当前位置:文档之家› 轴承几种噪声分析

轴承几种噪声分析

轴承几种噪声分析
轴承几种噪声分析

轴承几种噪声分析

1.滚道声

滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:

a.噪声、振动具有随机性;

b.振动频率在1kHz以上;

c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;

d.当径向游隙增大时,声压级急剧增加;

e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;

f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。滚道声产生源在于受到载荷后的套圈固有振动所致。由于套圈和滚动体的弹性接触构成非线性振动系统。

当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。

众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。

2.落体滚动声

该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:

a.脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生。

b.冬季常常发生。

c.对于只作用径向载荷且径向游隙较大时也易产生。

d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。

e.可能是连续声亦可能是断续声。

f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。通过采用预载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型滚动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。

3.尖鸣声

它是金属间滑动摩擦产生相当剧烈的尖叫声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但不悦耳声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为:

a.轴承径向游隙大时易产生。

b.通常出现在脂润滑中,油润滑则较罕见。

c.随着轴承尺寸增大而减小,且常在某转速范围内出现。

d.冬季时常出现。

e.它的出现是无规则的,和不可预知的,并且与填脂量及性能、安装运转条件有关。这种噪声可

采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。

4.保持架声

在轴承旋转过程中保持架的自由振动以及它与滚动体或套圈相撞击就会发出此噪声。它在各类轴承中都可能出现,但其声压级不太高而且是低频率的。其特点是:

a.冲压保持架及塑料保持架均可产生。

b.不论是稀油还是脂润滑均会出现。

c.当外圈承受弯矩时最易发生。

d.径向游隙大时容易出现。

由于保持架兜孔间隙及保持架与套圈间隙在轴承成品中不可避免的要存在,因此彻底消除保持架声十分困难,但可通过减少装配误差,优选合理的间隙和保持架窜动量来改善。另一种保持架特殊声是由于保持架与其他轴承零件引导面间的摩擦引发保持架的自激振动而发生的喧嚣声。深沟球轴承的冲压保持架较薄,在径向和轴向平面内的弯曲刚度较低,整体稳定性差,轴承高速旋转时就会因弯曲变形而产生自激振动,引起“蜂鸣声”。当轴承在径向载荷作用下且油脂性能差的情况下,运转初期会听到“咔嚓、咔嚓”的噪声,这主要是由于滚动体在离开载荷区后,滚动体突然加速而与保持架相撞而发出的噪声,这种撞击声不可避免但随着运转一段时间后会消失。

防止保持架噪声措施如下:

a.为使保持架公转运动稳定,应尽量采用套圈引导方式并注意给予引导面的充分润滑,对高速工况下的轴承结构给予改进,将滚子引导的L型保持架改为套圈挡边引导的Z型保持架。

b.轴承高速旋转时,兜孔间隙大的轴承其保持架振动振幅远大于兜孔间隙小的保持架振动振幅,

所以兜孔间隙取值尤为重要。

c.要注意尽量减小径向游隙。

d.尽量提高保持架的制造精度,改善保持架表面质量,有利于减小滚动体与保持架发生碰撞或摩

擦产生的噪声。

e.积极采用先进的清洗技术,对零配件和合套后的产品进行有效彻底的清洗,提高轴承的洁净度。

5.滚动体通过振动

当轴承在径向载荷作用下运转,其内部只有若干个滚动体承受载荷,由于与套圈的弹性接触构成的“弹簧”支承使滚动体在通过径向载荷作用线产生了周期性振动,而转轴中心因此会上下垂直移动或做水平方向移动,同时引发噪声。这类振动称之为滚动体通过振动,尤其是在低速运转时表现更为明显。而其振幅则与轴承类型、径向载荷、径向游隙及滚动体数目有关。通常该振幅较小,若振幅大时才形成危害,为此常采用减小径向游隙或施加适当的预载荷来降低。

6.工作温度对轴承寿命的影响

轴承在工作中,其尺寸会因材料结构的改变而变化。这种转变受到温度、时间及应力的影响。为了避免在工作中因材料的结构改变而发生不允许的尺寸变化,轴承材料必须经过特殊的热处理。根据不同的轴承类型,标准的轴承是以淬透和感应淬火热处理的钢材制成,建议的最高工作温度在120至200度之间。可以达到的最高工作温度与热处理的工艺过程有直接的关系。如果某应用的正常工作温度高出建议的最高温度,应选用稳定级数较高的轴承。如果轴承需要连续在高温下工作,轴承的动负载能力可能需要作出调整。

