当前位置:文档之家› 2013高考数学(理)一轮复习教案:第八篇 立体几何第7讲 立体几何中的向量方法(一)

2013高考数学(理)一轮复习教案:第八篇 立体几何第7讲 立体几何中的向量方法(一)

2013高考数学(理)一轮复习教案:第八篇 立体几何第7讲 立体几何中的向量方法(一)
2013高考数学(理)一轮复习教案:第八篇 立体几何第7讲 立体几何中的向量方法(一)

第7讲立体几何中的向量方法(一)

【2013年高考会这样考】

1.通过线线、线面、面面关系考查空间向量的坐标运算.

2.能用向量方法证明直线和平面位置关系的一些定理.

3.利用空间向量求空间距离.

【复习指导】

本讲复习中要掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离.

基础梳理

1.空间向量的坐标表示及运算

(1)数量积的坐标运算

设a=(a1,a2,a3),b=(b1,b2,b3),

则①a±b=(a1±b1,a2±b2,a3±b3);

②λa=(λa1,λa2,λa3);

③a·b=a1b1+a2b2+a3b3.

(2)共线与垂直的坐标表示

设a=(a1,a2,a3),b=(b1,b2,b3),

则a∥b?a=λb?a1=λb1,a2=λb2,a3=λb3(λ∈R),

a⊥b?a·b=0?a1b1+a2b2+a3b3=0(a,b均为非零向量).

(3)模、夹角和距离公式

设a=(a1,a2,a3),b=(b1,b2,b3),

则|a|=a·a=a21+a22+a23,

cos〈a,b〉=a·b

|a||b|=

a1b1+a2b2+a3b3

a21+a22+a23·b21+b22+b23

.

设A(a1,b1,c1),B(a2,b2,c2),

则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.

2.立体几何中的向量方法

(1)直线的方向向量与平面的法向量的确定

①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB

→平行的任意非零向量也是直线l 的方向向量.

②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为???

n·a =0,

n·b =0.

(2)用向量证明空间中的平行关系

①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2.

③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. (3)用向量证明空间中的垂直关系

①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u .

③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0.

(4)点面距的求法

如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·

n ||n |

.

一种思想

向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化: (1)以原点为起点的向量,其终点坐标即向量坐标; (2)向量坐标等于向量的终点坐标减去其起点坐标.

得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题. 三种方法

主要利用直线的方向向量和平面的法向量解决下列问题:

(1)平行??? 直线与直线平行

直线与平面平行

平面与平面平行

(2)垂直???

直线与直线垂直

直线与平面垂直

平面与平面垂直

(3)点到平面的距离

求点到平面距离是向量数量积运算(求投影)的具体应用,也是求异面直线之间距离,直线与平面距离和平面与平面距离的基础.

双基自测

1.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是( ).

A .平行

B .相交

C .垂直

D .不确定 解析 ∵v 2=-2v 1,∴v 1∥v 2. 答案 A

2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( ). A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0)

D .P (3,-3,4)

解析 ∵n =(6,-3,6)是平面α的法向量, ∴n ⊥MP →,在选项A 中,MP →=(1,4,1),∴n ·MP →=0. 答案 A

3.(2011·唐山月考)已知点A ,B ,C ∈平面α,点P ?α,则AP →·AB →=0,且AP →·AC →=0是AP →·BC →=0的( ). A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

解析 由???

??

AP →·AB

→=0AP →·

AC →=0,得AP →·(AB

→-AC →)=0,

即AP →·CB →=0,亦即AP →·BC →=0,

反之,若AP →·BC

→=0, 则AP →·(AC →-AB →)=0?AP →·AB →=AP →·AC →,未必等于0. 答案 A

4.(人教A 版教材习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ). A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b

D .以上都不对

解析 ∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a ∥c , 又a·b =-2×2+(-3)×0+1×4=0,∴a ⊥b . 答案 C

5.(2012·舟山调研)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是________.

解析 设平面ABC 的法向量n =(x ,y ,z ). 则???

??

AB →·n =0,AC →·

n =0,即???

2x +2y +z =0,

4x +5y +3z =0.

令z =1,得?????

x =12

y =-1,

∴n =? ??

??

12,-1,1

, ∴平面ABC 的单位法向量为±n |n|=±? ?

?13,-23,23. 答案 ±? ?

???13,-23,23

考向一 利用空间向量证明平行问题

【例1】?如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .

[审题视点] 直接用线面平行定理不易证明,考虑用向量方法证明.

证明 法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,

则M ? ?

???0,1,

12,N ? ????12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0), 于是MN

→=? ??

