。 1.抗干扰技术分析 抗干扰是指设备能够防止经过天线输入端,设备的外壳以及沿电源线作用于设备的电磁干扰。雷达往往工作在复杂的电磁环境中,雷达抗干扰性能的优劣直接决定了整个雷达系统的性能。然而,如何评价雷达抗干扰性能的优劣,至今还没有公认的标准。因此人们难以把握雷达抗干扰能力的好坏,严重阻碍了雷达抗干扰技术和战术的发展。目前对于雷达抗干扰性能的评估,已经有了部分研究成果,但存在以下缺点:第一,干扰和抗干扰性能分开评估,没有把两者联系起来,这不符合实际情况;第二,由于雷达系统的复杂性,往往不能表征整个雷达的抗干扰性能,而仅从雷达采取的抗干扰措施或雷达本身固有的特性来研究;第三,度量值具有不可测性,计算繁琐 1.1虚拟卫星法 虚拟卫星法是在卫星导航抗干扰接收系统中广泛应用的一种方法,利用小型无人机或者地基发射装置播发模拟卫星信号,增强导航接收机的接收信号进而改善信噪比,从而实现抗干扰的目的。 1.2天线抗干扰法 天线抗干扰法是卫星导航抗干扰系统中的关键技术,其应用具有多种优势,技术操作简单,成本相对较低。天线抗干扰法可以通过提升波速发生量的方式来完成天线阵元的加权工作,从而将外界干扰信号的强度控制在较小的范围,减小或避免对导航接收机的影响。 1.3扩展频谱抗干扰法 这种方法可使导航接收机有效抑制干扰信号。采用直接序列扩频,当接收机解扩之后将有用的信号变成了窄带信号,原来一些频带比较窄的干扰信号就会变成宽带信号,从而使得信号中的大部分能量都被窄带滤波器滤除掉,提高了信干比。当前扩展频谱抗干扰法的应用十分广泛,尤其是在工业领域普及程度很高。 1.4光通信技术 光通信技术是卫星导航干扰接收系统的主要技术之一,是结合现代科学技术产生的一种新技术。与传统的卫星导航抗干扰技术相比较而言,光通信技术更高效、科学,但是其原理相对复杂,应用成本相对较高,当前还处于推广阶段。 1.5编码调制技术 编码调制技术在卫星导航抗干扰接收系统中的应用,可以借助卫星导航系统的修正、调整、编排优势,增强抗干扰接收系统稳定工作的持续性。 2.抗干扰导航接收机实现 2.1波束形成抗干扰方法 形成抗干扰波束并借助惯性测量数据或者卫星历史数据,可以抵御和消除外界的干扰信号,从而提高导航接收机的抗干扰能力。卫星信号和干扰信号都会通过全向天线阵列进入大动态射频转换器前端,大动态射频转换器对射频信号进行初步处理再移交后端的数模转换器。大动态射频转换器的设计,可以采用自动增益控制技术,在射频与中频之间设置多个程控衰减器,每一个衰减器都会使得信号逐渐衰减变小,而且信号是逐级衰减,防止其中的敏感元件出现饱和状态。这种衰减结构是比较灵活的,可以对进入模数转换器的信号电平进行精确控制,实现对信号与噪声之间的比值的优化。当射频转换器把信号变成中频的时候,数字化中频信号就会进入波束形成算法模块,同时,在惯性测量数据可用的情况下,还可以从惯性测量数据获得自身的姿态信息,并且可以结合卫星历史数据,通过波束控制模块产生波束自适应控制权值,然后将该值传输到波束形成算法模块中,波束形成算法模块根据波束自适应控制权值,对数字化中频信号进行自适应滤波,可以降低或者消除进入导航接收机的干扰信号影响。波束形成算法模块可以对输入的数字中频数据进行处理,并且可以得到所有通道的数字波束总和,根据这个值再进入导航接收机的捕获跟踪模块。在整个传输过程中,波束形成算法模块可以同时对都不同方向的波束进行控制,在卫星信号中如果存在干扰信号,则该模块可以对数据中的干扰成分进行降低或者完全消除,从而减少干扰信号对卫星信号带来的影响,得到更准确的定位结果。 2.2自适应零陷抗干扰方法 如果缺乏惯性导航设备、电磁罗经等设备的惯性测量数据,导航接收机很难确定卫星接收天线的姿态。此种情况下,自适应零陷抗干扰方法更合适,这种方法的基本原理是功率倒置算法,确保期望信号增益为常数时输出的功率最小。按照功率倒置算法所形成的天线方向图,可以在各个干扰方向上产生对应的零陷,零陷与干扰信号的强度成正比。当卫星信号从空中传输到导航接收机的天线时,信号电平会衰减得十分微弱,甚至低于噪声,所以算法不会剔除有效的卫星信号。算法在强干扰方向上产生零陷,可以有效抑制干扰信号的影响,提高导航接收机的信噪比[1]。 2.3抗干扰导航接收机实现技术 从抗干扰导航接收机的结构来看,卫星导航系统的抗干扰导航接收机主要有两个模块,一个是自适应抗干扰模块,一个是基带接收机模块。自适应抗干扰模块中一共有7组天线,这些天线的数据经过采集之后,可以通过FPGA的SRAM存储器将数据转存送入DSP中,再对数字进行加权计算,另外也可以利用上次计算所得到的权值在FPGA中对当前采样的数据做波束形成或者零陷滤波处理,最终生成I、Q两