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

轴承异响的种声音原因

轴承发响的30种原因 正常运转的轴承声音 1、轴承若处于良好的连转状态会发出低低的呜呜或嗡嗡声音。若是发出尖锐的嘶嘶音,吱吱音及其它不规则的声音,经常表示轴承处于不良的连转状况。尖锐的吱吱噪音可能是由于不适当的润滑所造成的。不适当的轴承间隙也会造成金属声。 2、轴承外圈轨道上的凹痕会引起振动,并造成平顺清脆的声音。 3、若是有间歇性的噪音,则表示滚动件可能受损。此声音是发生在当受损表面被辗压过时,轴承内若有污染物常会引起嘶嘶音。严重的轴承损坏会产生不规则并且巨大的噪音。 4、若是由于安装时所造成的敲击伤痕也会产生噪音,此噪音会随着轴承转速的高低而不同。异常轴承响声 大的金属噪音 原因1:异常负荷,对策:修正配合,研究轴承游隙,调整与负荷,修正外壳挡肩位置。 原因2:安装不良,对策:轴、外壳的加工精度,改善安装精度、安装方法。 原因3:润滑剂不足或不适合,对策:补充润滑剂,选择适当的润滑剂。 原因4:旋转零件有接触,对策:修改曲路密封的接触部分。

规则噪声 原因1:由于异物造成滚动面产生压痕、锈蚀或伤痕,对策:更换轴承,清洗有关零件,改善密封装置,使用干净的润滑剂。 原因2:(钢渗碳后)表面变形,对策:更换轴承,注意其使用。 原因3:滚道面剥离,对策:更换轴承。 不规则噪声 原因1:游隙过大,对策:研究配合及轴承游隙,修改预负荷量。 原因2:异物侵入,对策:研究更换轴承,清洗有关零件,改善密封装置,使用干净润滑剂。 原因3:球面伤、剥离,对策:更换轴承。 轴承发响的30种原因 1.油脂有杂质; 2. 润滑不足(油位太低,保存不当导致油或脂通过密封漏损); 3. 轴承的游隙太小或太大(生产厂问题); 4. 轴承中混入砂粒或碳粒等杂质,起到研磨剂作用; 5. 轴承中混入水份,酸类或油漆等污物,起到腐蚀作用; 6. 轴承被座孔夹扁(座孔的圆度不好,或座孔扭曲不直); 7. 轴承座的底面的垫铁不平(导致座孔变形甚至轴承座出现裂纹); 8. 轴承座孔内有杂物(残留有切屑,尘粒等); 9. 密封圈偏心(碰到相邻零件并发生摩擦); 10.轴承受到额外载荷(轴承受到轴向蹩紧,或一根轴上有两只固定端轴承); 11.轴承与轴的配合太松(轴的直径偏小或紧定套未旋紧); 12.轴承的游隙太小,旋转时过紧(紧定套旋紧得过头了); 13.轴承有噪声(滚子的端面或钢球打滑造成); 14.轴的热伸长过大(轴承受到静不定轴向附加负荷); 15.轴肩太大(碰到轴承的密封件并发生摩擦);

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷等其它 原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

振动筛专用轴承与普通轴承优缺点分析

振动筛专用轴承与普通轴承优缺点分析振动筛轴承多用于矿山振动机械设备、振动筛机械、振动电机上,是此类设备的最关键部件之一。该轴承工况条件非常恶劣,不仅环境湿度大,粉尘颗粒多,转速高,温度高,而且有强烈振动冲击,导致工作负荷非常大。该轴承具备承载能力强,耐冲击性能好,可靠性高,润滑性能好,同时能克服轴的绕曲变形。振动筛厂家高服筛分机械有限公司长年致力于振动筛的试制与晋级,对振动筛各个部件都有深入研究,现在就来给大家分析下振动筛设备专用轴承与普通轴承的区别: 1、设计结构: 振动专用轴承: A、滚动体直径加大,滚动体长度加大。 B、保持架由外圈挡边引导滚子,减少对滚子的作用力。 C、采用内圈挡边引导滚子,改善滚子运转。 D、圆柱滚子轴承保持架采用整体式结构,强度大大提高。 E、调心轴承外径设计有油槽油孔,润滑效果好。 普通轴承: A、滚子体直径和滚动体长度均小,FAG轴承 B、保持架有滚子或内圈引导。