??12,0,12, 设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1

→=0,且n ·DB →=0,得???

x +z =0,x +y =0. 取x =1,得y =-1,z =-1.∴n =(1,-1,-1). 又MN →·n =? ????12,0,12·(1,-1,-1)=0,

∴MN →⊥n ,又MN ?平面A 1BD ,

∴MN ∥平面A 1BD .

法二 MN →=C 1N →-C 1M →=121B 1→-12C 1C →

=12(D 1A 1→-D 1D →

)=12

DA 1→, ∴MN →∥DA 1→

,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ?平面A 1BD ,A 1D ?平面A 1BD , ∴MN ∥平面A 1BD .

证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量

积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为了数量的计算问题.

【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,

△PAD 是直角三角形,且PA =AD =2,E 、F 、G 分别是线段PA 、PD 、CD 的中点.求证:PB ∥平面EFG .

证明 ∵平面PAD ⊥平面ABCD 且ABCD 为正方形,

∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0). ∴PB

→=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,

即(2,0,-2)=s (0,-1,0)+t (1,1,-1),

∴???

t =2,t -s =0,-t =-2,

解得s =t =2.

∴PB

→=2FE →+2FG →, 又∵FE

→与FG →不共线,∴PB →、FE →与FG →共面. ∵PB ?平面EFG ,∴PB ∥平面EFG .

考向二 利用空间向量证明垂直问题

【例2】?如图所示,在棱长为1的正方体OABC -O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤1,以O 为原点建立空间直角坐标系O -xyz .

(1)求证A 1F ⊥C 1E ;

(2)若A 1,E ,F ,C 1四点共面 求证:A 1F →=12

1C 1→+A 1E →

.

[审题视点] 本题已建好空间直角坐标系,故可用向量法求解,要注意找准点的坐标.

证明 (1)由已知条件

A 1(1,0,1),F (1-x,1,0),C 1(0,1,1),E (1,x,0), A 1F →=(-x,1,-1),C 1E →=(1,x -1,-1), 则A 1F →·C 1E →=-x +(x -1)+1=0, ∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .

(2)A 1F →=(-x,1,-1),A 1C 1→=(-1,1,0), A 1E →=(0,x ,-1),

设A 1F →=λA 1C 1→+μA 1E →

,???

-x =-λ,

1=λ+μx ,

-1=-μ,

解得λ=1

2,μ=1.

∴A 1F →=12

1C 1→+A 1E →

.

证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与

平面垂直,平面与平面垂直可转化为直线与直线垂直证明.

【训练2】 如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ;

(2)PD ⊥平面ABE .

证明 AB 、AD 、AP 两两垂直,

建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1).

(1)∵∠ABC =60°, △ABC 为正三角形.

∴C ? ????12,32,0,E ? ??

??14,34,12.

设D (0,y,0),由AC ⊥CD ,得AC →·CD

→=0,

即y =

233,则D ? ????

0,233

,0, ∴CD →=? ????-1

2,36,0.又AE →=? ????14,34,12,

∴AE →·CD

→=-12×14+36×34=0,

∴AE

→⊥CD →,即AE ⊥CD .

(2)法一 ∵P (0,0,1),∴PD →=? ?

???0,233,-1

. 又AE →·PD

→=34×233+12

×(-1)=0,

∴PD →⊥AE →,即PD ⊥AE .AB →=(1,0,0),∴PD →·AB →=0,

∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB . 法二 AB →=(1,0,0),AE →=? ????14,34,12,

设平面ABE 的一个法向量为n =(x ,y ,z ),

则???

x =0,14x +34y +1

2z =0,

令y =2,则z =-3,∴n =(0,2,-3). ∵PD →=? ??

??0,233

,-1,显然PD →=33n .

∵PD

→∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE .

考向三 利用向量求空间距离

【例3】?在三棱锥SABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示,求点B 到平面CMN 的距离.

[审题视点] 考虑用向量法求距离,距离公式不要记错. 解 取AC 的中点O ,连接OS 、OB . ∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .

∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,∴SO ⊥BO .

如图所示,建立空间直角坐标系O -xyz , 则B (0,23,0),C (-2,0,0),S (0,0,22), M (1,3,0),N (0,3,2).

∴CM

→=(3,3,0),MN →=(-1,0,2), MB →

=(-1,3,0).

设n =(x ,y ,z )为平面CMN 的一个法向量, 则???

??

CM →·n =3x +3y =0,MN →·

n =-x +2z =0,取z =1,

则x =2,y =-6,∴n =(2,-6,1). ∴点B 到平面CMN 的距离 d =|n ·MB →||n |=423

.

点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何

法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →, 得|BH →·n |=|n ·BM →|=|BH →|·|n |, 所以|BH →|=

|n ·BM →||n |,即d =|n ·BM →

||n |

.