卫星通信技术及其优化

龙源期刊网 https://www.doczj.com/doc/a110985162.html, 卫星通信技术及其优化 作者:刘亿民 来源:《中国科技博览》2013年第07期 [摘要]卫星移动通信是连接地面和太空之间的重要纽带,其发展的速度决定了一个国家在卫星技术方面的发展。卫星通信的发展空间无限大,需要在科技的不断创新中得到优化。尽量使全球的每个盲区都能得到信号,为人们的生活带来更多是便捷。文章主要介绍了卫星通信技术的现状,并结合现状提出了如何优化卫星通信技术的有效措施,最后对其发展前景进行了展望。 [关键词]优化卫星通信技术通信现状优化措施 中图分类号:TN927.23 文献标识码:A 文章编号:1009-914X(2013)07-0085-01 1.引言 从20世纪90年代至今,卫星通信技术方面的发展有着显著的提高,不断的推动着移动卫星的发展。卫星通信覆盖的范围极其广泛,通信包含的容量大,传输的效果极佳,抗干扰的能力也很强,基于这些普遍性的优点,卫星通信被人们普遍认为是通讯道路上不可缺少的技术之一,为人们的生活带来了方便。所谓卫星通信是人类利用人造卫星,以地球作为中继站,从外星转发大量的无线电波,进一步达到传递大量信息的目的。任何事物的产生都会伴随着其自身的优缺点,为了能够使卫星通信为我们的生活创造更多的便捷,需要了解其现有优缺点,对缺点进行改善和优化。 2.卫星通信技术的现状 我国现在在卫星通信技术方面取得了很大的成就,但是还有很大的进步和提升的空间,在半个世纪的发展中,我国的卫星事业取得的成绩硕果累累,卫星通信技术也广泛应用到各个行业中。 2.1 卫星通信的优点 卫星离地球表面的距离很远,但是通信的范围不管是海洋还是森林都可以接受到卫星发来的信号,只需安装接收装备。这点也能说明卫星通信优于其他通信的一点,同时其容量大,受用的范围极大,由于微波在太空中传播的效果稳定,信号质量优,不会受到其他介质和外界的干扰。因此,地球是否发生了变化对人们的通信都不受到直接影响。从成本的角度讲,卫星通信的成本不高,没有实质性的线路需要搭建,也无需维护,信号只是由相关设备发出微波进行接收进行通信。 2.2 卫星通信的缺点

大学-关于通信的论文解析

通信电子战系统现状及应对 自海湾战争以来,电子战的威力已被世界所公认。电子战是现代高技术战争中的一个攻防兼备的双刃“杀手锏”,其作战目的是降低或削弱敌方战斗力并保持和增 强己方战斗力。电子战要“消灭”的不是敌人的有生力量,而是通过攻击或瘫痪敌方的,军事信息系统和降低敌方精确制导武器系统的攻击效率,使其丧失战斗力。电子战使用的武器不是枪炮、飞机、军舰、导弹等有形的硬杀伤武器,而是一种无形且有声的电磁能和定向能。电子战往往是在明火执仗的战争之前发起,战争尚未打响,电子战已先期进行。因此电子战是一种先机制敌、不见“刀光剑影”的特殊战争。电子战发展的历史虽不到百年,但其成功的战例却充满着不同时期战争的历史舞台,从日俄战争,第二次世界大战末的英美联军诺曼底登陆战役,越南战争和中东战争,直至海湾战争,电子战都充分显示了其巨大的威力。人们从这些成功的战例中吸取了丰富的营养,并根据现代战争的发展和高技术进步的推动,不断地深化对电子战理论、作战思想、作战方法和新技术、新装备的研究,把电子战这一新的军事科学技术推向一个新的历史台阶。从电子战发展现状、电子战发展趋势、电子战发展对策等几方面进行全面综述,并对我军电子战研究提出几点思考和建议。 电子战主要包括:即电子支援措施(ESM、电子对抗措施(ECM、电子反对抗措施;通信对抗措施既是电子对抗的重要组成部分,又是通信的伴生物,它的主要任务是:截收、检测、测向定位和识别敌方的通信信号,进而采取通信干扰措施,达到阻止破坏或削弱敌人C4I系统,同时又要保护己方通信畅通是双方在通信领域内为争夺制电磁权而展开的电子对抗,专家认为:未来战争,交战双方谁赢得了制电磁权,谁就赢 得战争的主动权,乃至整个战争。 一、外军通信干扰系统现状 外军通讯干扰系统主要包括固定、载式、和便携式三种,由于载式(车载、机载、舰载系统良好的机动性,能够尽可能的靠近被干扰的通信系统,因此应用的比较广泛。 (一车载式系统:

低轨道卫星移动通信系统方案

摘要 作为一种国家关键的基础通信设施,以及全球移动通信的有机组成部分,卫星移动通信系统在国家安全、紧急救援、互联网、远程教学、卫星电视广播以及个人移动通信等方面得到了广泛的应用。新一代宽带卫星通信系统可以提供个人电信业务、多信道广播、互联网的远程传送,是全球无缝个人通信、互联网空中高速通道的必要手段。近年来卫星通信新技术不断发展,特别是低轨道卫星移动通信系统受到了人们的广泛关注,其研究与应用已成为各国的战略发展重点。无线资源管理是低轨卫星移动通信系统研究中的一项重要内容,这主要是由于卫星系统的资源是非常昂贵的,因此如何合理而有效地管理并利用卫星系统的资源已成为关键。 通过对低轨道卫星无线通信信道的基本特点的研究,文章具体从无线信道的缺点进行分析,并进行了matlab仿真模拟,得出信号经过多径信道的幅频特性,多径信道对不同频率信号的衰减情况不同,即具有频率选择性,以及信号经过多径信道的衰减情况,以及码元间隔对传输信号的影响,信号的码元间隔必须远大于信号的时延差,才能尽量的减小码间干扰。 关键词:低轨卫星通信,信道,信道特性

Abstract As a national key infrastructure communication, as well as an organic part of the global mobile communications, Star mobile communication system in national security,emergency rescue, Internet, satellite TV broadcasting, remote teaching and personal mobile communication has been widely used in such aspects. A new generation of broadband satellite communication system can provide personal telecommunication business, multicasting, remote transmission, the Internet is a global seamless personal communications, high-speed Internet air passage means necessary. Satellite communication technology development in recent years, especially in low orbit satellite mobile communication system has received the widespread attention, its research and application has become a national strategic priorities. Wireless resource management is the study of Leo satellite mobile communication system is an important content, this is mainly due to the satellite system resources is very expensive, therefore how to reasonable and effective management and use of the resources of satellite system has become a key. Through the low orbit satellite studies the basic characteristics of wireless channel, the article specifically from wireless channel faults is analyzed, and the matlab simulation, it is concluded that the signal after a multipath channel amplitude frequency characteristics, multipath channel attenuation is different on different frequency signal, which has the frequency selectivity, as well as the attenuation of the signal through the multipath channel, and the influence of element spacing to transmission signal, the signal of the symbol interval must be greater than the signal delay is poor, can try to reduce intersymbol interference. KEY WORDS: LEO satellite, Channel,Channel characteristics

浅谈卫星导航抗干扰技术的发展

浅谈卫星导航抗干扰技术的发展 【摘要】卫星导航在现在的军事领域起到了至关重要的作用,本文介绍了卫星的干扰类型和工作原理。然后介绍了现有的几种抗干扰技术、工作原理和特点。最后,对卫星导航的抗干扰技术进行了预测。 【关键词】卫星导航;干扰技术;抗干扰技术 卫星导航在社会生活和军事领域当中起到了越来越多的作用,从日常的定位,到军用的精确制导,都离不开卫星导航。然而,在实际应用当中,由于种种原因,卫星系统会受到干扰,影响了使用国和用户的。因此,如何提高卫星系统的抗干扰的技术是当前各国研究者重点的研究课题[1]。本文介绍了干扰的类型和工具原理,抗干扰技术的分类和发展动向,为我国的卫星导航抗干扰技术的发展提供借鉴。 1.干扰的类型 对卫星的导航一般主要分为干扰型和压制型两种,由于卫星导航也是电子系统的一个集成,因此,一般的电子干扰技术也能用在对卫星的干扰上。 1.1压制式干扰 压制式的干扰就是利用特殊的发射装置对卫星发射电磁信号,让卫星不能正常的接受和发射信号,也无法进行导航。这种干扰方式的特点是技术难度低,使用相对简单,功率大的。但这种干扰方式也会使本方的导航通讯出现不畅,因此,使用范围比较受限制[2]。 1.2干扰型干扰 与压制式干扰不同,干扰型干扰向卫星发射假的信号,造成卫星的导航信息不准确,或者发出错误的信号,起不到应有的导航作用。这种干扰方式的特点是技术难度比较高,需要知道所要干扰的卫星系统的具体工作参数,虽然效果要比压制式干扰好,且不影响本方正常的通讯,但是掌握难度非常的高。 2.抗干扰技术的发展 所谓的抗干扰就是利用特定的手段对卫星的信息接收,传送方式和功率等进行处理,使卫星能够分辨有用和无用信号,正确的接收所需要的信号。在卫星抗干扰技术中主要有以下几种。 2.1伪卫星法 伪卫星法就是在地面设定发射装置,或者发射无人驾驶飞行器,或者小卫星

