当前位置:文档之家› 大一上学期高数知识点

大一上学期高数知识点

大一上学期高数知识点
大一上学期高数知识点

第二章 导数与微分

一、主要内容小结 1. 定义·定理·公式

(1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 f (x 0)存在

f -(x 0)= f +(x 0) .

定理2 若y = f (x )在点x 0处可导,则y = f (x )在点x 0处连续;反之不真. 定理3 函数 f (x )在x 0处可微

f (x )在x 0 处可导.

导数与微分的运算法则:设u = u (x ), v = v (x ) 均可导,则

(u v ) = u

v , d (u v ) = du dv

(uv ) = uv + vu , d (uv ) = udv + vdu

u vdu - udv d ( )= (v 0) v v

23)

基本求导公式

2. 各类函数导数的求法 1) 复合函数微分法 2) 反函数的微分法

3) 由参数方程确定函数的微分法 4) 隐函数微分法 5) 幂指函数微分法

6)

函数表达式为若干因子连乘积、乘方、开方或商形式的微分法.

方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法

vu -uv

(v 0) ,

v

3.高阶导数

1)定义与基本公式

高阶导数公式:(a x )(n ) =a x ln n a (a 0)

(e x )(n ) = e

(sin kx )(n ) =k n sin(kx +n

)

(cos kx )(n ) =k n cos(kx + n

)

解 函数f (x )在x=0点的导数:

Kx K -1sin 1-x K -

2cos 1

, x 0 xx x =0

(x m )(n ) = m (m -1)

(m -n +1)x m -

n

(x n )(n ) = n !

(ln x )(n ) =(-1)n -1

(n -1)!

x n

莱布尼兹公式:

2)高阶导数的求法 ① 直接法② 间接法

4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例 2.1 设 f ( x ) = K 1 xK sin1x , x 0 , (K 为整数).问: x =0 1) 当 K 为何值

时, f ( x ) 在 x = 0 处不可导;

2) 当 K 为何值时,

f (x )在x = 0处可导,但导函数不连续; 3) 当 K 为何值

时, f ( x ) 在 x = 0 处导函数连续? 当 K 1时, f ( x ) 的导函数为:

lim x →0 f ( x ) - f (0) 0,

为使lim f (x ) = f (0)=0,取K 2即可。 x →0

分析 本例若直接对原式利用差的求导法则及复合函数求导法来求,比较麻烦,但若利 用对数性质对函数表达式的第二项变形,再利用差及复合函数求导法来求,就简便得多。 解 因为 y = arctge x - 1[ln e 2x -ln(e 2x +1)] = arctge x -x +1ln(e 2x +1)

x

2 x

x

所以

y =(arctge x )-x +1[ln(e 2x +1)]' =

e

2x -1+1 22e x

= e 2x -1 2

1+e 2x

2e 2x +1 e 2x

+1

例2.4 设y = f (e x )e f (x ),求dy 。

dx

因此,函数 f ( x ) =

x K 1

sin , x x

x =0

当K ≤1时, f (x )在x = 0处不可导;

当K = 2时, f (x )在x = 0处可导,但导函数在x = 0处不连续; 当K 2时, f (x )在x = 0处可导且导函数在x = 0处连续。

例2.2

y = sin

2

x +cos 2x , 求dy 。

1 + ctgx 1 + tgx dx

分析 本例当然可以用商的求导法则来求,但比较麻烦,若先对函数表达式进行变形就 可用代数和的求导法则来求,这样就简便多了。

33

sin 3 x

cos 3 x 解 y = +

sin x + cos x cos x +sin x sin x +cos x 33

sin 3 x + cos 3 x

1

= 1- sin2x 。 2

所以 y = - cos2x 。

如果不经过化简,直接求导则计算将是十分繁琐的。

例 2.3 y = arctge x - ln

解 利用积的求导法则及复合函数求导法则,有

dy

= f (e x )e x e f (x )+ f (e x )e f (x )f (x )= e f (x )[f (e x )e x + f (e x )f (x )]。 dx

例2.5 设方程 xy 2 +e y = cos(x + y 2), 求 y .