C、圆柱滚子轴承保持架采用铆钉结构,容易松动、掉盖。 D、调心轴承外径无油槽油孔,润滑效果差。 2、选用材料 振动专用轴承: A、内外圈及滚动体采用真空脱气轴承钢,耐疲劳性能好。 B、保持架采用铝铁锰青铜材料,强度高,弹性好,耐磨性能更好。 普通轴承: A、内外圈及滚动体采用普通轴承钢。 B、保持架采用锌黄铜材质,强度低,弹性差。 3、热处理方式 振动筛专用轴承: A、内外圈采用贝-马混合淬火或马氏淬火+高温回火,硬度均匀,内应力小;韧性好,抗冲击和振动。 B、在150C温度以内工作时,稳定性好。 普通轴承: 内外圈采用普通淬火方式,韧性差,FAG振动筛轴承抗冲击和振动性能差轴承抗冲击和振动性能差,热稳定性不好。

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

轴承几种噪音分析解决

1.滚道声 滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点: a.噪声、振动具有随机性; b.振动频率在1kHz以上; c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高; d.当径向游隙增大时,声压级急剧增加; e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大; f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。滚道声产生源在于受到载荷后的套圈固有振动所致。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。 2.落体滚动声 该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点: a.脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生。 b.冬季常常发生。 c.对于只作用径向载荷且径向游隙较大时也易产生。 d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。 e.可能是连续声亦可能是断续声。

圆柱滚子轴承异常振动噪声的消除措施(精)

圆柱滚子轴承异常振动噪声的消除措施方法圆柱滚子轴承主要应用于大中型电动机、机车车辆、机床主轴、内燃机、发电机、减速箱以及起重运输机械等,应用十分广泛。圆柱滚子轴承异常振动噪声的消除措施主要有以下几个方面: 1、严格控制进厂轴承的质量和防止轴承锈蚀,轴承在进厂之前,要进行相应的检验,除进行外观尺寸的检查外,还要对轴承用一起进行振动检测,检测方法是采用冲击脉冲法进行诊断,其原理是当两个不平的表面撞击时,就会产生冲击波,即冲击脉冲,这个脉冲的强弱直接反映了撞击的猛烈程度。根据这个原理,如果通过检测轴承内滚珠或滚柱与滚道的撞击程度,也就可以了解轴承的工作状态,七类轴承,低的冲击脉冲值客观的反映了轴承的良好的工作状态,而当测得较高的冲击脉冲值时,说明轴承处于不良好的工作状况。一般的用户对于轴承的保存期不太注意,实际上,普通的轴承涂的防锈油有效期只有一年,如果超过期限,不进行重新防锈处理,就有可能会生锈,如果轴承滚珠或滚柱以及滚道锈蚀,一定会引起异常振动噪声,因此,对轴承的保存管理一定要注意轴承的出品期和防锈有效期,做到定期检查。 2、严格控制清洁度,电机航扼要有许多企业不重视清洁,大多数企业没有专门的清洗设备,靠手工吹、扫或随意的进行清洗,导致电机在一个不干净的条件下装配,即影响电动机的内表观质量,又使轴承产生异常。为而来进行控制清洁度,在电动机装配时,要对装配的零部件进行清洗,清洗干净才能进行装配。 3、严格控制轴承室以及轴承台内外径公差,经过数据表明,多数的轴承外圈均为减差,为降低轴承的异常振动噪声,轴承室内径的公差设计值一般取J6或JS6为宜,这样可以保证轴承与轴承室为过渡配合,并保证轴承室公差尽量取中间公差。 4、改进轴承的装配工艺,安装轴承时,可以根据轴承类型和尺寸选择机械、加热或液压等方法进行。但在人恶化情况下,都不可以直接敲击轴承圈、保持架、滚动轴或密封件。要保证轴承的正常使用,不易变形等事故发生。(众悦精密轴承整理提供)