卫星通信技术在智能交通中的应用

卫星通信技术在智能交通中的应用

卫星通信技术在智能交通中的应用 姓名:李泽宇学号:100740318 专业:交通3班 摘要:本文卫星通信系统的组成及功能以及其在智能交通中的应用,就卫星通信技术中的卫星定位系统在智能交通中的应用作简要分析,并简单介绍了现代卫星通信技术在智能交通中的应用案例,提出了个人对智能交通系统未来发展的建议和祝愿,希望智能交通为人民带来便捷的出行。 关键字:卫星通信系统;智能交通;应用 前言:卫星通信是一种利用人造地球卫星作为中继站来转发无线电波而进行的两个或多个地球站之间的通信。卫星通信技术服务于人类的各个角落,为人类的生活,交流带来了方便。现代卫星通信技术在智能交通中的应用涉及到了多个方面,如全球卫星定位系统GPS 及其在智能交通系统ITS 中的应用;基于卫星定位和无线通信技术的道路电子收费系统;卫星通信技术将在交通运输领域深入应用等。 正文:1 卫星通信系统 1.1 卫星系统的组成卫星通信系统是由通信卫星和经该卫星连通的地球站两部分组成。静止通信卫星是目前全球卫星通信系统中最常用的星体,是将通信卫星发射到赤道上空35860 公里的高度上,使卫星运转方向与地球自转方向一致,并使卫星的运转周期正好等于地球的自转周期(24 小时),从而使卫星始终保持同步运行状态。故静止卫星也称为同步卫星。静止卫星天线波束最大覆盖面可以达到大于地球表面总面积的三分之一。因此,在静止轨道上,只要等间隔地放置三颗通信卫星,其天线波束就能基本上覆盖整个地球(除两极地区外),实现全球范围的通信。目前使用的国际通信卫星系统,就是按照上述原理建立起来的,三颗卫星分别位于大西洋、太平洋和印度洋上空。 1.2 卫星系统的功能 1.2.1 卫星系统功能方框图示于下图: 1.2.2 位置与姿态控制系统从理论上讲,静止卫星的位置相对于地球说是静止不动的,但是实际上它并不是经常能够保持这种相对静止的状态。这是因为地球并不是一个

低轨卫星组网设计

1概述 卫星星座是指由多颗卫星按照一定规则和形状构成的可提供一定覆盖性能的卫星网络,是多颗卫星进行协同工作的基本形式。卫星星座结构会影响网络覆盖区域、网络时延和系统成本等。传统的同步轨道卫星轨道高、链路损耗大,对地面终端的EIRP和接收天线的G/T值要求过高,难以实现手持机与卫星直接进行通信;而低轨卫星由于链路损耗小,降低了对用户终端EIRP和G/T值的要求,可支持地面小型终端与卫星的直接通信,有利于信息的实时传输。现代通信的发展要求卫星通信系统应具有全球通信能力。低轨卫星实现全球覆盖所需的卫星数目较多(Iridium系统66颗星),系统实现成本很高,对于我国这样的发展中国家要在短期构建全球性低轨卫星通信系统,无论是在经济上还是在技术上都存在较大困难。因此,在预期星座的整体构型下,通过设计和筛选,合理部署少数卫星以满足当前任务和需求,并在今后发展过不断发射新卫星进行补网,最终实现星座的预期覆盖和通信能力,是我国卫星通信发展的一条可行之路。 2星座参数设计 2.1轨道设计 椭圆轨道多用于区域性覆盖,但轨道倾斜角必须为63.4°(为了避免拱点漂移),这对中低纬度地区的覆盖十分不利,而圆轨道的倾斜角可在0°~90°。之间任意选择。考虑我国所处纬度围为北纬4°~54°之间,星座设计宜应采用倾斜圆轨道。轨道高度选择主要是系统所需卫星数目与地面终端EIRP和G/T值的折衷。同时,轨道高度的选择还需考虑地球大气层和·阿伦带两个因素的影响,

通常认为LEO 卫星的可用轨道高度为700~2 000 km 。 2.2卫星周期设计 为了便于卫星轨道控制,通常选择使用回归轨道,即卫星运行周期与地球自转周期成整数比。卫 星运行周期与地球自转周期关系如下式所示: n k Ts =Te (1) 式中,k 、n 为整数,Ts 为卫星运行周期,Te 为地球自转周期,且Te=86 164 s 。根据开普勒定理,可得卫星周期Ts(单位s)与轨道高度h 关系如下: ()μπ3 Re 2h T s += (2) 式中,地球半径Re=6 378.137 km ,开普勒常数 23s m 98.398601K =μ。取k=2,n=25,可得卫星周期 Ts=6893 s ,轨道高度h=1450 km 。 2.3星座相位关系设计 星座相位关系的确定是指确定卫星在星群中的位置,它包括轨道倾角、轨道平面的布置、同一平面 卫星的位置和相邻轨道卫星的相对位置关系。通常,为了使卫星具有最大的均匀覆盖特性,同一轨道 平面的卫星应均匀分布,即相邻卫星的相位差应 满足360/m ,m 为该轨道平面的卫星数量。对于不同轨道平面卫星,相对相位角的不同会使星座 的覆盖特性相差甚远。 根据立体几何的关系,推导出两个星下点(卫星与 地心连线和地面的交点)之间的距离d 的公式如下: ()()[]2cos sin 2sin 2sin cos sin 2arccos 212212122θθθθθ?+---=e R d 式中,1θ、2θ为两星下点的纬度,妒为两星下点经度差的绝对值。相对相角优化算法准则是使星下点间的最小距离最大化。

