当前位置:文档之家› 微型电机原理

微型电机原理

微型电机原理
微型电机原理

目录

第1章.微型电机原理的简单介绍 (2)

1.1、微型电机的种类 (2)

1.2、微型电机的结构 (2)

1.2.1、电磁式 (1)

1.2.2、组合式 (1)

1.2.3、非电磁式 (1)

1.3、控制用微电机特性参数 (1)

1.3.1、工作特性 (1)

1.3.2、灵敏度 (1)

1.3.3、精度 (3)

1.3.4、阻抗或电阻 (3)

1.3.5、可靠性 (3)

1.4、微型电机的应用领域 (3)

1.5、微型电机行业特点 (2)

1.6、我国微型电机行业回顾 (2)

1.7、我国微型电机行业现状 (2)

1.8、国际微型电机市场现状 (4)

1.9、我国微型电机行业的未来 (3)

第二章.模拟电路和数字电路设计概念 (5)

2.1模拟电路: (5)

2.2、数字电路: (5)

2.3、模拟电路和数字电路的区别 (5)

第三章.基本电路制作之元件简介和特点以及作用 (6)

3.1、NE555 (6)

3.2、NE555的特性 (6)

第四章、电机的调试 (9)

4.1、注意事项 (9)

第五章、实验体会与感想 (9)

第1章.微型电机原理的简单介绍

微型电机-small and special electrical machine 体积、容量较小,输出功率一般在数百瓦以下的电机和用途、性能及环境条件要求特殊的电机。全称微型特种电机,简微型电机-韩国第一品牌-SPG称微电机。常用于控制系统中,实现机电信号或能量的检测、解算、放大、执行或转换等功能,或用于传动机械负载,也可作为设备的交、直流电源。

1.1、微型电机的种类

微特电机门类繁多,大体可分为直流电动机、交流电动机、自态角电机、步进电动机、旋转变压器、轴角编码器、交直流两用电动机、测速发电机、感应同步器、直线电机、压电电动机、电机机组、其他特种电机等13大类。

1.2、微型电机的结构

微特电机在结构上大体可分为3类:

1.2.1、电磁式

基本组成与普通电机相似,包括定子、转子、电枢绕组、电刷等部件,但结构格外紧凑。

1.2.2、组合式

常见的有两种:上述各种微电机的组合;微电机与电子线路的组合。例如直流电动机与传感器的组合,X方向与Y方向直线电动机的组合等。

1.2.3、非电磁式

外形结构与电磁式一样,如旋转类产品作成圆柱形,直线类产品作成方形,但内部结构因其工作原理不同而差别很大。

1.3、控制用微电机特性参数

各类微特电机的性能差别很大,其性能参数难以统一阐明。一般说来,用于驱动机械的侧重于运行及起动时的力能指微型电机-韩国SPG微型电机标;作电源用的要考虑输出功率、波形和稳定性;控制用微电机则偏重于静态和动态的特性参数。前两类电机的特性参数与普通电机相似。

唯控制用微电机有其独特的特性参数。

1.3.1、工作特性

常用输出量与输入量,或一个输出量与另一个输出量之间的关系来表示。从控制要求来说,静态特性曲线应连续、光滑,没有突变;动态特性常用频率曲线或响应曲线来表示。频率曲线应平稳,无突跳振荡点;响应曲线应快速收敛。

1.3.2、灵敏度

对应于单位输入信号的输出量的大小。一般常用比力矩、比电动势、放大系数等表示。

1.3.3、精度

一定输入条件下,输出信号的实际值与理论值的差值代表微电机的精度,常用误差大小表示。

1.3.4、阻抗或电阻

在系统中,微电机的输入、输出阻抗应分别与相应电路匹配,保证系统的运行性能及精度。

1.3.5、可靠性

不仅是控制用微电机的特殊要求,驱动微电机和电源微电机也有此要求。常用使用寿命、失效率、可靠度和平均无故障时间等参数表征微电机的运行可靠性。

1.4、微型电机的应用领域

微特电机主要应用于3个领域:①无特殊控制要求的驱动场合作为运动机械负载的动力源。②音像设备。例如,在盒式录像机中,微特电机既是磁鼓组件的关键元件,又是其主导轴驱动、收供带和磁带盒的自动装载以及磁带张力控制的重要元件。③办公自动化设备、计算机外部设备和工业自动化设备。如磁盘驱动器、复印机、数控机床、机器人等都应用了微特电机。

1.5、微型电机行业特点

微特电机指直径小于160mm或额定功率小于750W或具有特殊性能、特殊用途的电机。微特电机综合了电机、微电子、

电力电子、计算机、自动控制、精密机械、新材料等多门学科的高新技术行业,尤其是电子技术和新材料技术的应用促进了微特电机技术进步。

微特电机品种众多(达5000余种)、规格繁杂、市场应用领域十分广泛,涉及国民经济、国防装备、人类生活的各个方面,凡是需要电驱动的场合都可以见到微特电机。

微特电机制造工序多,涉及精密机械、精细化工、微细加工、磁材料处理、绕组制、绝缘处理等工艺技术,需要的工艺装备数量大、精度高,为了保证产品的质量还需一系列精密的测试仪器,是投资性较强的行业。

简而言之,微特电机行业是劳动密集型和技术密集型的高新技术产业。

1.6、我国微型电机行业回顾

我国微型电机行业创建于20世纪50年代末期,从为满足国防武器装备需要开始,经历了仿制、自行设计和研究开发的阶段,至今已有40余年的发展历史,已形成产品开发、规模化生产和关键零部件、关键材料、专用制造设备、测试仪器配套的完整的工业体系。据统计,我国微特电机生产及配套厂家在1000家以上,从业人员超过10万人,工业总产值超过100亿元。微特电机行业已成为国民经济和国防现代化建设中不可缺少的一个基础产品工业。

1.7、我国微型电机行业现状

自20世纪80年代以来,微型电机的国内需求在不断增长。我国已引进50

余条生产线,实现25个大类、60个系列、400个品种、2000个规格微特电机大批量、规模化生产。主要产品是有刷永磁直流电动机、小功率交流电动机、交直流串激电动机、罩极电动机、步进电动机、振动电机(手机用)等。

1999年我国微特电机产量约30亿台,其中民营和国企的产量约2.5亿台,独资企业的产量约12亿台,香港地区的产量约14亿台(德昌公司12亿台),台湾地区的产量约1.8亿台。2000年生产量约39亿台,占全球总产量的60%。

技术含量高的微型电机,如精密无刷电动机、高速同步电动机、高精度步进电动机、片状绕组无刷电动机、高性能伺服电动机以及新原理新结构超声波电动机国内尚未形成商品化或批量生产能力。所以国内对高精密微特电机还依赖进口。据海关统计,1995~2000年年均用汇增长26.9%,2001年虽然增加4.81%,还达11.97亿美元。