【训练3】 (2010·江西)如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =2 3. (1)求点A 到平面MBC 的距离;

(2)求平面ACM 与平面BCD 所成二面角的正弦值.

解 取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD . 又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .

取O 为原点,直线OC 、BO 、OM 为x 轴、y 轴、z 轴,建立空间直角坐标系如图. OB =OM =3,则各点坐标分别为C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23).

(1)设n =(x ,y ,z )是平面MBC 的法向量,则BC →=(1,3,0), BM →

=(0,3,3),

由n ⊥BC →得x +3y =0;由n ⊥BM →

得3y +3z =0. 取n =(3,-1,1),BA →

=(0,0,23),则 d =|BA →·n ||n |=235

=2155.

(2)CM

→=(-1,0,3),CA →=(-1,-3,23). 设平面ACM 的法向量为n 1=(x ,y ,z ), 由n 1⊥CM →,n 1⊥CA →

得???

-x +3z =0,-x -3y +23z =0,

解得x =3z ,y =z ,取n 1=(3,1,1). 又平面BCD 的法向量为n 2=(0,0,1). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1

5.

设所求二面角为θ,则sin θ=25

5

.

规范解答15——立体几何中的探索性问题

【问题研究】 高考中立体几何部分在对有关的点、线、面位置关系考查的同时,往往也会考查一些探索性问题,主要是对一些点的位置、线段的长度,空间角的范围和体积的范围的探究,对条件和结论不完备的开放性问题的探究,这类题目往往难度都比较大,设问的方式一般是“是否存在?存在给出证明,不存在说明

理由.”

【解决方案】解决存在与否类的探索性问题一般有两个思路:一是直接去找存在的点、线、面或是一些其他的量;二是首先假设其存在,然后通过推理论证或是计算,如果得出了一个合理的结果,就说明其存在;如果得出了一个矛盾的结果,就说明其不存在.

【示例】?(本小题满分14分) (2011·福建)如图,四棱锥PABCD中,PA⊥底面ABCD.四边形ABCD中,AB⊥AD,AB+AD=4,CD=2,∠CDA=45°.

(1)求证:平面PAB⊥平面PAD;

(2)设AB=AP.

(ⅰ)若直线PB与平面PCD所成的角为30°,求线段AB的长;

(ⅱ)在线段AD上是否存在一个点G,使得点G到点P、B、C、D的距离都相等?说明理由.

(1)可先根据线线垂直,证明线面垂直,即可证得面面

垂直.

(2)由于题中PB与平面PCD所成的角不好作出,因此用向量法

求解.至于第2小问,可先假设点G存在,然后推理得出矛盾或列出方程无解,从而否定假设.

[解答示范](1)因为PA⊥平面ABCD,AB?平面ABCD,

所以PA⊥AB.

又AB⊥AD,PA∩AD=A,

所以AB⊥平面PAD.

又AB?平面PAB,所以平面PAB⊥平面PAD.(4分)

(2)以A为坐标原点,建立空间直角坐标系Axyz(如图).

在平面ABCD内,作CE∥AB交AD于点E,

则CE⊥AD.

在Rt△CDE中,DE=CD·cos 45°=1,

CE=CD·sin 45°=1.

设AB=AP=t,则B(t,0,0),P(0,0,t).

由AB+AD=4得,AD=4-t,

所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),CD →=(-1,1,0),P D →=(0,4-t ,-t ).(6分)

(ⅰ)设平面PCD 的法向量为n =(x ,y ,z ), 由n ⊥C D →,n ⊥PD →,得??

?

-x +y =0,(4-t )y -tz =0.

取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又P B →=(t,0,-t ),

故由直线PB 与平面PCD 所成的角为30°得cos 60°=??????

??n ·P B →|n |·|P B →|,即

|2t 2-4t |

t 2+t 2+(4-t )2·2t 2=1

2

解得t =45或t =4(舍去),因为AD =4-t >0,所以AB =4

5

.(9分)

(ⅱ)法一 假设在线段AD 上存在一个点G ,使得点G 到P ,B ,C ,D 的距离都相等,

设G (0,m,0)(其中0≤m ≤4-t ),

则G C →=(1,3-t -m,0),GD →=(0,4-t -m,0),G P →

=(0,-m ,t ). 由|G C →|=|G D →

|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;(1)

由|G D →|=|G P →|得(4-t -m )2=m 2+t 2.(2)

由(1)、(2)消去t ,化简得m 2-3m +4=0.(3)(12分)

由于方程(3)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等.(14分) 法二 (1)同法一.

(2)(ⅰ)以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E , 则CE ⊥AD .

在Rt △CDE 中,DE =CD ·cos 45°=1, CE =CD ·sin 45°=1.