卫星导航系统接收机抗干扰关键技术综述

卫星导航系统接收机抗干扰关键技术综述 卫星导航系统,就是用于对目标定位、导航、监管,提供目标位置、速度等相关信息的卫星系统。卫星导航系统具有很多优点,定位精度非常高,如美国的GPS(全球定位系统)精度可达厘米和毫米级;效率高,体现在观测时间短,可随时定位;全天候的连续实时提供导航服务。因此,卫星导航系统广泛应用于各个领域,发展前景十分广阔。但是,卫星导航系统有一个缺点,就是卫星信号的功率比较低,信道容易受到其他形式的各种干扰,导致卫星导航接收机的性能下降。因此,为了提升我国的卫星导航系统的抗干扰能力,本文主要研究探讨了卫星导航系统接收机抗干扰的关键技术。 1 卫星导航系统抗干扰技术 卫星导航系统接收机的干扰主要有三种形式,欺骗式干扰、压制式干扰、欺骗式/压制式组合干扰。欺骗式干扰有针对民码的干扰和针对军码的干扰;压制式干扰有宽带压制式干扰和窄带压制式干扰。为了应对各种干扰,卫星导航系统使用扩频技术,扩频技术具有很好的隐蔽性,能够精密测距,并且可以实现多址通信,抗干扰能力大大增加。而对于连续波干扰、窄带干扰,就要采用带阻频谱滤波方法滤掉干扰信号。而对于宽带干扰,这些方法效果都不理想,一般选择自适应阵列天线技术,这种技术能够根据外部的信号强弱,自动改变各个针元的加权系数,从而对准干扰信号方向。 1.1 自适应滤波技术 自适应滤波技术是随着自适应滤波理论与算法的发展而发展起来的,最小均方算法和最小二乘算法对自适应滤波技术起到的非常大的作用。除此以外,采样矩阵求逆算法也属于另一种自适应算法,直接矩阵求逆算法使得系统处理速度大大提升。 1.2 卡尔曼滤波技术 卡尔曼滤波技术是卡尔曼在20世纪60年代提出的,卡尔曼滤波技术是在被提取信号的相关测量中利用实时递推算法来估计所需信号的一种滤波技术。这种技术的理论基础是随机估计理论,在估计过程中,用观测方程、系统状态方程以及白噪声激励的特性作为滤波算法。卡尔曼滤波技术不仅用于估计一维的平稳的随机过程,而且可以用于多维的非平稳随机过程估计。卡尔曼滤波技术实质上属于一种最优估计方法。虽然卡尔曼滤波技术操作简单,应用范围十分广泛,但有一个基本要求,就是必须在计算机上实现。 2 抗压制式宽带干扰技术 2.1 压制式宽带干扰的工作原理 所谓压制式干扰,就是指干扰信号的强度远远高于经过扩散后的卫星信号强度,进而使卫星导航系统接收机无法获取准确信号,从而达到干扰卫星导航系统的目的。压制式干扰有窄带压制式和宽带压制式干扰。窄带单频连续波干扰,是一台干扰机对卫星导航系统发射单频信号,当单频信号与用伪码调制的宽带进行混频后,就输出宽带干扰信号。宽带扩频相关干扰,原理是利用卫星信号的伪码序列与干扰信号的伪码序列的强关联性来干扰接收机的接受能力。这种干扰可以以较小的干扰功率就能达到有效干扰目的。 2.2 自适应阵列天线技术 阵列天线的结构决定抗干扰性能,阵列天线的几何结构对抗干扰性能的影响主要体现在三个方面。第一,阵列天线的阵元间隔。第二,阵列天线的几何布局。第三,阵列天线的阵元个数。确定阵元间的相对距离,要考虑的因素有,较小的阵元之间的间隔形成的互藕效应,和半波长的阵元间隔形成的旁瓣。一般的阵元间隔选择半波长,能够有效避免大的旁瓣的产生,并且此时的互藕效应最小。阵列天线的几何结构布局不同,对应的最佳阵元的个数就不同。所以在进行干扰抑制性能的量化比较时,不能将阵元个数相同的,但阵元几何结构不同