1.8、国际微型电机市场现状

世界经济在不断发展,人们生活水平在不断提高,微特电机作为不可缺少的基础机电产品,它既有低、中档、低投资的微型电机-韩国SPG微型电机全系列劳动密集型产品,又有采用先进制造技术、新兴电子技术和新材料技术应用相结合的高投资技术密集型产品,并已融入生产和销售的全球化。

2000年,全球微特电机市场在65亿台以上,主要分布在视听、办公自动化、电动车(含汽车)、家电和空调等领域。表1列出了2000年世界微特电机市场分布的状况及日本的占有率(在这里应该指出的是日本占有市场份额的相当大部分的中、低档微特电机已转移到我国内地生产)。伴随人们生活水平的提高,微特电机市场在迅速发展。通常每个家庭拥有微特电机的数量可以衡量一个国家现代化水平的程度,从表2可以知道发达国家日本每个家庭拥有微特电机数量逐年增长的历史状况和今后增长的趋势,其市场需求发展迅速、蕴藏着巨大的市场。

日本在AV、OA用微特电机轻、薄、小型化家电、空调用微特电机高效率化、静音化、工业伺服用微特电机高性能化诸方面进行了大量研发工作,在世界上处于领先地位,其产品技术含量大,占据了世界高档微特电机的绝大部分市场。

1.9、我国微型电机行业的未来

我国自1995年至2000年微特电机出口年均创汇增长18.6%,2001年比2000年减少6.02%。受美国“9.11”事件的影响,美国、日本经济受到严重挫折全球经济不景气,是2001年出口减少的主要因素。表3列出了海关统计的1995~2001年微特电机出口的情况。 2000年世界微特电机市场约65亿台,我国出口 27.26亿台,占国际市场约42%的份额,其中玩具电机32151.1万台,<37.5W 的微特电机238239.6万台,>37.5W的交直两用电机1970.6万台,<750W的直流电动机、发电机237.7万台。据统计,80%为日本、我国香港和台湾地区在内地的投资企业所生产出口的微特电机。2001年出口创汇在5000万美元的企业有6家:青岛三美电机有限公司14134万美元,天津三美电机有限公司12450万美元,珠海三美电机有限公司10803万美元,东芝华强三洋马达有限公司9955万美元,万宝至马达大连有限公司9690万美元,珠海松下马达有限公司8082万美元,三协精机(福建)有限公司7271万美元。

加入WTO后,我国微特电机行业已经进入机遇与挑战并存的全球经济大环境中,只有全力拼博、激烈竞争,才能夺取国际市场更大份额。

第二章.模拟电路和数字电路设计概念

2.1模拟电路:

电路中的元件(器件)动作方式属于线性变化的电路。通常著重的是放大倍率, 讯杂比, 工作频率等问题。常见如:变压电路, 放大器电路, 都是属于仿真电路。亦称为类比电路。比如你听收音机、看电视、打电话的时候从喇叭里听到的语音信号)的电路。相对应的是数字电路。但模拟电路是数字电路的基础,数字电路的器件都是模拟电路组成的.

2.2、数字电路:

用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。由于它具有逻辑运算和逻辑处理功能.

2.3、模拟电路和数字电路的区别

在模拟电路中,电压.电流.频率,周期的变化是互相制约的,而数字电路中电路中电压.电流.频率.周期的变化是离散的。

模拟电路可以在大电流高电压下工作,而数字电路只是在小电压,小电流底功耗下工作,完成或产生稳定的控制信号。

摸拟电路是为数字电路供给电源而又完成执行机构的执行。而数字电路是通过它特有的逻辑运算来完成整个电路的操作过程

第三章.基本电路制作之元件简介和特点以及作用3.1、NE555

(Timer IC)为8脚时基集成电路,大约在1971年由Signetics Corporation 发布,在当时是唯一非常快速且商业化的Timer IC,在往后的30年中非常普遍被使用,且延伸出许多的应用电路,后来基于CMOS技术版本的Timer IC如MOTOROLA的MC1455已被大量的使用,但原规格的NE555依然正常的在市场上供应,尽管新版IC在功能上有部份的改善,但其脚位劲能并没变化,所以到目前都可直接的代用。

NE555是属于555系列的计时IC的其中的一种型号,555系列IC的接脚功能及运用都是相容的,只是型号不同的因其价格不同其稳定度、省电、可产生的振荡频率也不大相同;而555是一个用途很广且相当普遍的计时IC,只需少数的电阻和电容,便可产生数位电路所需的各种不同频率之脉波讯号。

LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。LM358 的封装形式有塑封8引线双列直插式和贴片式。

ULN2003高耐压、大电流复合晶体管IC—ULN2003是高耐压、大电流复合晶体管阵列,由七个硅NPN 复合晶体管组成。

3.2、NE555的特性

1.只需简单的电阻器、电容器,即可完成特定的振荡延时作用。其延时范围极广,可由几微秒至几小时之久。

2.它的操作电源范围极大,可与TTL,CMOS等逻辑电路配合,也就是它的输出电平及输入触发电平,均能与这些系列逻辑电路的高、低电平匹配。

3.其输出端的供给电流大,可直接推动多种自动控制的负载。

4.它的计时精确度高、温度稳定度佳,且价格便宜。

Pin 1 (接地) -地线(或共同接地) ,通常被连接到电路共同接地。Pin 2 (触发点) -这个脚位是触发NE555使其启动它的时间周期。触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。Pin 3 (输出) -当时间周期开始555的输出输出脚位,移至比电源电压少1.7伏的高电位。周期的结束输出回到O伏左右的低电位。于高电位时的最大输出电流大约200 mA 。Pin 4 (重置) -一个低逻辑电位送至这个脚位时会重置定时器和使输出回到一个低电位。它通常被接到正电源或忽略不用。Pin 5 (控制) -这个接脚准许由外部电压改变触发和闸限电压。当计时器经营在稳定或振荡的运作方式下,这输入能用来改变或调整输出频率。Pin 6 (重置锁定) - Pin 6重置锁定并使输出呈低态。当这个接脚的电压从1/3 VCC电压以下移至2/3 VCC以上时启动这个动作。Pin 7 (放电) -这个接脚和主要的输出接脚有相同的电流输出能力,当输出为ON时为LOW,对地为低阻抗,当输出为OFF时为HIGH,对地为高阻抗。Pin 8 (V +) -这是555个计时器IC 的正电源电压端。供应电压的范围是+4.5伏特(最小值)至+16伏特(最大值)。功能特性

·供应电压 4.5-18V ·供应电流3-6 mA ·输出电流225mA (max) ·上升/下降时间100 ns

相关应用

NE555的作用范围很广,但一般多应用于单稳态多谐振荡器(Monostable Mutlivibrator)及无稳态多谐振荡器(Astable Multivibrator)。