轴承的轴向定位及几种定位方法

轴承的轴向定位及几种定位方法?? 2011-12-16 10:38:21|??分类:SKF轴承相关知识|??标签:轴承??轴承定位?? | 仅仅靠过盈配合来对轴承圈进行轴向定位是不够的。通常,需要采用一些合适的方法来对轴承圈进行轴向定位。定位轴承的内外圈应该在两侧都进行轴向固定。对于不可分离结构的非定位轴承,例如角接触球轴承,一个轴承圈采用较紧的配合(通常是内圈),需要轴向固定;另一个轴承圈则相对其安装面可以自由地轴向移动。对于可分离结构的非定位轴承,例如圆柱滚子轴承,内外圈都需要轴向固定。 在机床应用中,工作端轴承通常从轴到轴承座传递轴向负荷来定位主轴。因此,通常工作端轴承轴向定位,而驱动端轴承则可轴向自由移动。 定位方法 锁紧螺母定位法 采用过盈配合的轴承内圈安装时,通常使内圈一侧靠着轴上的挡肩,另一侧则一般用一个锁紧螺母(KMT或KMTA系列)固定(见图9)。 带锥形孔的轴承直接安装在锥形轴颈上,通常用锁紧螺母固定在轴上。 隔套定位法 在轴承圈之间或轴承圈与邻近零件之间的采用隔套或隔圈,代替整体轴肩或轴承座肩是很便利的(图10)。在这些情况下,尺寸和形状公差也适用于相关零件。 阶梯轴套定位 另一种轴承轴向定位的方法是采用阶梯轴套(图11)。这些轴套特别适合精密轴承配置,与带螺纹的锁紧螺母相比,其跳动更小且提供更高的精度。阶梯轴套通常用于超高速度主轴,对于这种主轴,传统的锁紧装置无法向其提供足够的精度。 固定端盖定位法 采用过盈配合的轴承外圈安装时,通常使外圈的一侧靠着轴承座上的挡肩,另一侧则用一个固定端盖固定。 固定端盖和其固定螺钉在一些情况下对轴承形状和性能产生负面影响。如果轴承座和螺钉孔间的壁厚太小,或者螺钉紧固太紧,外圈滚道可能会变形。最轻的ISO尺寸系列19系列比10系列或更重系列更容易受到此类损伤的影响。 采用大量小直径的螺钉是有利的。应避免仅仅用3或4个螺钉,由于紧固点少,可能会在轴承座孔中形成凸起。这将产生易变的摩擦力矩、噪声和不稳定的预负荷(使用角接触球轴承时)。对于设计复杂、空间有限、仅可采用薄壁轴承和有限的螺钉数量的主轴。在这些例子中,建议通过FEM(有限元法)分析对变形进行精确检查。 另外,轴承座端面和端盖法兰间的轴向间隙也应该检查。指导值为10-15μm/100mm 轴承座孔径(图12)。 滚动轴承的轴向定位和固定 发布时间:2010-07-08T15:04:00 来源:亚洲泵网浏览:1950 编辑: 小唐

轴承噪声的产生原因和控制办法

轴承噪声的产生原因和控制办法 轴承的振动噪声,是考核轴承综合质量的主要指标之一。轴承噪声不仅直接影响主机的性能,而且过大的噪声还会对操作者造成噪声疲劳。随着我国机械工业的高速发展,提供低噪声的轴承,是轴承行业的一项重要任务,也是我公司的努力方向。1.产生原因: 噪声来源主要有以下几种。一种是轴承的结构形式、套圈壁厚、原始游隙、保持架形状、滚动体数量等固有因素所引起。另一种是因轴承零件制造时所产生的种种缺陷(如套圈和滚动体波纹、内圈滚道宽度不一致、保持架底高变动量超差、成品清洁度不好、滚道磕碰伤、中外径斜面磕碰以及残磁超标等)。 2.应对措施: (1)对设计方案进一步研究,力求设计更合理。 (2)加强对车加工产品质量的控制,特别是对小挡边宽度的控制,确保滚道宽度的一致性。从现在起,车加工产品的滚道宽度作为一个必检项目,从严进行控制,确保滚道宽度符合产品图的要求。 (3)加强对保持架质量的控制,对没有光饰的保持架或虽光饰但毛刺很大的保持架,坚决拒收。对保持架底高变动量超标的保持架也坚决拒收。 (4)加强工序间产品质量的控制,杜绝滚道磕碰伤,最大限度