设AB =AP =t ,则B (t,0,0),P (0,0,t ), 由AB +AD =4得AD =4-t .

所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),

C D →=(-1,1,0),P D →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),

由n ⊥C D →,n ⊥PD

→, 得???

-x +y =0,(4-t )y -tz =0.

取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又P B →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos 60°=????????n ·

P B →|n |·|P B →|, 即

|2t 2-4t |

t 2+t 2+(4-t )2·2t 2=1

2

解得t =45或t =4(舍去,因为AD =4-t >0),所以 AB =4

5

.

法二 假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.

由GC =GD ,得∠GCD =∠GDC =45°, 从而∠CGD =90°,即CG ⊥AD ,

所以GD =CD ·cos 45°=1.

设AB =λ,则AD =4-λ,AG =AD -GD =3-λ,(11分) 在Rt △ABG 中,

GB =AB 2+AG 2=λ2+(3-λ)2= 2? ????

λ-

322+92

>1, 这与GB =GD 矛盾.

所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等. 从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.(14分)

[解答示范] ∵函数y =c x 在R 上单调递减, ∴0<c <1.(2分)

即p :0<c <1.∵c >0且c ≠1,∴綈p :c >1.(3分) 又∵f (x )=x 2-2cx +1在? ????

12,+∞

上为增函数, ∴c ≤12.即q :0<c ≤1

2

.

∵c >0且c ≠1,∴綈q :c >1

2

且c ≠1.(6分)

又∵“p ∨q ”为真,“p ∧q ”为假,∴p 真q 假或p 假q 真.(7分) ①当p 真,q 假时,{c |0<c <1}∩??????c |c >12且c ≠1=??????

???

?c ??? 1

2<c <1

;(9分)

②当p 假,q

真时,{c |c >1}∩????

??c |0<c ≤12=?.(11分) 综上所述,实数c

的取值范围是??????

???

?c ??

? 1

2

<c <1.(12

分)

探索性问题只要根据设问把问题确定下来就变为了普通问题,解题的关

键是如何把要探索的问题确定下来,如本题第(2)问,法一是先设出G 点,由条件列出方程无解知G 点不存在.法二是由已知先确定G 点,然后推理得出矛盾,故G 点不存在.

立体几何全部备课教案

直线、平面垂直的判定及其性质 一、目标认知 学习目标 1.了解空间直线和平面的位置关系; 2.掌握直线和平面平行的判定定理和性质定理;进一步熟悉反证法的实质及其一般解题步骤. 3.通过探究线面平行定义、判定和性质定理及其应用,进一步培养学生观察、发现的能力和空间想象能力. 4.通过有关定理的发现、证明及应用,提高学生的空间想象力和类比、转化的能力,提高学生的逻辑推理能力. 重点: 直线与平面平行的判定、性质定理的应用; 难点: 线面平行的判定定理的反证法证明,线面平行的判定和性质定理的应用. 二、知识要点梳理 知识点一、直线和平面垂直的定义与判定 1.直线和平面垂直定义 如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足. 要点诠释: (1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同, 注意区别. (2)直线和平面垂直是直线和平面相交的一种特殊形式. (3)若,则. 2.直线和平面垂直的判定定理

判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 符号语言: 特征:线线垂直线面垂直 要点诠释: (1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视. (2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线 垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要. 知识点二、斜线、射影、直线与平面所成的角 一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线.过斜线上斜足外的一点间平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角. 要点诠释: (1)直线与平面平行,直线在平面由射影是一条直线. (2)直线与平面垂直射影是点. (3)斜线任一点在平面内的射影一定在斜线的射影上. (4)一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是 0°的角. 知识点三、二面角

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.

(1)证明:PO⊥平面ABC; --为30?,求PC与平面PAM所成角的正弦值.(2)若点M在棱BC上,且二面角M PA C 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD所在的平面与半圆弧?CD所在平面垂直,M是?CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC -体积最大时,求面MAB与面MCD所成二面角的正弦值. 2018年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲ .

立体几何全部教案.