本例是隐函数求导问题,对隐函数求导可用下面两种方法来求。

解 (方法一) 方程两端同时对x 求导( y 看作x 的函数y =y (x )),由复合函数求导法可得

y 2 +2xyy +e y y =-sin(x + y 2)(1+2yy )

y 2 +sin(x + y 2) 2xy +e y +2y sin(x + y 2)

(方法二) 方程两边同时微分:d (xy 2 +e y )=d (cos(x + y 2))

y 2dx +2xydy +e y dy =-sin(x +y 2)(dx +2ydy )

[(2xy +e y + 2y sin(x + y 2 )]dy = -[y 2 + sin(x + y 2)]dx

dy y 2 + sin(x + y 2) dx

2xy +e y +2y sin(x + y 2)

f (t )为二次可微函数,且 f (t )0,求 dy , d y 。 dx

dx 2

分析 这是由参数方程所确定的函数的高阶导数的计算

问题,可按参数方程求导法则来求。 解 因为 dy =d [tf (t )-f (t )]= tf

(t )dt

dx = d [ f (t )] = f

(t )dt dy tf (t )dt dx f (t )dt

d 2 y d dy dt 1

dx 2

dx dx f "(t )dt

f "(t )

例2.6

已知

x y =

=t f f

((t t )

)-f (t ) 所以

所以

常见错解: d y = (t )'=1。

dx 2

错误原因 没有搞清求导对象. d y = d dy

是一阶导数dy 对x 求导,而t '是一阶导数对 dx 2

dx dx dx

t 求导。

3 例

2.8 设y = x , 求 y (n ) 。

x 2 - 3 x + 2

分析 本例是求分式有理函数的高阶导数,先将有理假分式通过多项式除法化为整式与 有理真分式之和,再将有理分式写成部分分式之和,最后仿(x m )(n ) 的表达式写出所给定的有 理函数的n 阶导数。

y =(x +3)+

7x -6

=x +3+ 8

-

1

(x -2)(x -1)

x -2 x -1

y (n ) = (x +3)(n ) +[8(x -2)-

1](n ) -[(x -1)-

1](n )

= 0+(-1)n 8n !(x -2)-1-n -(-1)n n !(x -1)-1-

n

= (-1)n n ! 8 - 1 (n

2)

(x -2)n +1 (x -1)n +1

e x , x 0 例2.9 设

f (x )=

e , x 0

求f (x )的导函数f (x ) 的连续区间,若间断,判别类型, x 2 +1,

x 0

并分别作 f (x )与 f (x )的图形。

例2.7 求函数 y =

x x 2

+ 1

的微分。

1+ x 2dx - x

1

d (1 + x 2)

2 1+ x 2 1+x 2

分析 函数 f (x )是用分段表达的函数. 在x =0的两侧: 当x 0 时, f (x )=e x ; 当x 0时, f (x )=2x .因此,在 x =0 处, f (x )的可导情况,需根据定义来作判断,求 出导函数后,再判别它的连续区间。

解 因为 f '(0)= lim

f (x )-f (0)= lim x +1-1=0

x →0-

x x →0- x

f +

'(0)= lim f (x )-f (0)= lim e -1=1,所以 f (x )在x =0处不可导。

+

x →0

+

x x →0 +

x

因为在x =0处 f (x )无定义,所以x =0是f (x )的间断点 又因为

lim f ( x ) = lim (2 x ) = 0 ;

x →0-

x →0-

x l →im 0+ f

(x ) = x l →

im 0+ e x =1

所以 x =0为 f (x )的跳跃间断点。

=lim

f (x )-f (0)=lim * (x )

sin

x

x - 0 x →0

= lim (x )K -1sin 1=

发散 ,当

K 1

x →0

x 0 , 当K 1

f (0)=

不存在,K 1

0,

K 1

f (x )=e 2x ,, x 0

x 0

大一上学期高数期末考试题

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由 x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 121 1--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

