当前位置:文档之家› 材料科学基础重要概念

材料科学基础重要概念

材料科学基础重要概念
材料科学基础重要概念

材料科学基础试卷(带答案)

材料科学基础试卷(一) 一、概念辨析题(说明下列各组概念的异同。任选六题,每小题3分,共18分) 1 晶体结构与空间点阵 2 热加工与冷加工 3 上坡扩散与下坡扩散 4 间隙固溶体与间隙化合物 5 相与组织 6 交滑移与多滑移 7 金属键与共价键 8 全位错与不全位错 9 共晶转变与共析转变 二、画图题(任选两题。每题6分,共12分) 1 在一个简单立方晶胞内画出[010]、[120]、[210]晶向和(110)、(112)晶面。 2 画出成分过冷形成原理示意图(至少画出三个图)。 3 综合画出冷变形金属在加热时的组织变化示意图和晶粒大小、内应力、强度和塑性变化趋势图。 4 以“固溶体中溶质原子的作用”为主线,用框图法建立与其相关的各章内容之间的联系。 三、简答题(任选6题,回答要点。每题5分,共30 分) 1 在点阵中选取晶胞的原则有哪些? 2 简述柏氏矢量的物理意义与应用。 3 二元相图中有哪些几何规律? 4 如何根据三元相图中的垂直截面图和液相单变量线判断四相反应类型? 5 材料结晶的必要条件有哪些? 6 细化材料铸态晶粒的措施有哪些? 7 简述共晶系合金的不平衡冷却组织及其形成条件。 8 晶体中的滑移系与其塑性有何关系? 9 马氏体高强度高硬度的主要原因是什么? 10 哪一种晶体缺陷是热力学平衡的缺陷,为什么? 四、分析题(任选1题。10分) 1 计算含碳量w=0.04的铁碳合金按亚稳态冷却到室温后,组织中的珠光体、二次渗碳体和莱氏体的相对含量。 2 由扩散第二定律推导出第一定律,并说明它们各自的适用条件。 3 试分析液固转变、固态相变、扩散、回复、再结晶、晶粒长大的驱动力及可能对应的工艺条件。 五、某面心立方晶体的可动滑移系为(111) [110].(15分) (1) 指出引起滑移的单位位错的柏氏矢量. (2) 如果滑移由纯刃型位错引起,试指出位错线的方向. (3) 如果滑移由纯螺型位错引起,试指出位错线的方向. (4) 在(2),(3)两种情况下,位错线的滑移方向如何? (5) 如果在该滑移系上作用一大小为0.7MPa的切应力,试确定单位刃型位错和螺型位错 线受力的大小和方向。(点阵常数a=0.2nm)。 六、论述题(任选1题,15分) 1 试论材料强化的主要方法、原理及工艺实现途径。 2 试论固态相变的主要特点。 3 试论塑性变形对材料组织和性能的影响。