编辑本段行情分析

NE555该型号,市场上比较常见,在各大网站上,搜索比较频繁。NE555在9-10月份报价差异较大,主流品牌是TI、ST、NULL及国产品牌,国外品牌的价格一直相对偏高,各商户报价在0.4-1元/PCS区间波动;国产品牌价格就非常低,由于价格相对较低,利润已经压制很窄空间,因此降价空间小,有时候市场还出现小幅度的涨价现象。

开放分类:电子技术,集成电路,电子元器件

LM358的特性:

(1)内部频率补偿

(2)直流电压增益高(约100dB)

(3)单位增益频带宽(约1MHz)

(4)电源电压范围宽:单电源(3—30V)

(5)双电源(±1.5 一±15V)

(6)低功耗电流,适合于电池供电 LM358

(7)低输入偏流

(8)低输入失调电压和失调电流

(9)共模输入电压范围宽,包括接地

(10)差模输入电压范围宽,等于电源电压范围

(11)输出电压摆幅大(0 至Vcc-1.5V)

LM358运用:红外线探测报警器,该报警器能探测人体发出的红外线,当人进入报警器的监视区域内,即可发出报警声,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。

工作原理

该装置电路原理1。由红外线传感器、信号放大电路、电压比较器、延时电路和音响报警电路等组成。红外线探测传感器IC1探测到前方人体辐射出的红外线信号时,由IC1 的②脚输出微弱的电信号,经三极管VT1 等组成第一级放大电路放大,再通过C2输入到运算放大器IC2中进行高增益、低噪声放大,此时由IC2①脚输出的信号已足够强。IC3作电压比较器,它的第⑤脚由R10、VD1提供基准电压,当IC2①脚输出的信号电压到达IC3的⑥脚时,两个输入端的电压进行比较,此时IC3的⑦脚由原来的高电平变为低电平。IC4 为报警延时电路,R14 和C6 组成延时电路,其时间约为1 分钟。当IC3的⑦脚变为低电平时,C6通过VD2放电,此时IC4 的②脚变为低电平,它与IC4的③脚基准电压进行比较,当它低于其基准电压时,IC4 的①脚变为高电平,VT2 导通,讯响器BL通电发出报警声。人体的红外线信号消失后,IC3的⑦脚又恢复高电平输出,此时VD2 截止。由于C6两端的电压不能突变,故通过R14向C6 缓慢充电,当C6两端的电压高于其基准电压时,IC4的①脚才变为低电平,时间约为1 分钟,即持续1分钟报警。由VT3、R20、C8 组成开机延时电路,时间也约为 1 分钟,它的设置主要是防止使用者开机后立即报警,好让使用者有足够的时间离开监

视现场,同时可防止停电后又来电时产生误报。该装置采用9-12V直流电源供电,由T 降压,全桥U整流,C10 滤波,检测电路采用IC5 78L06供电。本装置交直流两用,自动无间断转换。

ULN2003的每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL 和CMOS 电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。ULN2003 工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V 的电压,输出还可以在高负载电流并行运行。ULN2003 采用DIP—16 或SOP—16 塑料封装。

ULN2003内部还集成了一个消线圈反电动势的二极管,可用来驱动继电器。它是双列16脚封装,NPN晶体管矩阵,最大驱动电压=50V,电流=500mA,输入电压=5V,适用于TTL COMS,由达林顿管组成驱动电路。 ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,它的输出端允许通过电流为200mA,饱和压降VCE 约1V左右,耐压BVCEO 约为36V。用户输出口的外接负载可根据以上参数估算。采用集电极开路输出,输出电流大,故可直接驱动继电器或固体继电器,也可直接驱动低压灯泡。通常单片机驱动ULN2003时,上拉2K的电阻较为合适,同时,COM引脚应该悬空或接电源。ULN2003是一个非门电路,包含7个单元,单独每个单元驱动电流最大可达350mA,9脚可以悬空。比如1脚输入,16脚输出,你的负载接在VCC与16脚之间,不用9脚。

编辑本段作用

ULN2003是大电流驱动阵列,多用于单片机、智能仪表、PLC、数字量输出卡等控制电路中。可直接驱动继电器等负载。输入5VTTL电平,输出可达500mA/50V。ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。该电路的特点如下: ULN2003的每一对达林顿都串联一个2.7K 的基极电阻,在5V的工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器。ULN2003 是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。

ULN2003芯片引脚介绍

引脚1:CPU脉冲输入端,端口对应一个信号输出端。引脚2:CPU脉冲输入端。引脚3:CPU脉冲输入端。引脚4:CPU脉冲输入端。引脚5:CPU 脉冲输入端。引脚6:CPU脉冲输入端。引脚7:CPU脉冲输入端。引脚8:接地。引脚9:该脚是内部7个续流二极管负极的公共端,各二极管的正极分别接各达林顿管的集电极。用于感性负载时,该脚接负载电源正极,实现续流作用。如果该脚接地,实际上就是达林顿管的集电极对地接通。引脚10:脉冲信号输出端,对应7脚信号输入端。

引脚11:脉冲信号输出端,对应6脚信号输入端。引脚12:脉冲信号输出端,对应5脚信号输入端。引脚13:脉冲信号输出端,对应4脚信号输入端。引脚14:脉冲信号输出端,对应3脚信号输入端。引脚15:脉冲信号输出端,对应2脚信号输入端。引脚16:脉冲信号输出端,对应1脚信号输入端。

第四章、电机的调试

4.1、注意事项

调试前之准备检查:

(1) 绝缘电阻测定

(2) 各种配线之检查

(3) 接地线之检查

(4) 气隙(Air gap)之检查

(5) 轴承关系

(6) 耐压试验

起动后之检查:

电动机起动时,对方机械应於无负载状态下,开始时尽量以低速回转并依下述各项检查之,以全电压起动之笼形时,起动之后随即将开关切掉,由惯性回转时检查之。

a) 回转方向是否相符(正常之回转方向於外形图或铭板上有指示)。

b) 是否有定部与转部接触之情况。

c) 轴承之油环是否有转动。

d) 使用轴承时,有否由轴承上发生之异常音响。

e) 绕线形者注意集电环处是否有飞弧( Flash over)等之异常发生。

f) 滑动轴承时轴承之止推(Thrust)面是否有接触,装有磁心规(Magnetic center gauge)者准确认之。

g) 请检查是否有异常之振动,绝缘是否有烧焦味等。

加速时之检查:

如低速无异常时,可一边慢慢加速,一面注意检查轴承温度、振动、轴端隙、油环回转情况。由全速回转至加负载为止之注意:进入全速运转后,继续以无负载运转直至轴承温度大致饱和为止,确定无异常后才开始全负载运转。