第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1通过实物操作,增强学生的直观感知。 (2能根据几何结构特征对空间物体进行分类。 (3会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。

三、教学用具 (1学法:观察、思考、交流、讨论、概括。 (2实物模型、投影仪 四、教学思路 (一创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体,你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二、研探新知 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1有两个面互相平行;(2其余各面都是平行四边形;(3每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳 一、选择题 1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( ) A . 643 π B .8316π π+ C .28π D .8216π π+ 【答案】B 【解析】 【分析】 结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】 结合三视图,还原直观图,得到 故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等. 2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存 在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7 B .3 C .1+3 D .2 【答案】A 【解析】 【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o 221111111113 2cos 13223()72 MD A D A M A D A M MA D ∴=+-∠=+-??- ??= 故选A . 【点睛】 本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1 C .2:1 D 102 【答案】A

2015年高考理科数学试题汇编(含答案):立体几何-小题

2015年高考理科数学试题汇编(含答案):立体几何-小题

(新课标1)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为 一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有() A.14斛 B.22斛 C.36斛 D.66斛 【答案】B 考点:圆锥的体积公式 (新课标1)(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为A.36π B.64π C.144π D.256π 【答案】C

试题分析:因为α,β是两个不同的平面,m是 直线且mα?.若“mβ∥”,则平面、 αβ可能相交 也可能平行,不能推出// αβ, αβ,反过来若// mα ?,则有mβ∥,则“mβ∥”是“αβ∥”的必要而不充分条件. 考点:1.空间直线与平面的位置关系;2.充要条件. (福建)7.若,l m是两条不同的直线,m垂直于平面α,则“l m⊥”是“//lα的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】B 考点:空间直线和平面、直线和直线的位置关系.(湖南)10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高考数学15立体几何小题.docx

立体几何 1、平面βα⊥,直线α?b ,m β?,且b m ⊥,则b 与β( ) A .b β⊥ B .b 与β斜交 C .b //β D .位置关系不确定 2、过三棱柱111ABC A B C -的任意两条棱的中点作直线,其中与平面11ABB A 平行的直线共有( )条 A .2 B .4 C .6 D .8 3、一条直线与一个平面所成的角等于3π,另一直线与这个平面所成的角是6 π 。则这两条直线的位置关系( ) A .必定相交 B .平行 C .必定异面 D .不可能平行 4、在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1:3,则锥体被截面所分成的两部分的体积之比为( ) A . B .1:9 C .1: D .1:1) 5、正方体1111ABCD A B C D -中,,,P Q R 分别是11,,AB AD B C 的中点.那么,正方体的过,,P Q R 的截面图形是( ) A .三角形 B .四边形 C .五边形 D .六边形 6、正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7、已知平面α与β所成的二面角为80°,P 为,αβ外一定点,过点P 的一条直线与,αβ所成的角都是30°,则这样的直线有且仅有( ) A .1条 B .2条 C .3条 D .4条 8、如图所示,PAB ?所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =, 8BC =,6AB =。若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A .椭圆的一部分 B .线段 C .双曲线的一部分 D .以上都不是 9、如图所示,已知球O 为棱长为1的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( ) A . 6 π B . 3 π C D

中职数学立体几何教案

x x 职业技术教育中心 教案

复习引入: 新授: 1. 平面及其表示 常见的平面形象大都是矩形状的,当我们从适当的角度和距离去观察这些平面时,感到它们与平行四边形是一致的,因此,通常画一个平行四边形来表示平面.图5-27(1)表示平放的平面,图5-27(2) 表示竖直的平面.请注意它们画法之间的区别. 如果要画相交的两个平面,可以按图5-28所示的步骤进行. 一个平面通常用小写希腊字母 α、β、γ、…表示,写在表示平面的平行四边形某一个顶角部,记作“平面 α”、“平面β”,…,或用表示平面的平行四边形对角的两个大写英文字母标明,记作“平面AC ”或“平面BD ”,当然也可记作平面 ABCD (如图5-27).应该注意,正像平面几何中直线是可以无限延伸一样,平面也是可以无限延展的,也就是说,它是没有边界的,我们用平行四边形仅仅表示了平面的一部分. 空间图形也可看作是空间点的集合,因此点、线、面的关系可用集合的关系来表示: ①点A 在直线l 上,记作A ∈l ,点A 不在直线l 上,记作A ?l ; ②点A 在平面α,记作A ∈α,点A 不在平面α,记作A ?α; ③直线l 在平面α,记作l ?α; ④直线l 与直线m 交于点N ,记作l ?m ={N },直线l 与直线m 没有交点,记作l ?m =?; ⑤直线l 与平面α交于点N ,记作l ?α={N },直线l 与平面α没有交点,记作l ?α=?; ⑥平面α与平面β交于直线l ,记作α?β=l ,平面α与平面β不相交,记作α?β=?. 在以后的学习中,我们将经常用到这些记号. 课练习1 1. 能不能说一个平面长2米,宽1米,为什么? 2. 画一个平行四边形表示平面,并分别用希腊字母和大写英文字母表示这个平面. 3. 分别用大写字母表示图示长方体的六个面所在的平面. 4. 用符号表示下列点、线、面间的关系: (1)点A 在平面α,但在平面β外; (2)直线l 经过平面α外的一点N ; (3)直线l 与直线m 相交于平面α的一点N ; (4)直线l 经过平面α的两点M 和N . 5. 下面的写法对不对,为什么? (1)点A 在平面α,记作A ?α; (2)直线l 在平面α,记作l ∈α; (3)平面α与平面β相交,记作α?β; (4)直线l 与平面α相交,记作l ?α≠?. 2. 平面的基本性质 基本性质: 图5-28 A B C D A 1 B 1 C 1 D 1 (第3题图) 图5-27(2) βD A B C D 图5-27(1) A D C α