材料科学基础名词解释

第二章 1.定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 定性:对称轴、对称中心、晶系、点阵、晶胞定量:晶胞参数,晶向指数 1.依据结合力的本质不同,晶体的键合作用分为哪几类?其特点是什么? 共价键、离子键、金属键、范德华键、氢键。 离子键:没有方向性和饱和性,结合力很大。 共价键:具有方向性和饱和性,结合力也很大,一般大于离子键。 金属键:没有方向性和饱和性的共价键,结合力是原子实和电子云之间的库仑力。 范德华键:是通过分子力而产生的键合,结合力很弱 氢键:是指氢原子与半径较小,电负性很大的原子相结合所形成的键。 2.等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 六方最密堆积、面心立方紧密堆积,8个四面体空隙,6个八面体空隙 3.n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?2n个四面体空隙,n个八面体空隙。 不等径球堆积时,较大球体作等径球的紧密堆积,较小的球填充在大球紧密堆积形成的空隙中。其中稍小的球体填充在四面体空隙,稍大的则填充在八面体空隙,如果更大,则会使堆积方式稍加改变,以产生较大的空隙满足填充的要求。 4.解释下列概念 晶体:是内部质点在三维空间有周期性和对称性排列的固体。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。(六三四立方,单三斜正交) 晶包:是从晶体取出反映其周期性和对称性的结构的最小重复单元。 晶胞参数:晶胞的形状和大小可以用6个参数来表示,此即晶胞参数,它们是三条棱边的长度a,b,c和三条棱边的夹角a,B,r. 空间点阵:空间点阵是一种表示晶体内部质点排列规律的几何图形。 米勒指数:是晶体的常数之一,是晶面在3个结晶轴上的截距系数的倒数比,当化为最简单的整数比后,所得出的3个整数称为该晶面的米勒指数。 离子晶体的晶格能:晶格能又叫点阵能。它是在OK时1mol离子化合物中的正、负离子从相互分离的气态结合成离子晶体时所放出的能量。 配位数:配位数是中心离子的重要特征。直接同中心离子(或原子)配位的原子数目叫中心离子(或原子)的配位数。 离子极化:离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。离子极化能对金属化合物性质产生影响。主要表现为离子间距离缩短,离子配位数降低,同时变形电子云相互重合,使键性由离子键向共价键过渡,最终使晶体结构类型发生变化。 同质多晶和类质同晶:同质多晶是一种物质在不同热力学条件下形成两种或两种以上不同结构的现象,由此所产生的每一种化学组成相同但结构不同的晶体,称为变体。类质同晶:化学组成相似的物质,在相同的热力学条件下,形成的晶体具有相同的结构,这种结构称为类质同晶现象。 正尖晶石与反正尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,则称为正尖晶石。反之,如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙,则称为反尖晶石。 铁电效应:有自发极化且在外电场作用下具有电滞回线的晶体。

材料科学基础基本概念

晶体缺陷 单晶体:是指在整个晶体内部原子都按照周期性的规则排列。 多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成 点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes等。 线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。主要为位错dislocations。 面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。 晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies 肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。 晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。 热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。 过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。 位错:当晶格中一部分晶体相对于另一部分晶体发生局部滑移时,滑移面上滑移区与未滑移区的交界线称作位错 刃型位错:当一个完整晶体某晶面以上的某处多出半个原子面,该晶面象刀刃一样切入晶体,这个多余原子面的边缘就是刃型位错。 刃型位错线可以理解为已滑移区和未滑移区的分界线,它不一定是直线 螺型位错:位错附近的原子是按螺旋形排列的。螺型位错的位错线与滑移矢量平行,因此一定是直线 混合位错:一种更为普遍的位错形式,其滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度。可看作是刃型位错和螺型位错的混合形式。 柏氏矢量b: 用于表征不同类型位错的特征的一个物理参量,是决定晶格偏离方向与大小的向量,可揭示位错的本质。 位错的滑移(守恒运动):在外加切应力作用下,位错中心附近的原子沿柏氏矢量b方向在滑移面上不断作少量位移(小于一个原子间距)而逐步实现。 交滑移:由于螺型位错可有多个滑移面,螺型位错在原滑移面上运动受阻时,可转移到与之相交的另一个滑移面上继续滑移。如果交滑移后的位错再转回到和原滑移面平行的滑移面上继续运动,则称为双交滑移。 位错滑移的特点 1) 刃型位错滑移的切应力方向与位错线垂直,而螺型位错滑移的切应力方向与位错线平行; 2) 无论刃型位错还是螺型位错,位错的运动方向总是与位错线垂直的;(伯氏矢量方向代表

最新材料科学基础最全名词解释

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。 液相烧结:有液相参加的烧结过程。 2.金属键:自由电子与原子核之间静电作用产生的键合力。 3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。 共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。 弗兰克缺陷:间隙空位对缺陷 肖脱基缺陷:正负离子空位对的 奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。 布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。这个临界温度称为玻璃化温度Tg。 表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。 半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。 柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。 柏氏矢量物理意义: ①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。