卫星通信基础知识五EIRGT值的意义完整版

卫星通信基础知识五E I R G T值的意义 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

卫星通信基础知识(五)EIRP值,G/T值的意义 在卫星通信中常常看到 EIRP、G/T 他们是什么意思呢 EIRP EIRP(Effective Isotropic Radiated Power)有效全向辐射功率 EIRP也称为等效全向辐射功率,它的定义是地球站或卫星的天线发送出的功率(P)和该天线 增益(G)的乘积,即: EIRP=P*G 如果用dB计算,则为 EIRP(dBW) = P(dBW) + G(dBW) EIRP表示了发送功率和天线增益的联合效果。 EIRP是卫星通信和无线网络中的一种重要参数。有效全向辐射功率EIRP为卫星转发器在指定 方向上的辐射功率。它为天线增益与功放输出功率之对数和,单位为dBW。EIRP的计算公式为 EIRP = P – Loss + G式中的P为放大器的输出功率,Loss为功放输出端与天线馈源之间的馈线损耗,G 为卫星天线的发送增益。 通过对比同一颗通信卫星的C频段EIRP分布图和Ku频段EIRP分布图可知,C频段转发器的服务区大,通常覆盖几乎所有的可见陆地,适用于远距离的国际或洲际业务;Ku频段转发器的服务区小,通常只覆盖一个大国或数个小国,只适用于国内业务。C频段转发器的EIRP通常为36到 42dBW,G/T通常为-5到+1dB/k,地面天线的口径一般不小于1.8米;Ku频段转发器的EIRP通常为44到56dBW,G/T通常为-2到+8dB/k,地面天线口径有可能小于1米。另一方面,C频段因为电波 传播通常不受气候条件的影响,适用于可靠性较高的业务;Ku频段转发器则因电波传播可能遭受降雨衰耗的影响,只适用于建网条件较差、天线尺寸和成本受限的业务。下表是亚洲卫星公司四颗卫星的最大EIRP、G/T值 地面站性能指数G/T值是反映地面站接收系统的一项重要技术性能指标。其中G为接收天线增益,T 为表示接收系统噪声性能的等效噪声温度。G/T值越大,说明地面站接收系统的性能越好。 目前,国际上把G/T≥35dB/K的地面站定为A型标准站,把G/T≥31.7dB/K的站定为B型标准站,而把G/T<31.7dB/K的站称为非标准站。

卫星通信技术及其发展趋势

卫星通信技术及其发展趋势 朱军王培国 (成都军区) 摘要:综述了卫星通信网中使用的CDMA、抗干扰、MPLS等技术和卫星通信的发展趋势,并对我国卫星通信的发展进行了展望。 关键词:卫星通信CDMA 抗干扰MPLS 发展趋势 卫星通信是以卫星作为中继的一种通信方式,是在地面微波中继通信和空间电子技术的基础上发展起来的,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。 1 卫星通信网络的定义 卫星通信网络是利用人造地球卫星作为中继站转发无线电波,从而实现两个或多个地面站之间通信的网络。其中,地面站是指设在地球表面(包括地面、水面和大气层)的通信站,也称为地球站。通信卫星的作用相当于离地面很高的中继站。卫星通信网络分为延迟转发式通信网络和立即转发式通信网络。 当卫星的运行轨道属于低轨道时,对于相对较远的地面站而言,要进行远距离实时通信,除采用延迟转发方式(利用一颗卫星)外,也可以利用多颗低轨道卫星进行转发,这种网络就是通常所说的低轨道移动卫星通信网络。 2 卫星通信中的主要技术 2.1 CDMA技术 CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现

全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。 CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可利用多个卫星分集接收,大大降低多径衰落的影响,改善传输的可靠性。此外,由于CDMA多址方式具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便所等特点,决定了它在军事卫星通信上具有重要的意义。 2.2 抗干扰技术 现代军事斗争中,敌我双方对卫星通信干扰与抗干扰技术对抗越来越激烈。未来战争中电磁环境将变得越来越复杂,卫星通信因其固有的特点而面临极大的威胁。由于通信卫星始终暴露在太空中,且信道是开放的,易于受对方攻击。因此,军事卫星通信中干扰和抗干扰是斗争双方关注的焦点,研究在复杂电磁环境下卫星通信抗干扰技术体制已成为提高军事通信装备生存能力、确保军事指挥顺畅的关键。 卫星通信抗干扰主要通过传输链路抗干扰、软硬件设备抗干扰以及建立综合智能抗干扰体系等措施实现。 传输链路抗干扰主要有DS/FH混合扩频、自适应选频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、跳时(TH)、自适应信号功率管理、自适应调零天线、多波束天线、星上SmartAGC、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。软硬件设备抗干扰主要有光电隔离、硬件滤波、屏蔽、数字滤波、指令冗余、程序运行监视等技术。建立综合智能抗干扰体系可以通过建立软件化抗干扰硬件平台、建立智能化抗干扰软件应用系统,如:智能抗干扰系统、网络监测控制系统、专家策略支持系统等措施实现。 特别值得一提的一种抗干扰、抗搜索、抗截获的技术是跳频通信技术,它是在现代信息对抗日益激烈的形势下迅速发展起来的。各国军方对这一先进技术的发展和应用十分重视,不断加强对跳频抗干扰通信的研究和推广应用。目前,跳频技术装备正朝着宽频带、高速率、数字化、低功耗的方向快速发展,其信息战潜力巨大。 2.3 基于MPLS的移动卫星通信网络体系构架 MPLS(多协议标签交换)技术由于可将IP路由的控制和第二层交换无缝地集成起来,具有IP的许多优点(如扩展性、兼容性好),又可很好地支持QoS和流量工程,是目前最有前途的网络通信技术之一。近年来,在地面固定网MPLS技术逐渐成熟后,该技术已向光通信、无线通信和卫星通信等领域扩展。现有的宽带卫星系统设计主要采用卫星ATM 技术,研究表明该技术可给不同的业务提供很好的QoS保证,并可利用面向连接的虚通路设计以及流量分类等方法为网络提供有效的流量工程设计。