2021-2022年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A版

2021年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A 版 一、选择题 1.空间中四点可确定的平面有( ) A .1个 B .3个 C .4个 D .1个或4个或无数个 答案 D 解析 当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任三点可确定一个平面,此时可确定4个平面. 2.一个长方体被一个平面所截,得到的几何体的三视图,如图所示,则这个几何体的体积为( ) A .8 B .4 C .2 D .1 答案 C 解析 根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S 底面=1 2×2×1=1,棱柱高为h =2,∴棱柱的体积为S 棱柱=S 底面·h =1×2=2. 3.下列命题中,错误的是( ) A .三角形的两条边平行于一个平面,则第三边也平行于这个平面 B .平面α∥平面β,a ?α,过β内的一点B 有唯一的一条直线b ,使b ∥a C .α∥β,γ∥δ,α、β、γ、δ所成的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d D .一条直线与两个平面成等角,则这两个平面平行

答案D 解析A正确,三角形可以确定一个平面,若三角形两边平行于一个平面,而它所在的平面与这个平面平行,故第三边平行于这个平面;B正确,两平面平行,一面中的线必平行于另一个平面,平面内的一点与这条线可以确定一个平面,这个平面与已知平面交于一条直线,过该点在这个平面内只有这条直线与a平行;C正确,利用同一平面内不相交的两直线一定平行判断即可确定C是正确的;D错误,一条直线与两个平面成等角,这两个平面可能是相交平面,故应选D. 4.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( ) A.锐角三角形B.直角三角形 C.钝角三角形D.不能确定 答案B 解析作AE⊥BD,交BD于E, ∵平面ABD⊥平面BCD, ∴AE⊥平面BCD,BC?平面BCD,∴AE⊥BC, 而DA⊥平面ABC,BC?平面ABC,∴DA⊥BC, 又∵AE∩AD=A,∴BC⊥平面ABD, 而AB?平面ABD,∴BC⊥AB, 即△ABC为直角三角形.故选B. 5.在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )

最新高考数学立体几何试题分析及备考建议

高考数学立体几何试题分析及备考建议 一、高考命题分析 立体几何是高中数学领域的重要模块,是高考考查考生的空间感、图 形感、语言转化能力、几何直观能力、逻辑推理能力的主要载体。主要包 括柱、锥、台、球及其简单组合体的结构特征,三视图,点、直线、平面 的位置关系等。通过研究近年高考试卷,不难发现有关立体几何的命题较 稳定,难易适中,基本体现出“两小一大”或“一小一大”的特点.即1--2道小题,1道大题,占17--22分,小题灵活多变且有一定的难度,其中常有组 合体三视图问题和开放型试题,大多考查概念辨析,位置关系探究,空间 几何量的简单计算求解等,考查画图、识图、用图的能力;而解答题大多 属中档题, 一般设计成几个小问题,此类考题往往以简单几何体为载体, 考查直线与直线、直线与平面、平面与平面的位置关系,综合考查空间想 象能力、推理论证能力和运算求解能力,也关注对条件和结论不完备情形 下开放性问题的探究。其解题思路也主要是“作——证——求”,强调作图、证明和计算相结合。命题既注意“知识的重新组合”,又采用“小题目综合化,大题分步设问”的命题思路,朝着“重基础、直观感、空间感、探究与创新”的方向发展。 二、高考命题规律 (一)客观题方面

1.以三视图为载体考查空间想象能力 空间几何体的结构与三视图主要培养观察能力、归纳能力和空间想象 能力,识别三视图所表示的空间几何体,柱、锥、台、球体及其简单组合 体的结构特征与新增内容三视图的综合会重点考查,从新课标地区的高考 题来看,三视图是出题的热点,题型多以选择题、填空题为主,属中等偏 易题。随着新课标的推广和深入,难度逐渐有所增加。主要考查以下两个 方面:①几何体的三视图与直观图的认识;②通过三视图和几何体的结合,考查几何体的表面积和体积。 例1 (新课标2)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以 zOx平面为投影面, 则得到正视图可以为 A B C D 注意:必修2中的空间直角坐标系容易被文科忽视。 例2 (新课标2)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A.6 B.9 C.12 D.18 注意:简单组合体的表面积和体积的问题为常考题目。 例3 (四川理)一个几何体的三视图如图所示,则该几何体的直观图可以