材料科学基础考题1

材料科学基础考题 Ⅰ卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷 二、选择题(每题2分,共20分) 1.在体心立方结构中,柏氏矢量为a[110]的位错( )分解为a/2[111]+a/2]111[. (A) 不能(B) 能(C) 可能 2.原子扩散的驱动力是:( ) (A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度 3.凝固的热力学条件为:() (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4.在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现() (A) 氧离子空位(B) 钛离子空位(C)阳离子空位 5.在三元系浓度三角形中,凡成分位于()上的合金,它们含有另两个顶角所代表的两组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6.有效分配系数k e 表示液相的混合程度,其值范围是() (A)1

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

材料科学基础专有名词英文翻译

Fundamentals of Materials Science 材料科学基础名词与术语 第一章绪论 metal: 金属 ceramic: 陶瓷polymer: 聚合物Composites: 复合材料Semiconductors: 半导体Biomaterials: 生物材料 Processing: 加工过程 Structure: 组织结构 Properties: 性质 Performance: 使用性能 Mechanical properties: 力学性能 Electrical properties: 电性能 Thermal behavior: 热性能 Magnetic properties: 磁性能 Optical properties: 光性能 Deteriorative characteristics: 老 化特性 第二章原子结构与原子键 Atomic mass unit (amu): 原子质量单位 Atomic number: 原子数 Atomic weight: 原子量 Bohr atomic model: 波尔原子模型Bonding energy: 键能 Coulombic force: 库仑力 Covalent bond: 共价键 Dipole (electric): 偶极子electronic configuration: 电子构型electron state: 电位 Electronegative: 负电的 Electropositive: 正电的 Ground state: 基态 Hydrogen bond: 氢键 Ionic bond: 离子键 Isotope: 同位素 Metallic bond: 金属键 Mole: 摩尔 Molecule: 分子 Pauli exclusion principle: 泡利不相 容原理 Periodic table: 元素周期表 Polar molecule: 极性分子 Primary bonding: 强键 Quantum mechanics: 量子力学 Quantum number: 量子数 Secondary bonding: 弱键 valence electron: 价电子 van der waals bond: 范德华键 Wave-mechanical model: 波粒二象 性模型 第三章金属与陶瓷的结构 Allotropy: 同素异形现象 Amorphous: 无定形 Anion: 阴离子 Anisotropy: 各向异性 atomic packing factor(APF): 原子堆积因数body-centered cubic (BCC): 体心立方结构Bragg’s law: 布拉格定律 Cation: 阳离子 coordination number: 配位数 crystal structure: 晶体结构 crystal system: 晶系 crystalline: 晶体的 diffraction: 衍射 face-centered cubic (FCC): 面心立方结构第五章晶体缺陷 Alloy: 合金 A metallic substance that is composed of two or more elements. 由两种及以上元素组成的金属材料。 Weight percent (wt%):质量百分数 Concentration specification on the basis of weight (or mass) of a particular element relative to the total alloy weight (or mass). Stoichiometry: 正常价化合物 For ionic compounds, the state of having exactly the ratio of cations to anions speci-fied by the chemical formula. 在离子化合物中,正、负离子的比例严格遵守化学公式定义的化合价关系。 Imperfection: 缺陷,不完整性 A deviation from perfection; normally applied to crystalline materials wherein there is a deviation from atomic/molecular order and/or continuity. 对完美性的偏离,在材料科学领域中通常指晶体材料中原子/分子在排列顺序/连续性上的偏离。 Point defect: 点缺陷 A crystalline defect associated with one or, at most, several atomic sites. 一种仅波及一个或数个原子的晶体缺陷。 Vacancy: 空位 A normally occupied lattice site from which an atom or ion is missing. 一个缺失原子或离子的晶格节点位置。 Vacancy diffusion: 空位扩散