第五章、实验体会与感想

经过这次的测试技术实验,我个人得到了不少的收获,一方面加深了我对课本理论的认识,另一方面也提高了实验操作能力。现在我总结了以下的体会和经验。

这次的实验跟我们以前做的实验不同,因为我觉得这次我是真真正正的自己亲自去完成。所以是我觉得这次实验最宝贵,最深刻的。就是实验的过程全是我们学生自己动手来完成的,这样,我们就必须要弄懂实验的原理。在这里我深深体会到哲学上理论对实践的指导作用:弄懂实验原理,而且体会到了实验的操作能力是靠自己亲自动手,亲自开动脑筋,亲自去请教别人才能得到提高的。

我们做实验绝对不能人云亦云,要有自己的看法,这样我们就要有充分的准备,若是做了也不知道是个什么实验,那么做了也是白做。实验总是与课本知识相关的,比如微电动机的调试实验,是利用频率特性分析振动的,就必须回顾课本的知识,知道实验时将要测量什么物理量,写报告时怎么处理这些物理量。

在实验过程中,我们应该尽量减少操作的盲目性提高实验效率的保证,有的人一开始就赶着做,结果却越做越忙,主要就是这个原因。我也曾经犯过这样的错误。在做电桥实验时,开始没有认真吃透电路图,仪器面板的布置及各键的功能,瞎着接线,结果显示不到数据,等到显示到了又不正确,最后只好找同学帮忙。

我们做实验不要一成不变和墨守成规,应该有改良创新的精神。实际上,在弄懂了实验原理的基础上,我们的时间是充分的,做实验应该是游刃有余的,如果说创新对于我们来说是件难事,那改良总是有可能的。比如说,在做电桥实验中,我们可以通过返回旋动,测量回程误差。

在实验的过程中我们要培养自己的独立分析问题,和解决问题的能力。培养这种能力的前题是你对每次实验的态度。如果你在实验这方面很随便,抱着等老师教你怎么做,拿同学的报告去抄,尽管你的成绩会很高,但对将来工作是不利的。比如在做回转机构实验中,经老师检查,我们的时域图波形不太合要求,我首先是改变振动的加速度,发现不行,再改变采样频率及采样点数,发现有所改善,然后不断提高逼近,最后解决问题,兴奋异常。在写实验报告,对于思考题,有很多不懂,于是去问老师,老师的启发了我,其实答案早就摆在报告中的公式,电路图中,自己要学会思考。

在这次的实验中,我对一些测试硬件、软件及其使用有了更深刻的认识。比如说,我在电桥实验中,我知道应变片是怎么样的,面板是怎么接电桥的;在回转机构及悬臂梁实验中,我知道压电传感器是如此微小的,怎样通过放大、接口电路进行微机分析,滤波、窗函数的选择,及怎样使用采样和分析,另外,用文档形式写报告,是我们以前从来没有尝试过的。可以说,做这次的测试技术实验,我们学生自己的能力得到了充分的发挥,跟以往那些充满条条框框的实验是不同的。

本人认为,在做这次的测试技术实验中,学习和传感器是一件最有趣

的事情,因为这是一个虚拟的平台,它能够对各种测试结果进行准确的分析实在是太神奇了;而传感器则是测试技术的一个必不可少的前提,所以我觉得和传感器对测试技术的起到非常重要的作用。

最后,通过这次的测试技术实验我不但对理论知识有了更加深的理解,对于实际的操作和也有了质的飞跃。经过这次的实验,我们整体对各个方面都得到了不少的提高,希望以后学校和系里能够开设更多类似的实验,能够让我们得刀更好的锻炼。

二、评语及成绩

成绩:

指导教师:

微型直流电机的工作原理与控制方式

微型有刷电机具有价格便宜、容易操控的特点应用在各个领域,如电动玩具、美容产品、个人护理产品、医疗器械等等大多用到的都是微型有刷直流电机。有刷直流电机的工作原理是怎样的呢?下面天孚微电机就来带大家来了解:微型直流电机(有刷)的工作原理。 首先我们来了解电机的结构,几乎所有的有刷直流电机组件都是一样的,定子+电刷+换向器如下图所示。 1.定子 定子能在转子的周围产生固定的磁场,磁场可以是永磁体或者电磁绕组产生,微型有刷直流电机的分类是由定子或者电磁绕组链接到电源的方式来区别。 2. 转子 转子是由一个或者多个绕组构成,当绕组受到激励时,就会产生磁场,转子磁场的磁极和定子的磁场磁极相反,互相吸引,从而使转子旋转。在旋转过种中,转子会按照不同的顺序持续激励绕组,因此转子产生的磁极绝不会与定子产生的磁极重叠,这个过种叫做换向。 3. 电刷与换向器 微型有刷直流电机与无刷微型电机不同,不需要控制器来切换绕组的电流方向,遥是直接通过换向器进行换向。在微型有刷直流电机的转轴上有安装一个分片式铜套,这个就是换向器,电机在运转过程中,电刷会沿着换向器滑动,和换向器不同分片接触。这些分片与不同的转子绕组连接,当电刷通电时就会在电机内部产生动态磁场。也是这种原因,导致微型有刷直流电机磨损较为严重,导致电机使用寿命无法太长,这也是微型有刷直流电机的缺陷所在。

微型有刷直流电机的类型 1. 微型永磁体有刷直流电机 这种微型有刷直流电机是最常见的有刷电机,采用永磁体产生磁场,微型电机通的永磁体比绕组定子具有更高的效益,不过永磁体的磁性会随着时间衰退(永磁体只是一个名字,并不是真正的永磁)。有的永磁体微型直流电机还会加上绕组,防止磁性丢失。由于定子磁场的恒定的,所以永磁体有刷直流电机对电压变化响应非常快(下图为永磁体直流电机原理图)。

3V供电的微型直流电机的驱动

3V供电的微型直流电机的驱动,这种电机有两根引线,更换两根引线的极性,电机换向。该驱动电路要求能进行正反转和停止控制。 电路一: 如下图所示,些电路是作者最初设计的电路,P1.3、P2.2和P2.4分别是51单片机的IO引脚。设计的工作原理是:当P1.3高电平、P2.2和P2.4都为低电平时,电机正转。此时,Q1和Q4导通,Q2和Q3截止,电流注向为+5VàR1àQ1àMàQ4;当P1.3低电平、P2.2和P2.4都为高电平时,电机反转。此时,Q2和Q3导通,Q1和Q4截止。P2.2为高电平同时P2.4为低电平时,电路全不通,电机停止。 图中电阻:R1=20Ω,R2=R3=R4=510Ω 图1 但实际实验情况去出人意料,即电机正向和反向都不转。经测量,当P1.3高电平,P2.2和P2.4都为低电平时,Q4导通,但Q1不导通,P1.3的电平只有0.67V左右,这样Q1无法导通。 经分析原因如下:51的P1、P2、P3各引脚都是内部经电阻上拉,对地接MOSFET管,所谓高电平,是MOSFET截止,引脚上拉电阻拉为高电平。若此内部上拉电阻很大,比如20K,则当上图电路接上后,则流过Q1的b极的电流最大为(5-0.7)/20mA=0.22mA,难以动Q1导通。所以此电路不通。 总结:51单片机的引脚上拉能力弱,不足以驱动三极管导通。 电路二: 如下图所示:这个电路中四个三极管都采用PNP型,这样,导通的驱动是控制引脚输出低电平,而51的低电平时,是通过MOSFET接地,所以下拉能力极强。 但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO脚控制则可以加一个反相器。但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO脚控制则可以加一个反相器。如图3所示。图中标有各点实测电压值。