地降低滚动面(内外圈滚道和滚子表面)的振纹,降低波纹度。 (5)加强工艺研究,提高产品的加工工艺水平,特别是内圈壁厚差的控制要符合要求。 (6)加强对设备的维护和保养,确保关键设备的加工能力和质量,确保关键设备的能力保障系数Cpk≥1.33。 (7)提高操作工的技能,提高他们调整机床的操作技能,使产品的加工精度有一个质的飞跃。 (8)配备应有的工位器具,减少运输过程中的磕碰伤,尽量减少产品返工,减少装卸次数。加强转运过程中的管理,做到轻拿轻放,杜绝人为磕碰。 (9)提高成品的清洁度,首先从提高零件清洁度开始,清洗剂和清洗煤油要按规定定期更换。 各单位要加强管理,树立“质量第一”思想。头脑中始终牢记质量是企业的生存之本,立足之根,发展之源。质量就是效益,没有质量,企业就没有效益,质量是企业追求的永恒主题,时刻抓牢质量这根弦。各单位主管是质量的第一责任人,质量的好坏,主要取决于部门主管的思想认识。部门主管重视,产品质量就好;部门主管不重视,或者重视不够,产品质量就不可能好。我们一定要花大力气,积极引导全体员工,切实把提高产品质量放在事关企业生存和发展的战略高度上来,确保产品质量的稳定合格。

轴承结构对振动与噪音的影响

轴承结构对振动与噪音的影响 1.滚道声 滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。 滚道声产生源在于受到载荷后的套圈固有振动所致。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。 2.落体滚动声 该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生。b.冬季常常发生。c.对于只作用径向载荷且径向游隙较大时也易产生。d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。e.可能是连续声亦可能是断续声。f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

滚动轴承故障诊断的频谱分析

滚动轴承故障诊断的频谱分析 滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。 滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。可以认为此时轴承出现了初期故障。这时就要对轴承进行严密监测,密切注意其变化。此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。 1、滚动轴承故障诊断方式 振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。 2、滚动轴承正常运行特点与诊断技巧 滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。运行一段时间后,振动幅值和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱(图2),轴承状态非常稳定,进入稳定工作期。继续运行一段时

轴承转动噪音

异常声形成原因及目前主要鉴别方法 滚动轴承运转过程中出现的异常声,种类繁多,形成机理比较复杂,产生的因素是多方面的,而且各种异常声常常叠加在一起,难于分辨,其主要原因有如下几种: (1)轴承内、外滚道存在磕碰伤,划伤或严重缺陷引起的周期性振动脉冲。 (2)滚动体表面磕碰伤,划伤等缺陷引起的非周期性振动脉冲。 (3)由于剩磁吸附铁粉末存在于滚道或滚动体上而引起的周期性或非周期性的振动脉冲。 (4)杂质或尘埃进入轴承滚道运行区域引起的非周期性振动的脉冲。 (5)滚动体与保持架兜孔之间的剧烈碰撞引起的非周期性振动脉冲。 (6)润滑剂性能不良,滚动体与保持架兜孔之间的滑动摩擦以及滚动体运转时碾压润滑剂产生的振动脉冲。 影响轴承振动的因素是很复杂的。套圈沟道波纹度、粗糙度、表面质量、滚动体尺寸相互差、轴承本身的结构类型、组装游隙、工作条件等都会影响轴承的振动。 安装轴承的轴承孔必须严格要求圆度与表面粗糙度,否则轴承在孔内会发生不规律的运动从而引起装在轴承上的轴的运动轨迹,产生较大的跳动,所以圆度要求严格 关于表面粗糙度是由于轴承在制造的时候,是具有很高的精度,轴承孔的表面粗糙度大的话 会磨损轴承,也会影响到加工精度 轴承的清洁度对发热的重要关系: 在通俗状况下, SUNTHAI轴承润滑脂填充量,老是超越了直接介入润滑的实践需求量,饱持架上和轧机轴承护盖的空腔之中,并在滚动体外围构成一个轮廓。在此过程中,因为多余润滑脂的阻力,轴承温度很快上升。虽然大部分多余的润滑脂在运转初期即被挤出,而且挤在滚道附件的润滑脂也仍有可能被迁移转变着滚动体带进滚道之间。 这些在轧机轴承运行的初期阶段,大部分润滑脂很快(不到一分钟)就被挤出滚道,而聚积在保润滑脂在跟着轴承迁移转变体轮回的还,陆续少量地被排出。这时nsk轴承温度仍然继续上升,直到多余的润滑脂全被排出为止,可称为润滑脂的走合阶段,依据轧机轴承结构中润滑脂质量、填充量等要素,这段时候可能持续十几分钟,以至几小时。 a、对NSK轴承寿命的影响: NSK轴承的清洁度对轴承寿命的影响相当大,轴承公司曾为此进行了专门的试验,结果是其差别达数倍乃至数十倍以上。轴承的清洁度越高,寿命越长等人的试验表明:不同清洁度的润滑油对球轴承寿命影响很大。所以,改善润滑油的清洁度能延长轧机轴承的寿命,此外,若润滑油含污物颗粒控制在10um以下,轴承寿命也成数倍增长。 b、对振动噪声的影响: 对振动的影响:NSK轴承试验结果表明:清洁度严重影响轧机轴承的振动水平,尤其是高频带的振动更为显着。清洁度高的轴承振动速度值低,特别是在高频带。 c、对润滑性能的影响:

轴振动和轴承振动测量的区别

轴承故障是工业机械设备常见的故障之一,轴振动和轴承振动是有很大的区别,测量的方法也是不同。但状态监测至关重要,需要多轴振动和轴承振动做周期性检测,可预知性的了解机器的突发性故障,磨损度和寿命预测,使企业可以提前预知机器可能产生的各种情况,提前作好准备,以达到保证不间断安全生产。 轴振动,即轴相对于轴承座的相对振动,一般用在大机组的在线上。安装时是把传感器(多是位移传感器-电涡流传感器)固定在轴承座上,因此测的是轴相对于轴承座的相对位移,单位多是位移;轴振动是机组振动的源头,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等原因导致振动的发生,所以95%机组振动的状态能够从轴振动反映出;针对轴振动我们可以提供实时阶次跟踪、相位阶次跟踪、轨道分析、动平衡等功能,提取振动信号幅值、时域、频域、时频特征、相位、轴心轨迹,根据特征进行故障判断,下面图形为仪器检测截图。 轴承座振动,即在监测时把传感器配有磁铁吸附在轴承座上(没有安装),测的是轴承座的绝对振动。大多数巡检用的手持式数据采集仪都是如此,多用加速度传感器。常见的问题是支持松动。支承松动引起系统的结构刚度变小,很小的激振力会引起较大的振动。 该故障有如下的特征(1)、相位不稳定(2)振动随转速变化明显(3)基

频及分数谐波振幅大,伴随2f3f等高频振幅(4)松动方向振动大(5)轴承座的振动会明显增大。使用FFT频谱分析功能,测量轴承座与台板、台板与基础之间的接触不良,可以通过测量他们之间振动的差异来判断。观察检测点的频谱值。对于一般的轴承座来说,在同一轴向位置,如下图,测点上下标高差在100mm以内的两个连接部件,在连接紧固的情况下垂直方向的差别振动应小于2μm;滑动面之间正常的差别振动应小于5μm;当两个相邻部件差别振动明显大于这些数据时,即可判断链接刚度不足。差别振动越大,振动故障越严重。 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。更多详情请拨打联系电话或登录杭州锐达数字技术有限公司咨询。