(完整版)材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

蒸馏的原理及操作和注意事项

蒸馏的原理及操作和注意事项 蒸馏是提纯液体物质和分离混合物的一种常用的方法。通过蒸馏还可以测出化合物的沸点,所以它对鉴定纯粹的液体有机化合物也具有一定的意义。 一、蒸馏原理 液体的分子由于分子运动有从表面逸出的倾向,这种倾向随着温度的升高而增大,即液体在一定温度下具有一定的蒸气压,当其温度达到沸点时,也即液体的蒸气压等于外压时(达到饱和蒸气压),就有大量气泡从液体内部逸出,即液体沸腾。一种物质在不同温度下的饱和蒸气压变化是蒸馏分离的基础。将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。 很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。(液体混合物各组分的沸点必须相差很大,至少30o C以上才能达到较好的分离效果)。 纯粹的液体有机化合物在一定压力下具有一定的沸点。但由于有机化合物常和其它组分形成二元或三元共沸混合物(或恒沸混合物),他们也有一定的沸点(高于或低于其中的每一组分)。因此具有固定沸点的液体不一定都是纯粹的化合物。一般不纯物质的沸点取决于杂质的物理性质以及它和纯物质间的相互作用:假如杂质是不挥发的,溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并

不是溶液的沸点,而是逸出蒸气与其冷凝液平衡时的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点);若杂质是挥发性的,则蒸馏时液体的沸点会逐渐上升;或者由于组成了共沸混合物,在蒸馏过程中温度可保持不变,停留在某一范围内。 二、蒸馏操作 1. 蒸馏装置及安装 最简单的蒸馏装置,如图28所示。常压蒸馏装置主要由蒸馏烧瓶、蒸馏头、温度计套管、温度计、冷凝管、接液管和接受瓶等组成。蒸馏液体沸点在140o C以下时,用直形冷凝管;蒸馏液体沸点在140o C 以上时,由于用水冷凝管温差大,冷凝管容易爆裂,故应改用空气冷凝管——高沸点化合物用空气冷凝管已可达到冷却目的。蒸馏易吸潮的液体时,在接液管的支管处应连一干燥管;蒸馏易燃的液体时,在接液管的支管处接一胶管通入水槽,并将接受瓶在冰水浴中冷却。 安装仪器的顺序一般是自下而上,从左到右,全套仪器装置的轴线要在同一平面内,稳妥、端正。 安装步骤:先从热源开始,在铁架台上放好煤气灯,再根据煤气灯的高低依次安装铁圈、石棉网(或水浴、油浴等),然后安装蒸馏瓶(即烧瓶)、蒸馏头、温度计。注意瓶底应距石棉网1-2mm,不要触及石棉网;用水浴或油浴时,瓶底应距水浴(或油浴)锅底1-2cm。蒸馏瓶用铁夹垂直夹好。安装冷凝管时,用合适的橡皮管连接冷凝管,调整它的位置使与已装好的蒸馏瓶高度相适应并与蒸馏头的侧管同