卫星通信抗干扰系统

卫星通信抗干扰系统 一般可理解为,通信装备及系统为对抗干扰方利用电磁能和定向能控制、攻击通信电磁频谱,以提高其在通信对抗中的生存能力所采取的通信反对抗技术体系、方法和措施。 一般说,通信抗干扰的基本体系、方法、措施可分为三类: 1、信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。 2、空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。 3、时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。 通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。 通信抗干扰技术的特点: 1、对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗 干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。 2、对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。 [相关技术]通信对抗;扩频技术;抗干扰电台;卫星通信抗干扰 [技术难点] 1、提高跳频速率有利于抗干扰,但跳速提高需解决如下问题:接收机中频滤 波器产生的瞬时扰动问题;发射机功率输出截止状态产生的过渡问题;频率合成器

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简 单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放 重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的

卫星通信

浅述卫星通信系统 当今世界已经进入了信息时代,信息技术改变着人们的生活和工作方式,作为信息传输基础的通信技术,越来越与人们的日常生活密切相关。21世纪通信的发展与多媒体、互联网络、个人通信等高科技产物融合在一起,成为信息产业中发展最为迅速,进步最快的行业。面对如此迅猛的发展,我们必须以新观念、新思路、新模式和新设计方法去适应未来信息化社会。 卫星通信指的是在两个以上的地球站之间利用人造地球卫星作为中继站转发或反射无线电波进行的通信,之前提到的地球站是设置在地球上(包括地面、水面和低层大气中)的无线电通信站。它将通信技术、计算机技术与航空航天技术相结合的一项重要成果,并且作为一种远距离通信方式从上世纪五十年代应用至今。 目前,卫星通信广泛应用于国际通信、国内通信、国防、移动通信和广播电视等诸多领域。较其他传统的通信方式而言,卫星通信具有极大优势,特别是在边远山区、人烟稀少地区、沙漠地区、江河湖泊地区以及海岛等通信不发达的地区,卫星通信具有其他通信手段不可替代的作用。鉴于卫星通信具有的上述优势,使得它自诞生之日起便迅速发展成为现如今通信领域中最为重要的一种通信方式。 一、卫星通信系统的起源于发展 1667年,著名物理学家牛顿在开普勒三定律的基础上,总结出了万有引力定律。万有引力定律的内容是:任何两个物体之间都存在着引力,其大小与两物体的质量乘积成正比,而与两物体之间的距离平方成反比。卫星和地球也服从万有引力定律,这就使得牛顿发现的万有引力定律成为卫星诞生的理论基础。 1945年10月,就在第二次世界大战刚刚结束不久,当时的英国空军雷达军官阿瑟〃克拉克(Arthur C.Clark)在《无线电世界》杂志上发表了关于“地球外的中继站”(Extra-Terrestrial Relays)学术性文章。在