立体几何综合复习教学设计

立体几何综合复习教学设 计 Prepared on 24 November 2020

《高三立体几何综合复习》教学设计 一、教材分析 立体几何是高中数学的重要概念之一。最近几年高考对立体几何的要求发生了很大的变化,注重空间的平行与垂直关系的判定,淡化空间角和空间距离的考查,因此立体几何的难度和以往相比有大幅度的降。因此依据考试说明的要求在高三复习中制定以下目标: 1.高度重视立体几何基础知识的复习,扎实地掌握基本概念、定理和公式等基础知识。 2.复习过程中指导学生通过网络图或框图主动建构完整的知识体系,尤其要以线线、线面、面面三种位置关系形成网络,能够熟练地转化和迁移。 3.重视模型复习,强化学生的“想图、画图、识图、解图”的能力,重视图形语言、文字语言、符号语言转化的训练。尤其重视对所画的立体图形、三视图与真实图形思维理解上的一致性。 4.在完成解答题时,要重视培养学生规范书写,注意表述的逻辑性及准确性,要注意训练学生思考的严谨性,在计算相关量时应做到“一作、二证、三算”。 做好本节课的复习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有重要的意义。 二、学情分析 在传统的高中数学立体几何的学习中,采取的基本方法:面面俱到的知识点整理,典型的例题解答,课堂的跟踪训练,灌输解题规律,这种模式由于缺乏新意,学生思维难以兴奋,发散性思维受到抑制,创新意识逐渐消弱,学习的效果可想而知。因此立体几何的学习只有深入到学科知识的内部,充分调动学生的思维,触及学生的兴奋点,这样才能达到高效学习的目的。 三、设计思想

在新课程理念下,在立体几何教学中我进行了研究性学习的尝试,所谓研究性学习就是应用研究性学习的理念、方法去指导立体几何,学生在教师的引导下尽可能地采取自主性、探究性的学习方式,不仅要注意基础知识的学习,更应该关注自身综合素质、创新意识的提高。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。 四、媒体手段 利用电子白板,幻灯片课件,几何画板软件。让学生分组自己动手利用几何画板绘制立体图形,分组讨论得出结论,充分调动学生的学习的积极性主动性,自主的发现问题,找到解决问题的方法。 五、教学目标 1、知识与技能 (1)理解三视图的定义,空间中几何体三视图。 (2)掌握利用空间向量来解决立体几何问题。 2、过程与方法 (1)加强数学语言的训练,培养数学交流能力。 (2)培养学生转化的思想,把空间问题转化为平面问题解决问题。 3、情感态度与价值观 调动学生的积极性,使他们主动地参与到学习中去。 六、教学重难点 重点:空间向量的应用 难点:三视图的转化,空间向量的应用 七、教学过程设计

【新课标】备战高考数学专题复习测试题_立体几何(文科)

高考第一轮复习专题素质测试题 立体几何(文科) 班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚) 一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确) 1.(10全国Ⅱ)与正方体1111ABCD A BC D -的三条棱 AB 、1CC 、11A D 所在直线的距离相等的点( ) A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无数个 2.(09福建)设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线, 则//αβ的一个充分而不必要条件是( ) A. 1////m l βα且 B. 12////m l l 且n C. ////m n ββ且 D. 2////m n l β且 3.(08四川)直线l α?平面,经过α外一点A 与l α、都成30?角的直线有且只有( ) A.1条 B.2条 C.3条 D.4条 4.(08宁夏)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β 5.(10湖北)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ; ④若a ⊥y ,b ⊥y ,则a ∥b .其中真命题是( ) A. ①② B. ②③ C. ①④ D.③④ 6.(10新课标)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积 为( ) A.3πa 2 B.6πa 2 C.12πa 2 D. 24πa 2 7.(08全国Ⅱ)正四棱锥的侧棱长为32,侧棱与底面所成的角为?60,则该棱锥的体积

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例 一、选择题 1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时, PE 的最小值是( ) A .5 B .4 C . .【答案】D 【解析】 试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面 11AA D D ,PE ==选D 考点:1.平行关系;2.垂直关系;3.几何体的特征. 2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,BD cm CD ==,则这个二面角的度数为( ) A .30? B .60? C .90? D .120? 【答案】B 【解析】 试题分析:设所求二面角的大小为θ,则,B D A C θ<>= ,因为CD DB BA AC =++,所以2 2 2 2 2()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++?+?+?