材料科学基础重要概念

晶体,非晶体;晶体结构,空间点阵,晶胞,7 个晶系,14 种布拉菲点阵; 晶向指数,晶面指数,晶向族,晶面族,晶带轴,晶面间距;多晶型性,同素异构体; 点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙; 合金,相,固溶体,中间相,短程有序参数a ,长程有序参数S ; 置换固溶体,间隙固溶体,有限固溶体,无限固溶体,无序固溶体,有序固溶体; 正常价化合物,电子化合物,电子浓度,间隙相,间隙化合物,拓扑密堆相; 离子晶体,NaCl 型结构,闪锌矿型结构,纤锌矿型结构 共价晶体,金刚石结构; 玻璃,玻璃化转变温度 点缺陷,线缺陷,面缺陷; 空位,间隙原子,肖脱基空位,弗兰克尔空位; 点缺陷的平衡浓度; 刃型位错,螺型位错,混合位错,全位错,不全位错; 柏氏回路,柏氏矢量,柏氏矢量的物理意义(3种),柏氏矢量的守恒性; 位错的滑移,位错的交滑移,位错的攀移,位错的交割,割阶,扭折; 位错的应力场(滑移面上),位错的应变能,线张力,滑移力,攀移力; 位错密度,位错增殖,弗兰克—瑞德位错源,L-C位错,位错塞积; 堆垛层错,肖克莱不全位错,弗兰克不全位错; 位错反应,几何条件,能量条件; 可动位错,固定位错,汤普森四面体; 扩展位错,层错能,扩展位错束集,扩展位错交滑移; Cottrell气团, Snock 气团 晶界,亚晶界,小角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界; 大角度晶界,“重合位置点阵”模型; 晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界。 质量浓度,密度,扩散,自扩散,互扩散,间隙扩散,空位扩散,下坡扩散,上坡扩散,稳态扩散,非稳态扩散,扩散系数,互扩散系数,扩散通量,柯肯达尔效应,体扩散,表面扩散,晶界扩散 凝固,结晶,近程有序,结构起伏,能量起伏,过冷度,均匀形核,非均匀形核,晶胚,晶核,亚稳相,临界晶粒,临界形核功,光滑界面,粗糙界面,温度梯度,平面状,树枝状。

材料科学基础名词解释

第六章 组元:组元通常是指系统中每一个可以单独分离出来,并能独立存在的化学纯物质,在一个给定的系统中,组元就是构成系统的各种化学元素或化合物。 相:在一个系统中,成分、结构相同,性能一致的均匀的组成部分叫做相,不同相之间有明显的界面分开,该界面称为相界面。 相平衡:在某一温度下,系统中各个相经过很长时间也不互相转变,处于平衡状态,这种平衡称为相平衡。各组元在各相中的化学势相同。 相图:表示合金系中合金的状态与温度、成分之间的关系的图形,又称为平衡图或状态图。 相变:从一种相转变为另一种相的过程称为相变。若转变前后均为固相,则称为固态相变。 凝固:物质由液态到固态的转变过程称为凝固 结晶:如果液态转变为结晶态的固体这个过程称为结晶 过冷:纯金属的实际凝固温度Tn总比其熔点Tm低的现象 过冷度:Tm与Tn的差值△T叫做过冷度 均匀形核:在液态金属中,存在大量尺寸不同的短程有序的原子集团。当温度降到结晶温度以下时,短程有序的原子集团变得稳定,不再消失,成为结晶核心。这个过程叫自发形核。 非均匀形核:实际金属内部往往含有许多其他杂质。当液态金属降到一定温度后,有些杂质可附着金属原子,成为结晶核性,这个过程叫非自发形核。 临界晶核:半径恰为r*的晶核称为临界晶核 临界半径:r*称为晶核的临界晶核半径 临界形核功:形成临界晶核时自由能的变化△G*>0,这说明形成临界晶核是需要能量的。形成临界晶核所需的能量△G*称为临界形核功。 能量起伏:形成临界晶核时,液、固两相之间的自由能差只提供所需要的表面能的三分之二,另外的三分之一则由液体中的能量起伏来提供 结构起伏:液态金属中的规则排列的原子团总是处于时起时伏,此起彼伏的变化之中,人们把液态金属中的这种排列原子团的起伏现象称为相起伏或结构起伏。 粗糙界面:粗糙界面在微观上高低不平、粗糙,存在几个原子厚度的过渡层。但是宏观上看,界面反而是平直的。 光滑界面:光滑界面是指固相表面为基本完整的原子密排面,固液两相截然分开,从微观上看界面是光滑的。但是从宏观来看,界面呈锯齿状的折线。 动态过冷度:晶核长大所需的界面过冷度。(远小于形核所需过冷度) 第七章 匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。 平衡凝固:每个时刻都能达到平衡的结晶过程。 非平衡凝固:实际生产中的凝固是在偏离平衡条件下进行的,这种凝固过程被称为不平衡凝固。 共晶转变:由液相同时结晶出两个固相的过程称为共晶转变。 亚共晶:成分在共晶点E以左、M点以右(即Sn: ~ %)的合金称为亚共晶合金。 过共晶: 伪共晶:在非平衡凝固条件下,成分接近共晶成分的亚共晶或过共晶合金,凝固后组织却可以全部是共晶体,称为伪共晶。