卫星通信抗干扰技术及其发展趋势概述

卫星通信抗干扰技术及其发展趋势概述 摘要现代通信的发展过程,卫星通信技术作为主要通信方式,在社会环境和自身条件等因素的干扰下,信号传输会随之受到直接影响,若要全面提升信息的传输效果,则应该加强卫星通信的抗干扰技术研究,同时对其发展趋势进行深入了解,以促进现代通信的发展。文章首先分析卫星通信抗干扰,其次进行抗干扰技术的阐述,最后研究其发展趋势。 关键词卫星通信;抗干扰技术;发展趋势 卫星通信技术是指:将人造卫星作为中继站,利用无线电波实现地球间的有效通信,以组成角度进行分析发现,系统主要包括:地球站和通信卫星。在我国科学技术持续发展下,卫星通信技术随之取得明显进步,除了可以弥补其他通信存在的问题,而且还能广泛应用音频广播和大众传媒等领域,与此同时,工作人员还应进行卫星通信抗干扰技术的优化和完善。 1 卫星通信抗干扰的浅析 对于卫星通信来讲,可能会对其造成干扰因素比较多样化,按照其来源进行划分发现,其主要包括以下几点内容:首先,通信系统干扰,卫星通信技术发展中,与以往技术相比较发现,其卫星间隔随之出现较大变化,即由5°转变为2.5°,在缩短卫星间隔的同时,使卫星间干扰明显增加。其次,卫星通信和地面系统之间存在干扰情况,其主要表现在无线通信方面,例如:调频广播或雷达系统等,同时还包括医院或工程等设备干扰[1]。最后,自然因素干扰,如雨衰等,在电波空中传输过程,在穿过雷电和雨水区域时,此区域内障碍物、雨滴的存在,均会对电波起到衰减作用,实际衰减情况和雨滴半径存在较大联系。与此同时,日凌和电离层的闪烁情况,均属于自然界常见干扰类型,如果电磁波出现在电离层中,往往会因为电离层缺少稳定特点,使其信号出现延迟突变等问题,最终造成电离层出现闪烁情况,需要工作人员予以重视。 2 卫星通信常见抗干扰技术 2.1 天线抗干扰技术 在卫星通信系统中,因其具有覆盖广的特点,使其经常面临不同干扰,在不同抗干扰技术在中,天线抗干扰属于比较常见技术,包括自适应调零技术等。对于智能天线应用,主要是按照无线信道变化进行天线图方向的调整,从而保证天线各项性能处于良好状态,以便于对不同干扰因素进行有效控制。在智能天线中,其构成部分包括:信号通道与天线阵列等,需要特别注意:短时间内对干扰方向予以判断,同时调至零标准尤为重要,要求人员对其予以重视[2]。 2.2 限幅技术

导航战及GPS干扰导航战是指在战场环境下用电子干扰的方法对敌

1. 导航战及GPS干扰 导航战是指在战场环境下,用电子干扰的方法对敌方导航系统进行干扰或攻击,使其不能正常导航或降低导航精度,并对敌方对己方导航系统所实施的干扰进行抗干扰,使其在干扰条件下仍能高精度地工作。 GPS干扰: (1) 瞄准式阻塞干扰 保证阻塞式干扰在GPS 接收机的带宽内产生均匀的干扰频谱(梭状和连续波) , 在时域上呈等幅包络, 该干扰信号的功率达到一定程度时, 便可对GPS 信号产生全面的阻塞作用. (2) 伪随机噪声阻塞干扰 人为地产生伪随机码噪声, 这些伪随机码噪声在被GPS 接收机相关解扩过程后的信号功率只要大于GPS 接收机的干信比, 就足以有效干扰GPS接收机. (3) 转发式欺骗干扰 将某一区域内GPS 卫星信号通过一些特殊的设备(如DRFM) 进行降频、采样、存储、延时、调制、再升频后转发出去. 这样在空中就形成与GPS接收机真实信号相参性很好的欺骗信号, 通过GPS接收机相关解扩后, 起到欺骗使用. 这些信号人为地改变了在空中的传输时间、相位和频率. 最终使得GPS 接收机的定位精度产生很大误差. (4) 组合干扰 由于每一种干扰方式的优缺点不尽相同, 为了取长补短, 我们可以同时采用两种或两种以上的干扰方式, 以求达到更好的干扰效果. 如伪随机噪声阻塞干扰与转发式欺骗干扰的组合. 2. GPS抗干扰措施 由于GPS空间卫星的设计起点主要考虑战争环境下导航和定位的军事安全,而没有把干扰环境下的工作能力提到突出的位置。实际上,GPS卫星信号到达地面用户时其信号很弱,信噪比很低,从而导致了GPS用户接收机很容易遭受欺骗性干扰和压制性干扰。加上导航战中民用频段的军用化,导致美国与其敌对双方突出较量于战场,迫使其GPS系统不得不采取抗干扰措施或者改革其体制。为此,美军正在从GPS卫星、地面控制站、用户接收设备等方面采取措施,提高该系统的抗干扰能力。其中主要包括:①提高GPS星座后续星的发射功率,研制第三代GPS卫星;②军用GPS接收机采用保密结构、自适应调零天线、抗干扰信号处理技术;③在武器应用方面,特别强调复合使用GPS与惯性制导系统(INS),“联合直接攻击弹药”(JDAM)就是如此;④研制GPS干扰源探测定位系统。 2.1 美国GPS抗干扰技术研究现状: 一、研制抗干扰GPS 接收机天线。 美国陆军航空与导弹司令部导弹研究发展与工程中心将投资“创新研究”工程,研制小型廉价的GPS 接收机天线,用于各种导弹和火箭弹上的GPS 接收机。目前这类弹药上的GPS 接收机天线对干扰信号的跟踪和抑制过程需要50 秒,而有效制导多管火箭炮和陆军战术导弹系统要求该过程不能超过10 毫秒,所以必须使用小于10 ×10 ×2. 5cm3 的天线。“创新研究”计划的目标是研制一种可抗连续波、宽带噪声、脉冲等多种干扰的抗干扰GPS 接收机天线,并用其取代现有天线。如果获得成功,将制造10 套天线用于飞行等各种试验。

相关主题
文本预览
相关文档 最新文档