而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ?=?= 所以2222 ||||||||2CD DB BA AC BD AC =++-?即222417468286cos θ?=++-?? 所以1 cos 2 θ= ,而[0,]θπ∈,所以60θ=?,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用. 3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( ) A .343cm B .383cm C .33cm D .3 4cm 【答案】B . 【解析】 试题分析:分析题意可知,该几何体为一四棱锥,∴体积3 8 2231312=??==Sh V . 考点:空间几何体的体积计算. 4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ?的面积为 (x)f ,则(x)f 的图象大致是( )

立体几何综合复习教学设计

《高三立体几何综合复习》教学设计 一、教材分析 立体几何是高中数学的重要概念之一。最近几年高考对立体几何的要求发生了很大的变化,注重空间的平行与垂直关系的判定,淡化空间角和空间距离的考查,因此立体几何的难度和以往相比有大幅度的降。因此依据考试说明的要求在高三复习中制定以下目标: 1.高度重视立体几何基础知识的复习,扎实地掌握基本概念、定理和公式等基础知识。 2.复习过程中指导学生通过网络图或框图主动建构完整的知识体系,尤其要以线线、线面、面面三种位置关系形成网络,能够熟练地转化和迁移。 3.重视模型复习,强化学生的“想图、画图、识图、解图”的能力,重视图形语言、文字语言、符号语言转化的训练。尤其重视对所画的立体图形、三视图与真实图形思维理解上的一致性。 4.在完成解答题时,要重视培养学生规范书写,注意表述的逻辑性及准确性,要注意训练学生思考的严谨性,在计算相关量时应做到“一作、二证、三算”。 做好本节课的复习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有重要的意义。 二、学情分析 在传统的高中数学立体几何的学习中,采取的基本方法:面面俱到的知识点整理,典型的例题解答,课堂的跟踪训练,灌输解题规律,这种模式由于缺乏新意,学生思维难以兴奋,发散性思维受到抑制,创新意识逐渐消弱,学习的效果可想而知。因此立体几何的学习只有深入到学科知识的内部,充分调动学生的思维,触及学生的兴奋点,这样才能达到高效学习的目的。 三、设计思想 在新课程理念下,在立体几何教学中我进行了研究性学习的尝试,所谓研究性学习就是应用研究性学习的理念、方法去指导立体几何,学生在教师的引导下尽可能地采取自主性、探究性的学习方式,不仅要注意基础知识的学习,更应该关注自身综合素质、创新意识的提高。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。 四、媒体手段

2020高考数学立体几何练习题

O S B A C 08高考数学立体几何练习题 1.已知四棱锥P ABCD -的底面为直角梯形,//AB DC , ⊥=∠PA DAB ,90ο底面ABCD ,且1PA AD DC ===, 2AB =,M 是PB 的中点. (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小. 2.如图,在四棱锥P ABCD -中,底面ABCD 为矩形, 侧棱PA ⊥底面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点. (Ⅰ)求直线AC 与PB 所成角的余弦值; (Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC , 并求出点N 到AB 和AP 的距离. 3.如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中 14,2,3,1AB BC CC BE ====. (Ⅰ)求BF 的长; (Ⅱ)求点C 到平面1AEC F 的距离. 4.如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AD 上移动. (Ⅰ) 证明:11D E A D ⊥; (Ⅱ)当E 为AB 的中点时,求点E 到面1ACD 的距离; (Ⅲ)AE 等于何值时,二面角1D EC D --的大小为4 π . 5.(xx 福建?理?18题)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2, D 为CC 1中点. (Ⅰ)求证:AB 1⊥面A 1BD ; (Ⅱ)求二面角A -A 1D -B 的大小; (Ⅲ)求点C 到平面A 1BD 的距离. 6.(xx 宁夏?理?19题)如图,在三棱锥S ABC -中,侧面SAB 与 侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求二面角A SC B --的余弦值. 7.(xx 陕西?理?19题)如图,在底面为直角梯形的四棱锥P ABCD -中//AD BC , ,90?=∠ABC 平面⊥PA ABC ,32,2,4===AB AD PA ,BC =6. (Ⅰ)求证:BD PAC ⊥平面; (Ⅱ)求二面角D BD P --的大小. D C B A V

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何 一、本章知识结构: 二、重点知识回顾 1、空间几何体的结构特征 (1)棱柱、棱锥、棱台和多面体 棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、

五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等; ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形. 棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方. 棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥. 多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体. (2)圆柱、圆锥、圆台、球 分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球 圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥. 2、空间几何体的侧面积、表面积 (1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和. 因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c ,高为h ,则侧面积S ch =侧. 若长方体的长、宽、高分别是a 、b 、c ,则其表面积 2() S ab bc ca =++表.

相关主题
文本预览
相关文档 最新文档