材料科学基础_名词解释

金属键: 金属键(metallic bond)是化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成. 晶体: 是由许多质点(包括原子、离子或分子)在三维空间作有规则的周期性重复排列而构成的固体 同素异晶转变(并举例): 金属在固态下随温度的变化,由一种晶格变为另一种晶格的现象,称为金属的同素异晶转变。液态纯铁冷却到1538℃时,结晶成具有体心立方晶格的δ-Fe;继续冷到1394℃时发生同素异晶的转变,转变为面心立方晶格γ-Fe;再继续冷却到912℃时,γ-Fe又转变为体心立方晶格的α-Fe。 晶胞: 在空间点阵中,能代表空间点阵结构特点的小平行六面体,反映晶格特征的最小几何单元。 点阵常数: 晶胞三条棱边的边长a、b、c及晶轴之间的夹角α、β、γ称为晶胞参数 晶面指数: 晶体中原子所构成的平面。 晶面族: 晶体中具有等同条件(这些晶面的原子排列情况和面间距完全相同),而只是空间位向不同的各组晶面称为晶面族 晶向指数: 晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。

晶向族(举例); 晶体结构中那些原子密度相同的等同晶向称为晶向族。<111>:[111],[-1-11][11-1][-1-1-1][1-1-1][-111][-11-1][1-11] 晶带和晶带轴: 所有相交于某一晶向直线或平行于此直线的晶面构成一个晶带,此直线称为晶带轴。 配位数: 在晶体中,与某一原子最邻近且等距离的原子数称为配位数 致密度: 晶胞内原子球所占体积与晶胞体积之比值 晶面间距: 两近邻平行晶面间的垂直距离 对称:通过某种几何操作后物体空间性质完全还原为原始状态 空间点阵:将构成物质结构的粒子抽象为质点后,质点在三维空间的排列情况 布拉菲点阵:考虑点阵上的阵点的具体排列而得到的点阵具体排列形式,而不是强调是布拉菲数学计算得到的十四种排列 固溶体:溶质原子在固态的溶剂中的晶格或间隙位置存在,晶体结构保持溶剂的物质 中间相:两种或以上元素原子形成与其组元的晶体结构均不相同的化合物 准晶:有独特结构和对称性的物质,原子排列在晶体的有序

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1—x A ) 根据道尔顿分压定律:p A =Py A 而P=p A +p B 则两组分理想物系的气液相平衡关系: x A =(P—p B 0)/(p A 0—p B 0)———泡点方程 y A =p A 0x A /P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图

陆佩文材料科学基础名词解释-课后

第二章晶体结构 2.1名词解释 晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质 晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。晶体结构中的平行六面体单位 点阵(空间点阵) 一系列在三维空间按周期性排列的几何点. 对称:物体相同部分作有规律的重复。 对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群. 空间群:是指一个晶体结构中所有对称要素的集合 布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。基元只有一个原子的晶格称为布拉菲格子。 范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和 配位数:晶体结构中任一原子周围最近邻且等距离的原子数. 2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称? 2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少? 2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型 2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。 2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列