(完整版)大一上学期(第一学期)高数期末考试题[1]

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的 无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 221L n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

济南大学大一上学期高等数学试题

高等数学(上)模拟试卷一 一、 填空题(每空3分,共42分) 1 、函数lg(1)y x = -的定义域是 ; 2、设函数20() 0x x f x a x x ?<=?+≥?在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C =+? ,则()f x = ;5、21lim(1)x x x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ; 8、曲线x y xe =的拐点是 ;9、201x dx -?= ; 10、设32,a i j k b i j k λ=+-=-+r r r r r r r r ,且a b ⊥r r ,则λ= ; 11、2 lim()01x x ax b x →∞--=+,则a = ,b = ; 12、311lim x x x -→= ;13、设 ()f x 可微,则()()f x d e = 。 二、 计算下列各题(每题5分,共20分) 1、011lim()ln(1)x x x →-+2 、y =y '; 3、设函数()y y x =由方程xy e x y =+所确定,求0x dy =; 4、已知cos sin cos x t y t t t =??=-?,求dy dx 。 三、 求解下列各题(每题5分,共20分) 1、421x dx x +? 2、2sec x xdx ?3 、40?4 、2201dx a x + 四、 求解下列各题(共18分): 1、求证:当0x >时,2 ln(1)2x x x +>- (本题8分) 2、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

大一上学期(第一学期)高数期末考试题(有标准答案)详解

大一上学期高数期末考试 、单项选择题(本大题有4小题,每小题4分,共16分) 1 设 f ( X )cos x (x sin x ),则在 x 0 处有( (A) f (0) 2 (B) f (0)1 (C) f (0)° c 设(x) 1 x , (x) 3 33 x ? 则当 x 1 时( 2. 1 X (A) g 与 M 是同阶无穷小,但不是等价无穷小; 是等价无穷小; (C) (X )是比(x)高阶的无穷小; (D) 无穷小? (A) 函数F (x )必在X 0处取得极大值; (B) 函数F (x)必在x 0处取得极小值; (C) 函数F(x)在xo 处没有极值,但点(o,F (o ))为曲线yF(x)的拐点; (D) 函数F”)在xO 处没有极值,点(:F (o ))也干是曲 线YF(x)的拐点。4设f (x)是连续函数,且 "X ) 22 X X 、僅產题(本夫龊右4小题' 2 8. 斥曰 二 ' 解答题(本大题有 5小题,每小题8分,共40分)exy sin(xy)1 9. 设函数y y (x)由方程确定,求y (x)以及y (0). 求I X 10. x(心 3?若F f(x) (X) 0 (2t x)f(t )dt ,其中f (x)在区间上(")二阶可导且 )? (D) MX)不可导. ) (B) (X)与(X) (X )是比(x)高阶的 2of(t)dt,则 f(x)( (D)? 4分,共16分) 5. lim (1 3x)办 x0\ / 6. 已知沪空是f(X)的一个原函数 X I r COS X 则 7. lim n —(cos 2 — n n cos3 ) n 2 x arcsin x i dx x 2 1 V1 A 2

大一(第一学期)高数期末考试题及答案

( 大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. … 4. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 5. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 6. , 7. = +→x x x sin 20 ) 31(lim . 8. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 9. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 10. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 11. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .

大一上学期(第一学期)高数期末考试题及答案

高等数学I (大一第一学期期末考试题及答案) 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限 a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B )e (C )a e cot (D )a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C )e (D )1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ))(3a f '(B ))(2a f ' (C) )(a f '(D )) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是a 1. 6. 由x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为13 1211--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为(-∞,0)和(1,+∞). 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-. 解:1 1 ln(1)120 00(1)1 ln(1)lim lim lim 2x x x x x x x e e x x e e e x x x +-→→→+--+-===-

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

合肥工业大学大一上学期高数期末考试题

咼数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 2 .lim (1 + 3x)sin x = 1. x -0 _______________________________________ . 已知cosx 是f(x)的一个原函数, 则 2. x x 兀 2兀 2 2兀 2 n — 1 lim — (cos 2 — + cos 2 ——+||| + cos 2 兀)= 3. “世 n n n n ______________ . 1 2 2 x arcsin x 1 , dx 二 2 — 1 书1 一 X 4. _ 运 ______________________ . 二、单项选择题(本大题有4小题,每小题4分,共16分) 设口(x) = —x , P (x)=3-3%'x ,则当 X T 1 时( ) 5. 1 x . (A) 〉(x)与-(x) 是同阶无穷小,但不是等价无穷小; (B )〉(x)与](x) 是等价无穷小; (C (X)是比-(x)高阶的无穷小; (D ) -(x) 是比〉(X)高阶的 无穷小. 6 设 f (x) = cos x( x + sin x ),则在 x = 0处有 ( A C ) ■ (D ) f(x) 不可导. x 7.若 F (x ) 二0( 2 —x ) f ( t ) dt ,其中f (x)在区间上(-1,1)二阶可导且 f (x) ,则( ). (A) 函数F(x)必在x=0处取得极大值; (B) 函数F (x)必在x = 0处取得极小值; (C) 函数 F(x)在x=0处没有极值,但点(0, F(0))为曲线y = F(x)的拐点; (D) 函数F (x)在x=0处没有极值,点(0 ,F(0) )也不是曲线y 二F(x)的拐点。 1 设f (x)是连续函数,且 f (x) = x + 2 j° f (t)dt ,贝U f (x)=( (A ) 2 解答题(本大题有5小题,每小题8分,共40分) 10. 设函数厂y (x) 由方程e x y - sin(x y)二1 确定,求y (x) 以及y (°). 1 - x 7 8. 2 —+2 (B ) 2 (C ) x 1 (D ) x 2. 9. 三

大一上学期高数期末考试题

大一上学期高数期末考试卷 一、单项选择题 本大题有 小题 每小题 分 共 分 )(0),sin (cos )( 处有则在设=+=x x x x x f ( )(0)2f '= ( )(0)1f '=( )(0)0f '= ( )()f x 不可导  )时( ,则当,设133)(11)(3→-=+-=x x x x x x βα ( )()()x x αβ与是同阶无穷小,但不是等价无穷小; ( )()()x x αβ与是等价无穷小; ( )()x α是比()x β高阶的无穷小; ( )()x β是比()x α高阶的无穷小 若 ()()()02x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ) ( )函数()F x 必在0x =处取得极大值; ( )函数()F x 必在0x =处取得极小值; ( )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; ( )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 ) ()( , )(2)( )(10=+=?x f dt t f x x f x f 则是连续函数,且设 ( )22x ( )222x +( )1x - ( )2x + 二、填空题(本大题有 小题,每小题 分,共 分) =+→x x x sin 20)31(lim

,)(cos 的一个原函数是已知x f x x =??x x x x f d cos )(则 lim (cos cos cos )→∞-+++=22221n n n n n n ππππ =-+? 21 21 2211arcsin -dx x x x 三、解答题(本大题有 小题,每小题 分,共 分) 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .d )1(177x x x x ?+-求 . 求,, 设?--?????≤<-≤=1 32)(1020)(dx x f x x x x xe x f x 设函数)(x f 连续, =?1 0()()g x f xt dt ,且→=0()lim x f x A x ,A 为常数 求'()g x 并讨论 '()g x 在=0x 处的连续性 求微分方程2ln xy y x x '+=满足=-1 (1)9y 的解 四、 解答题(本大题 分) 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点 M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的 倍与该点纵坐标之和,求此曲线方程 五、解答题(本大题 分) 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及 轴围成 平面图形