微型电机的简单介绍

微型电机的简单介绍 概述 微型电机指直径小于160mm或额定功率小于750W或具有特殊性能、特殊用途的电机。微特电机综合了电机、微电子、电力电子、计算机、自动控制、精密机械、新材料等多门学科的高新技术行业,尤其是电子技术和新材料技术的应用促进了微特电机技术进步。 微特电机品种众多(达5000余种)、规格繁杂、市场应用领域十分广泛,涉及国民经济、国防装备、人类生活的各个方面,凡是需要电驱动的场合都可以见到微特电机。 微特电机制造工序多,涉及精密机械、精细化工、微细加工、磁材料处理、绕组制造、绝缘处理等工艺技术,需要的工艺装备数量大、精度高,为了保证产品的质量还需一系列精密的测试仪器,是投资性较强的行业。 简而言之,微特电机行业是劳动密集型和技术密集型的高新技术产业。 主要应用领域: ①无特殊控制要求的驱动场合作为运动机械负载的动力源。例如,玩具汽车、模型飞机中的动力驱动装置。 ②音像设备。例如,在盒式录像机中,微特电机既是磁鼓组件的关键元件,又是其主导轴驱动、收供带和磁带盒的自动装载以及磁带张力控制的重要元件。 ③办公自动化设备、计算机外部设备和工业自动化设备。如磁盘驱动器、复印机、打印机、数控机床、机器人等都应用了微型电机。 产品特点: 微型电机是由永磁同步电动机和内置减速箱组合而成的可逆同步电动机,具有力矩大、噪音低、体积小、重量轻、使用方便、运行恒速等优点,还可以搭配

各种齿轮箱以达到改变输出速度和转矩的目的。 应用范围: 食品机械、纺织机械、医疗器械、安防设备、智能门窗、监控器云台、广告灯箱、家用电器、冷暖空调风页、执行器控制等所有小功率恒转速大力矩设备。 微型电机在结构上大体可分为3类: 1、电磁式 基本组成与普通电机相似,包括定子、转子、电枢绕组、电刷等部件,但形状比较小巧, 结构格外紧凑。 2、混合式 常见的有两种:上述各种微电机的组合;微电机与电子线路的组合。例如直流电动机与传感器的组合,X方向与Y方向直线电动机的组合等。 3、非电磁式 外形结构与电磁式一样,如旋转类产品作成圆柱形,直线类产品作成方形,但内部结构 因其工作原理不同而差别很大。 微型电机的主要应用产品:家用电器、健身器材、办公用品设备、机械设备、医疗器械、视听设备、安防设备、保健设备等等。

微电机控制电路

课题三 微电机控制电路 微电机控制电路使用1块CMOS集成电路、2只晶体管、2只电阻和1个双刀三掷开关,电路原理如图3-1所示。通过拨动转换开关K,它可以对直流电机实现正转、停止和反转的控制。该电路可以广泛用于电动玩具(如电码汽车)或日常用具(如电动窗帘)等,若配上遥控发射和接受电路,还可以实现对玩具和窗帘等的遥控。 一、工作原理 与非门G1A、G1B的输出端(分别为集成电路6脚和9脚)分别与两个晶体管的集电极相连接,作为电路的输出端接接至微型电机的两个输入端。与非门G1A的输入端(4脚)与G1B的输出相连,G1B的输入端(11脚)与G1A的输出相连。两个晶体管的基极也分别通过限流电阻加至对方与非门的输出端,从而构成一双稳态电路。与非门G1A、G1B的另一个输入端(5脚和10脚)与开关K的两定触点A、B相连,作为控制信号输入端。由图2.18中的开关K的连接方式可知,当拨动开关K时,A、B两端的逻辑电平分别为01、00、10三种状态,分别对应电机的正转、停止和反转。下面就按这3种状态分析电路的工作过程: 图3-1中开关K的位置使A点为低电平,B点为高电平。因此与非门G1A 输出高电平U O1=U OH≈V DD,这时与非门G1B的两个输入端均为高电平,所以其输出U O2=U OL≈0V。由于选用的CMOS与非门的驱动级是漏极开路的CMOS管,所以与非门具有较大灌电流而不能提供拉电流,故必须增加晶体管VT1、VT2来弥补G1A、G1B无拉电流的不足。因为这时U O1≈V DD通过R2加至晶体管VT2的基极使其截止,U O2≈0V,加至晶体管VT1的基极使其导通,VT1的导通电流经过导通的与非门G1B从左向右流过电机M,使电机产生正向转动。 当开关K往下拨一挡时,A、B两点的电位均为低电平,与非门G1A、G1B均截止而输出高电平,晶体管VT1、VT2的基极由于都加上高电平也截止,电机两端均为高电平,即加至电机两端的电压为0V,所以电机停止转动。 当开关再往下拨一挡时,A点为高电平,B点为低电平,电路的工作状态与正转状态刚好相反,所以电机反转。

微型电机驱动电路原理

微型电机驱动电路原理 时间:2010-10-26 10:07来源:未知作者:电路图点击:210 次 本文介绍了5种用于3V供电的微型直流电机的驱动电路,这种电机有两根引线,更换两根引线的极性,电机换向。该驱动电路要求能进行正反转和停止控制。 电路一 如下图所示,些电路是作者最初设计的电路,P1.3、P2.2和P2.4分别是51单片机的IO引脚。设计的工作原理是:当P1.3高电平、P2.2和P2.4都为低电平时,电机正转。此时,Q1和Q4导通,Q2和Q3截止,电流注向为+5VàR1àQ1àMàQ4;当P1.3低电平、P2.2和P2.4都为高电平时,电机反转。此时,Q2和Q3导通,Q1和Q4截止。P2.2为高电平同时P2.4为低电平时,电路全不通,电机停止。 图中电阻:R1=20Ω,R2=R3=R4=510Ω 但实际实验情况去出人意料,即电机正向和反向都不转。经测量,当P1.3高电平,P2.2和P2.4都为低电平时,Q4导通,但Q1不导通,P1.3的电平只有0.67V左右,这样Q1无法导通。 经分析原因如下:51的P1、P2、P3各引脚都是内部经电阻上拉,对地接MOSFET 管,所谓高电平,是MOSFET截止,引脚上拉电阻拉为高电平。若此内部上拉电阻很大,比如20K,则当上图电路接上后,则流过Q1的b极的电流最大为 (5-0.7)/20mA=0.22mA,难以动Q1导通。所以此电路不通。 总结:51单片机的引脚上拉能力弱,不足以驱动三极管导通。 电路二 如下图所示:这个电路中四个三极管都采用PNP型,这样,导通的驱动是控制引脚输出低电平,而51的低电平时,是通过MOSFET接地,所以下拉能力极强。 但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO 脚控制则可以加一个反相器。但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO脚控制则可以加一个反相器。如图3所示。图中标有各