晶向[210] [111] [101]. 2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。 2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。 2.16 MgO具有NaCl型晶体结构,试画出MgO在(111)(110)和(100)晶面上离子的排列图案,写出其离子面密度和晶面间距的表达式。 第三章熔体玻璃体 3.1熔体高温下熔融形成的液态固体 玻璃体高温熔体快冷时,由于冷却速度快,粘度增大太快,质点没来得及做有规则排列就已经固化,形成玻璃体 网络形成体:正离子是网络形成离子,单键强度大于335 kJ/mol,能单独形成玻璃的氧化物。 网络改变体:正离子是网络变性离子,单键强度小于250KJ/mol,不能单独形成玻璃,但能改变玻璃网络结构和性质的氧化物。 网络中间体 网络改变体向玻璃中加入某种氧化物使得玻璃的结构改变,性质改变,这种氧化物称为“网调整氧化物” 桥氧:与两个网络形成离子相连的氧称为桥氧,

材料科学基础名词解释

材料科学基础名词解释 第一章固体结构 1、晶体 :原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。 非晶体 :原子没有长程的周期排列,无固定的熔点,各向同性等。 2、中间相 : 两组元 A 和 B 组成合金时,除了形成以 A 为基或以 B 为基的固溶体外,还可能形成晶体结构与 A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。 3、晶体点阵:由实际原子、离子、分子或各种原子集团,按一定几何规律的具体排 列方式称为晶体结构或晶体点阵。 4、配位数 :晶体结构中任一原子周围最近邻且等距离的原子数。 5、晶格:描述晶体中原子排列规律的空间格架称之为晶格。 6、晶胞 :在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。 7、空间点阵:由周围环境相同的阵点在空间排列的三维列阵成为空间点阵。 8、晶向:在晶格中,穿过两个以节点的任一直线,都代表晶体中一个原子列在空间的位 向,称为晶向。 9、晶面:由节点组成的任一平面都代表晶体的原子平面,称为晶面。 10、晶向指数(晶面指数):为了确定晶面、晶向在晶体中的相对取向、就需要一种 符号,这种符号称为晶面指数和晶向指数。国际上通用的是密勒指数。 一个晶向指数并不是代表一个晶向,二十代表一组互相平行、位向相同的晶向。 11、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族,以表示。 12、晶面间距:相邻两个平行晶面之间的垂直距离。低指数晶面的面间距较大,而高指数晶面的面间距较小。晶面间距越大,则该晶面上原子排列越紧密,该原子密度越大。 13、配位数:每个原子周围最近邻且等距离的原子数目,称为配位数。 14、多晶型性:有些金属固态在不同温度或不同压力范围内具有不同的晶体结 这种性质构, 称为晶体的多晶型性。 15、多晶型性转变:具有多晶型性的金属在温度或压力变化 由一种结构转变为另一种结时, 构的过程称为多晶型性转变,也称为同素异构转变。 16、晶体缺陷:通常把晶体中原子偏离其平衡位置而出现不完整性的区域称为晶体缺陷。 17、间隙原子:进入点阵间隙总的原子称为间隙原子。间隙原子由同类原子形成称为自间隙原子,由外来杂志原子形成称为异类间隙原子。 19、置换原子:异类原子占据原来基体原子的平衡位置,则称为置换原子。 20、线缺陷:晶体中线缺陷指各种类型的位错,它是晶体中某处一列或若干列原子发生 了有规律的错排现象,错排区是细长的管状畸变区域。 21、位错:位错是晶体中已滑移区与未滑移区的边界线。 22、位错环:在一个圆形区域内部发生滑移,外部不滑移,因而得到封闭的圆周边界。这种 封闭位错叫做位错环。 23、柏氏矢量:可以揭示位错本质并能描述位错行为的矢量,称为柏氏矢量。刃型位 错,柏氏矢量与位错线互相垂直,螺型位错的柏氏矢量与其位错线互相平行。 24、全位错:柏氏矢量的模等于该晶向上原子的间距则此位错称为全位错或者单位为错;如果小于,则称为不全位错。 25、柏氏矢量的特性:柏氏矢量是完整晶体中对应回路的不封闭段,所以 b 是位错周围晶 体弹性变形的叠加, b 越大,弹性性能越高。 26、位错密度:位错密度是单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面