滚动轴承常见故障及诊断

滚动轴承常见故障及诊断 2007/08/04 11:41来源:《工程机械与维修》作者:肖军 滚动轴承的故障类型大致有6种,即:腐蚀、摩擦、过热、烧伤、磨损、疲劳剥落等。其中,磨损和疲劳剥落是最常见的故障形式。故障诊断的方法有:转矩测定法、转速测定法、温度测定法、油分析法、振动法等。其中,振动法适用性强,效果好,测试信号处理简单直观,使用最广泛。 1.故障识别 运转中的检查项目有轴承的滚动声、振动、温度等,主要识别方法如下: (1)噪声识别 这需要有丰富的经验,应尽量由专人进行这项工作。用听音器或听音棒贴在外壳上可清楚地听到轴承的声音,也可采用测声器对运转轴承的滚动声的大小及音质进行检测,分辨出不同的故障。 轴承噪声主要有以下几种: ①固有噪声。这是滚动轴承本身具有的一种噪声,属正常噪声。特点:轴承旋转时发出的一种平稳、连续的声音,声音较小;转速变化时,其主频率不变。 ②装配误差产生的噪声。 ③滚道噪声。轴承在转动时产生随机脉动滚道噪声,是轴承噪声的主要成分。特点:滚道噪声会随着滚道和滚动体加工精度的提高而降低。 ④滚动噪声。滚子轴承容易产生滚动噪声。特点:主要发生在滚动体进入、退出承载区的时刻;润滑剂性能不好或黏度极大时最容易产生;滚子轴承只承受径向力,径向游隙比较大时容易产生。 ⑤保持架噪声。产生原因:滚动体和保持架、保持架与引导面之间的滑动摩擦,以及保持架与滚动体发生相互撞击而发出的噪声。特点:具有周期性;当采用滚动体引导保持架时,这种运动的不稳定性更加严重,深沟球轴承的冲压保持架较薄,径向、轴向的刚度较低,整体稳定性差,轴承高速旋转时,因弯曲变形而产生自激振动,发出“蜂鸣声”。 ⑥夹杂物噪声。大约14%的轴承过早损毁是污染所致,外部杂质进入轴承工作面引起非周期性振动和噪声。特点:随机性强,特别是小型轴承对此很敏感。 ⑦伤痕噪声。据统计,16%的轴承过早损毁是由于安装不当或没有使用适当的安装工具。特点:转速不变,噪声频率不变;转速降低,周期变长。如果使用高黏度油脂,噪声将减弱。原因分析:若其噪声连续不断,则可能是滚道有伤;若其噪声或有或无周期性,则为滚动体受损;若滚动体碎裂,会产生“锉齿声、冲击声”。 ⑧缺油噪声。特点:发出“金属磨损的哨声”,如果负载较重且缺油严重,可能产生“尖叫声”。 (2)振动识别 通常在轴承上安装压电式加速度传感器获取振动信号,然后通过计算机进行信号分析,以判断轴承是否存在故障。滚动轴承磨损后产生的振动同正常轴承产生的振动具有相同的性质,但磨损轴承的振幅明显比正常轴承的高。因此,只要将传感器获得的振动信号加以比较,就可判断出滚动轴承是否存在磨损类故障。如果传感器获得的振动信号出现异常,即波形相隔一段时间就出现峰值极大的尖顶,则可判断滚动轴承出现了疲劳剥落和点蚀等故障。 (3)温度识别 使用热感器可以随时监测轴承的工作温度,并在温度超过规定值时实现自动报警以防止事故发生。该方法属比较识别法,仅用于运转状态变化不大的场合。高温表示轴承已处于异常状态,因此,连续监测轴承温度是有必要的。轴承温度的定期测量可借助于温度计(例如数字型温度计)。 (4)润滑剂状态识别

轴承几种噪声分析

轴承几种噪声分析 1.滚道声 滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点: a.噪声、振动具有随机性; b.振动频率在1kHz以上; c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高; d.当径向游隙增大时,声压级急剧增加; e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大; f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。滚道声产生源在于受到载荷后的套圈固有振动所致。由于套圈和滚动体的弹性接触构成非线性振动系统。 当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。 众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。 2.落体滚动声 该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点: a.脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生。 b.冬季常常发生。 c.对于只作用径向载荷且径向游隙较大时也易产生。 d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。 e.可能是连续声亦可能是断续声。 f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。通过采用预载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型滚动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。 3.尖鸣声 它是金属间滑动摩擦产生相当剧烈的尖叫声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但不悦耳声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为: a.轴承径向游隙大时易产生。 b.通常出现在脂润滑中,油润滑则较罕见。 c.随着轴承尺寸增大而减小,且常在某转速范围内出现。 d.冬季时常出现。 e.它的出现是无规则的,和不可预知的,并且与填脂量及性能、安装运转条件有关。这种噪声可 采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。 4.保持架声 在轴承旋转过程中保持架的自由振动以及它与滚动体或套圈相撞击就会发出此噪声。它在各类轴承中都可能出现,但其声压级不太高而且是低频率的。其特点是: a.冲压保持架及塑料保持架均可产生。 b.不论是稀油还是脂润滑均会出现。