单片机微型直流电机控制系统课程设计报告

2014单片机课程设计 单片机课程设计报告 题目微型直流电机控制系统设计专业班级 学号 实现形式Proteus 姓名 分数 指导老师 学院名称电气信息学院

目录 1 绪论 (1) 1.1 课题背景 (1) 1.2 课题要求 (1) 2 方案论证 (2) 2.1 系统组成 (2) 2.2 单片机选型 (2) 2.3 驱动方案论证 (2) 2.4 监测方案论证 (4) 2.5 人机接口方案 (5) 3 硬件设计 (5) 3.1 单片机最小系统设计 (5) 3.2 I/O分配 (6) 3.3 驱动电路设计 (7) 3.4 转速检测电路设计 (8) 3.5 人机接口电路设计 (9) 4 软件设计 (10) 4.1 主程序流程 (10) 4.2 按键扫描子程序流程 (11) 5 问题与分析 (12) 5.1 设计问题 (12) 5.2 答辩问题 (13) 参考文献 (14) 附录一(原理图) (15) 附录二(程序清单) (16) 附录三(器件清单) (18)

1 绪论 现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。 直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。 1.1课题背景 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 传统的控制系统采用模拟元件,虽在一定程度上满足了生产要求,但是因为元件容易老化和在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,故系统的运行可靠性及准确性得不到保证,甚至出现事故。 目前,直流电动机调速系统数字化已经走向实用化,伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。

小型直流电机输出扭矩的控制

小型直流电机输出扭矩的控制 摘要:本文介绍了小型直流电动机输出力矩的方法。 关键词:直流电动机力矩输出 一、概述 我们知道直流电动机电枢中的电流与其轴上的机械负载成正比,即负载加大,电动机电枢中的电流随之加大,当电枢中的电流增大到一定值时,若不加以限制,电枢就有被烧毁的危险。 下图是笔者设计的针对小型直流电动机(20W左右)的一种输出扭矩控制(过载保护)电路。电路有如下功能: 1、电机的最大输出扭矩可调。 2、当电机的最大输出扭矩超过设定值时,自动停机,并有红色发光二极管闪烁报警。 二、工作原理 11

22 3 2 1 8 4 U1A LM393 T 9014 D1IN4007 SB1LD1GREEN R12K 三位半数显电流表 M R322K R45.1K KA1 KA2 R21 KA1 Vin 1 G N D 2 Vout 3U278L12 R515K R62K B KA1 KM1 SB2LAMP KM1 R8180K R9470K R10180K TRIG 2 Q 3R 4 CVolt 5 THR 6 DIS 7 V C C 8 G N D 1 U3 555 EC247μKM1 R112K D3RED KM1+24V KA2 KA3 KA2 R7 6.8K 开关电源 AC220V DC24V TRIG 2 Q 3R 4 CVolt 5 THR 6 DIS 7 V C C 8 G N D 1 U4 555 R12200K EC34.7μR136.8K T29014D21N4007EC14.7μ KA3 Vin 1 G N D 2 Vout 3 U578L12 EC447μ

微机原理及应用课程设计说明书微型直流电机调速系统设计

微机原理及应用课程设计说明书设计题目:微型直流电机调速系统设计

目录 一、系统功能要求分析 (1)

二、方案设计及其说明 (2) 三、原理线路设计 (3) 1.原理线路 2.工作原理说明 3.操作时序分析 4.特点说明 四、程序设计 (4) 1.程序结构及流程 2.程序算法分析 3.关键程序段说明 4.源程序清单 五、系统调试及结论 (5) 1.调试方法 2.重点问题及解决方法 3.运行结果及结论 六、设计体会 (6) 参考文献 (7) 一、系统功能要求分析

此设计要求利用实验装置,设计一个直流电机控制系统的原理线路,编制应用程序,实现直流电机转速控制的功能,并且进一步可增加转速测量的功能。系统功能具体要求及分析如下: (1)开始运行,电机停止:未按任何键之前,设定初值,使经DA0832转换后的电流为零,电机不转。 (2)按档调速功能:直流电机可有三个转速,分为一、二、三档,其中按下按键“一”电机在低速档运行;按下按键“二”电机在中速档运行;按下按键“三”电机在高速档运行。 (3)连续调速功能:按下“加速”键,编程控制DA0832输入数字量累加,直流电机可在原速基础上升速;按下“减速”键,编程控制DA0832输入数字量自减,直流电机可相对原速减速。 (4)停止功能:设有停止键,控制电机的停止运行。调节电位器改变DA0832的基准电压,使得初值00H对应的输出电流为0,从而电机停止运行。(5)改变转向功能:原理上,调节DAC0832的基准电压,使得某一中间值对应转速为零,则在输入数字量大于此值时为正电压,电机正转;再输入数字量小于此值时为负电压,电极反转。 (6)测速功能:在一定时间内对霍尔元件产生的脉冲数计数,从而求得电机转速,并在数码管显示。 二、方案设计及其说明 (一)硬件设计 在硬件上,所用到的芯片主要有:CPU8086、并行通信接口芯片8255A、可编程定时计数芯片8253、可编程中断控制器8259A、以及键盘扫描显示芯片8279。 (1)电机转速的控制:电机转速大小的控制可以通过改变加于电机两端的电压来实现,选用DAC0832芯片实现数字量到模拟量的转化,设置电机转速给定值,不同的数字量对应输出不同的电流,再通过一个高输入阻抗的线性运算放大器LM324得到相应的模拟电压信号,从而控制电机转速。 (2)按键状态的检测及显示:设K1、K2、K3为一、二、三档,K4为停止键,