材料科学基础基本概念题

材料科学基础(I)基础习题 晶体结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序 是_______致密度为___________配位数是________________晶胞中原子数为 ___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是 ________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是 ________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al 的晶体结构是__________________,-Fe的晶体结构是____________。Cu的晶体结构是_______________, 7 点阵常数是指__________________________________________。

蒸馏原理及蒸馏和精馏的区别

蒸馏的原理 利用液体中各组分的差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。是一种属于传质分离的。广泛应用于炼油、、轻工等领域。 其原理以分离双组分混合液为例。将料液加热使它部分,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离。两组分的挥发能力相差越大,则上述的增浓程度也越大。在工业精馏设备中,使部分汽化的液相与部分冷凝的气相直接接触,以进行汽液相际传质,结果是气相中的难挥发组分部分转入液相,中的易挥发组分部分转入,也即同时实现了液相的部分汽化和汽相的部分冷凝。 液体的分子由于分子运动有从表面溢出的倾向。这种倾向随着温度的升高而增大。如果把液体置于密闭的真空体系中,液体分子继续不断地溢出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体的速度相等,蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施的压力称为饱和蒸气压。实验证明,液体的饱和蒸气压只与温度有关,即液体在一定温度下具有一定的。这是指液体与它的蒸气平衡时的压力,与体系中液体和蒸气的绝对量无关。 将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。但液体混合物各组分的沸点必须相差很大(至少30℃以上)才能得到较好的分离效果。在常压下进行蒸馏时,由于大气压往往不是恰好为,因而严格说来,应对观察到的沸点加上校正值,但由于偏差一般都很小,即使大气压相差,这项校正值也不过±1℃左右,因此可以忽略不计。 将盛有液体的烧瓶放在上,下面用煤气灯加热,在液体底部和玻璃受热的接触面上就有蒸气的气泡形成。溶解在液体内的空气或以薄膜形式吸附在瓶壁上的空气有助于这种气泡的形成,玻璃的粗糙面也起促进作用。这样的小气泡(称为气化中心)即可作为大的蒸气气泡的核心。在沸点时,液体释放大量蒸气至小气泡中,待气泡的总压力增加到超过大气压,并足够克服由于液柱所产生的压力时,蒸气的气泡就上升逸出液面。因此,假如在液体中有许多小空气或其它的气化中心时,液体就可平稳地沸腾,如果液体中几乎不存在空气,瓶壁又非常洁净光滑,形成气泡就非常困难。这样加热时,液体的温度可能上升到超过沸点很多而不沸腾,这种现象称为“过热”。一旦有一个气泡形成,由于液体在此温度时的蒸气压远远超过大气压和液柱压力之和,因此上升的气泡增大得非常快,甚至将液体冲溢出瓶外,这种不正常沸腾的现象称为“暴沸”。因此在加热前应加入助沸物以期引入气化中心,保证沸腾平稳。助沸物一般是表面疏松多孔、吸附有空气的物体,如碎瓷片、沸石等。另外也可用几根一端封闭的毛细管以引入气化中心(注意毛细管有足够的长度,使其上端可搁在蒸馏瓶的颈部,开口的一端朝下)。在任何情况下,切忌将助沸物加至已受热接近沸腾的液体中,否则常因突然放出大量蒸气而将大量液体从蒸馏瓶口喷出造成危险。如果加热前忘了加入助沸物,补加时必须先移去热源,待加热液体冷至沸点以下后方可加入。如果沸腾中途停止过,则在重新加热前应加入新的助沸物。因为起初加入的助沸物在加热时逐出了部分空气,再冷却时吸附了液体,因而可能已经失效。另外,如果采用浴液间接加热,保持浴温不要超过蒸馏液沸点20ºC,这种加热方式不但

相关主题
文本预览
相关文档 最新文档