润滑脂对低噪音轴承振动的规律

润滑脂对低噪音轴承振动的规律 润滑脂的胶体和流体变性与轴承振动噪音有关密切的影响,其表现如下: (一)润滑脂稠化剂类型对轴承振动噪音的影响 虽然稠化剂只占整个润滑脂的10%左右,但它对润滑脂性能的影响是决定性的,相应的对轴承振动噪音也有着重要的影响。在现有的低噪音轴承润滑脂品种中几乎98%为锂基润滑脂、复合锂基润滑脂和聚脲润滑脂。 锂基润滑脂纤维长短可控,可以通过不同的工艺做成变化范围很宽的胶体性能,可以加工成符合设备应用的流变特性。在密封轴承的振动性能方面,锂基润滑脂的启动值较低,能在极短的时间内达到稳定值,经过特殊加工后锂基润滑脂的启动静音性和运转静音性能达到最好。 复合锂基润滑脂的优点为具有比锂基润滑脂优良的高温性能。由于在复合锂基润滑脂中加入了低分子的有机酸,增强了其稠化剂晶体的硬度,从而提高了它在受高温时的抗软化能力。该特点也同时造成该类润滑脂的纤维对基础油的束缚能力增强,其静态胶体分油较低,相应的动态分子相互运动时内摩擦力加大,相同剪速下的表现观黏度升高。这些特点会在低噪音密封轴承的润滑过程中使贫油润滑加剧,使轴承噪音性能表现欠佳。 聚脲润滑脂有使用温度高,寿命长,流动性好等优点。最初的聚脲润滑脂噪音性能较差,大多使用在钢铁企业的高温轴承中,通过控制了该类润滑脂中的稠化剂纤维的成长,使其与基础油的相容性和纤维结构得到细化,使该类润滑脂的胶体性能和流变性能很好的满足了中小轴承在振动噪音方面的要求,特别是在稳定运转中和锂基润滑脂的噪音性能相当。 (二)润滑脂基础油黏度对轴承振动噪音的影响 润滑脂中基础油的比例一般在90%左右,其性能的改变会决定润滑脂流变性和胶体的安定性能。在微小滚动轴承中(608和6201),润滑脂的基础油黏度对轴承振动值的影响是决定性的,特别是在轴承稳定运转以后表现的更加明显。 基础油黏度通过润滑脂离心分油和表现黏度形成对振动噪音的影响。过高的基础油黏度分抑制润滑脂的动态分油量和相对提高润滑脂的黏度,这样的直接后果会使润滑接触区的供油不足和润滑脂整体的迁移流动困难,造成润滑不畅。所以保持其润滑油膜稳定的润滑剂流量需求也相对较低,具有一般分油能力和流动性的润滑脂就可满足要求。 (三)润滑脂动态分油性能对轴承振动噪音的影响 润滑脂的动态离心分油对微小型轴承(608、6201)振动性能的影响和流变性相比要突出得多。在中小型滚动轴承中(6204和6308),具有一定分油能力可以在轴承振动测试中使指针快速地进入稳定期,离心分油能力较差的润滑脂在轴承测试时启动分贝值很高,长时间运转后随着轴承温度的升高,分油能力得到改善,振动分贝值降低。在润滑脂的弹流润滑中饥饿润滑是一个普遍现象,润滑脂在运转情况下良好的分油能力可以减缓饥饿润滑程度,增厚接触区的油膜厚度,从而使其对轴承结构振动的阻尼能力增强。 (四)润滑的表观黏度对轴承振动噪音的影响 润滑脂流变性能一般由润滑脂的稠化剂类型和润滑脂基础油黏度来决定,它和润滑脂的动态分没性能在某些产品中达到统一。表观黏度小的润滑脂在小型轴承振动中呆以在一定程度上降低润滑剂进入接触区的困难,保证连续稳定的油膜厚度。表观黏度大的润滑脂往往会造成轴承在测试中指针的漂动和异常的叽哩声,该现象是接触区润滑油膜不断破裂和不稳

电机振动噪音的原因及解决措施

电机振动噪音的原因及 解决措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机振动噪音的原因及解决措施电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。 ·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。

相关主题
文本预览
相关文档 最新文档