几种微型电机驱动

几种微型电机驱动电路实验和分析 以下所述电路用于3V供电的微型直流电机的驱动,这种电机有两根引线,更换两根引线的极性,电机换向。该驱动电路要求能进行正反转和停止控制。 电路一 如下图所示,些电路是作者最初设计的电路,P1.3、P2.2和P2.4分别是51单片机的IO引脚。设计的工作原理是:当P1.3高电平、P2.2和P2.4都为低电平时,电机正转。此时,Q1和Q4导通,Q2和Q3截止,电流注向为+5VàR1àQ1àMàQ4;当P1.3低电平、P2.2和P2.4都为高电平时,电机反转。此时,Q2和Q3导通,Q1和Q4截止。P2.2为高电平同时P2.4为低电平时,电路全不通,电机停止。 图中电阻:R1=20Ω,R2=R3=R4=510Ω 但实际实验情况去出人意料,即电机正向和反向都不转。经测量,当P1.3高电平,P2.2和P2.4都为低电平时,Q4导通,但Q1不导通,P1.3的电平只有0.67V左右,这样Q1无法导通。 经分析原因如下:51的P1、P2、P3各引脚都是内部经电阻上拉,对地接MOSFET管,所谓高电平,是MOSFET截止,引脚上拉电阻拉为高电平。若此内部上拉电阻很大,比如20K,则当上图电路接上后,则流过Q1的b极的电流最大为(5-0.7)/20mA=0.22mA,难以动Q1导通。所以此电路不通。 总结:51单片机的引脚上拉能力弱,不足以驱动三极管导通。 电路二 如下图所示:这个电路中四个三极管都采用PNP型,这样,导通的驱动是控制引脚输出低电平,而51的低电平时,是通过MOSFET接地,所以下拉能力极强。 但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO脚控制则可以加一个反相器。但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO脚控制则可以加一个反相器。如图3所示。图中标有各点实测电压值。

小型直流电机控制器的设计

辽宁工业大学 单片机原理及接口技术课程设计(论文)题目:小型直流电机控制器的设计 院(系):电气工程学院 专业班级: xxxxxxxxxxx 学号: xxxxxxxxxx 学生姓名: xxxxxxx 指导教师:(签字) 起止时间:2016.6.6-2016.6.17

课程设计(论文)任务及评语 院(系):电气工程学院 教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 学生姓名 专业班级 课程设计(论文)题目 小型直流电机控制器的设计 课 程设计(论文)任务 课题完成的功能、设计任务及要求、技术参数 实现功能 小型直流电机控制器可以通过按键设置参数,实现电机的启动、加速、减速、急停、 恒速等功能。硬件设计包括CPU 选型、最小系统电路、电机驱动电路、按键电路、显示。 设计任务及要求 1、确定设计方案,画出方案框图。 2、进行硬件电路的设计,包括元器件选择,绘制原理图。 3、进行实物的制作。 4、绘出程序流程图,并编写完整程序。 5、要求认真独立完成所规定的全部内容;所设计的内容要求正确、合理。 6、按学校规定的格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。 技术参数 1、电机参数:5~12V 可选,工作电流500mA 以下; 进 度计划 1、布置任务,查阅资料,确定系统设计方案(2天) 2、系统硬件设计及实物制作(3天) 3、系统软件设计及编写功能程序及调试(3天) 4、撰写、打印设计说明书(1天) 5、验收及答辩。(1天) 指导教师评语及成绩 平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日

微型电机原理

目录 第1章.微型电机原理的简单介绍 (2) 1.1、微型电机的种类 (2) 1.2、微型电机的结构 (2) 1.2.1、电磁式 (1) 1.2.2、组合式 (1) 1.2.3、非电磁式 (1) 1.3、控制用微电机特性参数 (1) 1.3.1、工作特性 (1) 1.3.2、灵敏度 (1) 1.3.3、精度 (3) 1.3.4、阻抗或电阻 (3) 1.3.5、可靠性 (3) 1.4、微型电机的应用领域 (3) 1.5、微型电机行业特点 (2) 1.6、我国微型电机行业回顾 (2) 1.7、我国微型电机行业现状 (2) 1.8、国际微型电机市场现状 (4) 1.9、我国微型电机行业的未来 (3) 第二章.模拟电路和数字电路设计概念 (5) 2.1模拟电路: (5) 2.2、数字电路: (5) 2.3、模拟电路和数字电路的区别 (5) 第三章.基本电路制作之元件简介和特点以及作用 (6) 3.1、NE555 (6) 3.2、NE555的特性 (6) 第四章、电机的调试 (9) 4.1、注意事项 (9) 第五章、实验体会与感想 (9)

第1章.微型电机原理的简单介绍 微型电机-small and special electrical machine 体积、容量较小,输出功率一般在数百瓦以下的电机和用途、性能及环境条件要求特殊的电机。全称微型特种电机,简微型电机-韩国第一品牌-SPG称微电机。常用于控制系统中,实现机电信号或能量的检测、解算、放大、执行或转换等功能,或用于传动机械负载,也可作为设备的交、直流电源。 1.1、微型电机的种类 微特电机门类繁多,大体可分为直流电动机、交流电动机、自态角电机、步进电动机、旋转变压器、轴角编码器、交直流两用电动机、测速发电机、感应同步器、直线电机、压电电动机、电机机组、其他特种电机等13大类。 1.2、微型电机的结构 微特电机在结构上大体可分为3类: 1.2.1、电磁式 基本组成与普通电机相似,包括定子、转子、电枢绕组、电刷等部件,但结构格外紧凑。 1.2.2、组合式 常见的有两种:上述各种微电机的组合;微电机与电子线路的组合。例如直流电动机与传感器的组合,X方向与Y方向直线电动机的组合等。 1.2.3、非电磁式 外形结构与电磁式一样,如旋转类产品作成圆柱形,直线类产品作成方形,但内部结构因其工作原理不同而差别很大。 1.3、控制用微电机特性参数 各类微特电机的性能差别很大,其性能参数难以统一阐明。一般说来,用于驱动机械的侧重于运行及起动时的力能指微型电机-韩国SPG微型电机标;作电源用的要考虑输出功率、波形和稳定性;控制用微电机则偏重于静态和动态的特性参数。前两类电机的特性参数与普通电机相似。 唯控制用微电机有其独特的特性参数。 1.3.1、工作特性 常用输出量与输入量,或一个输出量与另一个输出量之间的关系来表示。从控制要求来说,静态特性曲线应连续、光滑,没有突变;动态特性常用频率曲线或响应曲线来表示。频率曲线应平稳,无突跳振荡点;响应曲线应快速收敛。 1.3.2、灵敏度 对应于单位输入信号的输出量的大小。一般常用比力矩、比电动势、放大系数等表示。