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) . d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求 7、(本小题5分) . 求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+30 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422Y 11、(本小题5分) .求? π +20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分)

合肥工业大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. = +→x x x sin 2 ) 31(l i m . 2. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 3. lim (cos cos cos )→∞-+++=2 2 2 21 n n n n n n π π ππ . 4. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共16分) 5. )时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的 无穷小. 6. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 7. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 8. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 9. 三、解答题(本大题有5小题,每小题8分,共40分) 10. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 11. .d )1(17 7 x x x x ?+-求

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '=(B )(0)1f '=(C )(0)0f '=(D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小;(B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小;(D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则(). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x -(D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则. 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ. 8. = -+? 2 1 2 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 本大题有 小题 每小题 分 共 分 )( 0),sin (cos )( 处有则在设=+=x x x x x f ( )(0)2f '= ( )(0)1f '=( )(0)0f '= ( )()f x 不可导  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα ( )()()x x αβ与是同阶无穷小,但不是等价无穷小; ( )()()x x αβ与是等价无穷小; ( )()x α是比()x β高阶的无穷小; ( )()x β是比()x α高阶的无穷小 若 ()()()02x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ) ( )函数()F x 必在0x =处取得极大值; ( )函数()F x 必在0x =处取得极小值; ( )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; ( )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 ) ( )( , )(2)( )(1 0=+=?x f dt t f x x f x f 则是连续函数,且设 ( )22x ( )2 2 2x +( )1x - ( )2x + 二、填空题(本大题有 小题,每小题 分,共 分) = +→x x x sin 2 ) 31(lim ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则

lim (cos cos cos )→∞-+++= 2 2 2 21n n n n n n ππ π π = -+? 2 12 1 2 211 arcsin - dx x x x 三、解答题(本大题有 小题,每小题 分,共 分) 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .d )1(17 7 x x x x ?+-求 .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 设函数)(x f 连续, =?1 ()()g x f xt dt ,且→=0 () lim x f x A x ,A 为常数 求'()g x 并讨论 '()g x 在=0x 处的连续性 求微分方程2ln xy y x x '+=满足 =- 1 (1)9y 的解 四、 解答题(本大题 分) 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点 M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的 倍 与该点纵坐标之和,求此曲线方程 五、解答题(本大题 分) 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及 轴围成平面图形 求 的面积 ; 求 绕直线 旋转一周所得旋转体的体积 六、证明题(本大题有 小题,每小题 分,共 分)

大一上学期 高数复习要点整理

高数解题技巧。高数(上册)期末复习要点 高数(上册)期末复习要点 第一章:1、极限 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧。(高等数学、考研数学通用) 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 线性代数解题的八种思维定势

大一上学期高数知识点

第二章导数与微分 一、主要内容小结 1.定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2)定理与运算法则 定理1)(0x f '存在? ='- )(0x f )(0x f +'. 定理2若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3函数)(x f 在0x 处可微? )(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(,dv du v u d ±=±)( u v v u uv '+'=')(,vdu udv uv d +=)( )0()(2≠' -'='v v v u u v v u ,)0()(2≠-=v v udv vdu v u d (3)基本求导公式 2.各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法

(4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3.高阶导数 (1)定义与基本公式 高阶导数公式:a a a n x n x ln )()(=)0(>a x n x e e =)()( 莱布尼兹公式: (2)高阶导数的求法①直接法②间接法 4.导数的简单应用 (1)求曲线的切线、法线(2)求变化率——相关变化率 二、例题解析 例2.1 设?? ???=≠?=0,00 ,1sin )(x x x x x f K ,(K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续;

大一上学期高数知识点

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2 cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )!1()1()(ln 1 )(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00 ,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: lim →x =--0 ) 0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1 sin )(? = 0 lim →x x x K 1 sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ? ?>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?? ???=≠?-?='--0 ,00,1cos 1sin )(21 x x x x x Kx x f K K

相关主题
文本预览
相关文档 最新文档