几种微型电机驱动电路分析

几种微型电机驱动电路分析 时间:2006-10-20 来源: 作者: 点击:557 字体大小:【大中小】 以下所述电路用于3V供电的微型直流电机的驱动, 这种电机有两根引线,更换两根引线的极性,电机换向。该驱动电路要求能进行正反转和停止控制。 电路一: 如下图所示,这电路是作者最初设计的电路,P1.3、P2.2和P2.4分别是51单片机的IO引脚。设计的工作原理是:当P1.3高电平、P2.2和P2.4都为低电平时,电机正转。此时,Q1和Q4导通,Q2和Q3截止,电流注向为+5VàR1àQ1àMàQ4;当P1.3低电平、P2.2和P2.4都为高电平时,电机反转。此时,Q2和Q3导通,Q1和Q4截止。P2.2为高电平同时P2.4为低电平时,电路全不通,电机停止。 图中电阻:R1=20Ω,R2=R3=R4=510Ω

图1 但实际实验情况去出人意料,即电机正向和反向都不转。经测量,当P1.3高电平,P2.2和P2.4都为低电平时,Q4导通,但Q1不导通,P1.3的电平只有0.67V左右,这样Q1无法导通。 经分析原因如下:51的P1、P2、P3各引脚都是内部经电阻上拉,对地接MOSFET管,所谓高电平,是MOSFET截止,引脚上拉电阻拉为高电平。若此内部上拉电阻很大,比如20K,则当上图电路接上后,则流过Q1的b极的电流最大为 (5-0.7)/20mA=0.22mA,难以动Q1导通。所以此电路不通。 总结:51单片机的引脚上拉能力弱,不足以驱动三极管导通。 电路二:

如下图所示:这个电路中四个三极管都采用PNP型,这样,导通的驱动是控制引脚输出低电平,而51的低电平时,是通过MOSFET接地,所以下拉能力极强。 但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO脚控制则可以加一个反相器。但此电路的Q1和Q3需要分别控制,所需控制引脚较多。如果要用一个IO 脚控制则可以加一个反相器。如图3所示。图中标有各点实测电压值。 图2

微型电机的应用

微型电机在汽车电子领域的应用 学号:030940811 姓名:刘超键 当今社会,科学技术的发展日新月异。特别是工业领域,“信息化”,“智能化”,“小型化”等要求越来越强烈。随着社会的不断不进步,对能源的消耗也越来越多,能源短缺已经成为了一个世界性的问题,而这又对工业设备提出了“节能”的要求。于是,整个领域就朝向“自动化”,“节能化”,“信息化”不断发展。 电机对于科技迅速发展和社会日益进步起了很大的作用。众所周知,发电机将其他形式的能量转变成电能,供给工业消耗和日常生活的使用。而电动机则是利用电能在广大的领域发挥着独特的作用。很难想象,这个世界没有电机将会是什么样子。没有电机,就没有电力,就没有第二次科技革命,肯定就没有现在的科技的发展。 电机推动科学技术的发展,而科学技术又反作用于电机的发展。微型电机的问世,正是这种作用下的结果。运用新型材料特制的微型电机具有高性能、噪音小、微型化、轻量化、高精度、高性能等优点。微型电机占用体积小,重量轻,在航空航天领域,机器人领域,特种控制领域等等,都用这广泛的应用。 不仅仅是在这些高科技领域中有微型电机的身影,在民用领域,如汽车电子领域中,微型电机也能发挥很大的作用。 汽车在社会生活中有着举足轻重的地位。汽车的设计需要人性化、节能化;随着能源危机的加重,汽车的发展也趋向于节能、智能化发展。现在的汽车,有的安装了两套动力系统。一套内燃机式,一套电力式。安装电力电动装置有很多好处:首先,它可以减少对化石能源的消耗,减少温室气体的排放;其次,它还可以提高能量的利用率。当汽车下坡时,使电机工作在发电机状态,发出电能并将其储存,在这个过程上,还能降低汽车速度,减少刹车片的磨损,这相比于其他相同条件下的动力汽车,明显使车内的人员更加安全。当然,这是较大型的电机在汽车领域发挥的作用。 当发生交通事故的时候,驾驶员存活下来的概率通常要比其他乘客更低一些,

微型电机及其详述

New Scale是美国专业超小型运动制造商,创造出了世界上最小的直线电机-SQUIGLE 超声波压电陶瓷电机以及TRACKER (TM)定位传感器。 超声波压电式电机的产品特点: 1.超微型尺寸 2.低能耗,低电压驱动 3.具有断电位置保护功能 4.驱动力:>5N 5.行程可达50mm 6.速度从1um/s到10mm可调 7.精度最高20nm 8.无磁性,有真空型和低温型产品 New Scalede TRACKER (TM)定位传感器世界上尺寸最小、分辨率最高的定位传感器,内部整合了一个磁感探测器及op-chip位置编码器。 产品特点:1.最小的体积:芯片尺寸:3.9*2.5mm 2.精密的非接触感应:0.5um精度,<2um重复度 3.传感器和编码器集成在一个封装中 4.直接数字输出(I2C总线),不需要脉冲计数器 5.对光、粒子、震动不敏感,没有安装限制 6.绝对一流的性能:零基准,自动增益,自动偏置 一.SQL-RV-1.8 SQUIGGLE 降压直线驱动系统 特点: 1.小, 2.8 x 2.8 x 6 mm, 高性能电机 提高45% 速度 减少40% 功耗 推力几乎是SQL-1.8 电机的 2 倍 亚微米的定位精度 2.工业上最小的压电驱动方案 比同类产品小 5 倍 1.8 x 1.8 mm 驱动IC 3.工业上第一个 2.3V 直流供电的直接IC 输出 智能专用控制IC 无需升压

应用:电池供电的手持设备 手机摄像头 数码相机和数码摄像机 微型医疗制动器 机器人,无人机和安防 运动稳定系统 微型光学模块 微型电子锁 精密工业和科研仪器 世界上最小的线性电控系统 SQUIGGLE 降压微型电机和NSD2101驱动ASIC(专用集成电路)组合在一起成为世界上最小的直线压电运动控制系统,性能可与更大的系统相媲美。最先进的多层压 电技术,结合先进的智能集成电路设计和正在申请专利的控制算法,创造了具有无 与伦比性能的直线运动控制系统。 新RV系列具有专利技术的超声波压电电机和驱动器,创造了多个行业第一, 包括: 1.2.3V直流电池输入驱动芯片,无需外加升压电路。 2.比电机还要小得多的完整驱动方案,比同类系统小5倍 3.比同类电磁解决方案减少40%的功耗。 SQL-RV-1.8-6-12 SQUIGGLE 电机规格 无与伦比的尺寸和性能 SQL-RV-1.8和NSD2101驱动在一定范围的电压条件下提供大范围的性能。下面的图表示NSD-2101 IC不同输入电压条件下,电机的推力和速度性能;不同电压下达到一系列直线运动速 度的功耗。功率曲线是在对电机施加15g轴向负载时产生的。

相关主题
文本预览
相关文档 最新文档