当前位置:文档之家› 运动的合成与分解,平抛圆周运动解析

运动的合成与分解,平抛圆周运动解析

运动的合成与分解,平抛圆周运动解析
运动的合成与分解,平抛圆周运动解析

曲线运动

按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。难点是牛顿定律处理圆周运动问题。 运动的合成与分解 平抛物体的运动 【学情分析】

学生已经具备较好的物理实验能力、分析问题能力、归纳实验现象的能力。 学生刚学习过直线运动规律,对直线运动的分析方法记忆犹新;并在上一节中刚学过运动合成与分解的知识,对这一分析曲线运动的方法并不陌生,这为本节课在方法上铺平了道路。对于小船过河的这一类运动的合成与分解类知识体系规律性的东西学生再次复习应该会掌握的差不多。

【教材(考纲)分析】

平抛运动是本章的重点内容,是对运动的合成与分解知识具体问题的应用,对后面斜抛等曲线运动的学习及现实生活中实际问题的解决都有影响。前面学生通过运动的合成与分解学习已有初步的理论基础,教材通过简单的实验演示,引导学生认识平抛运动的初步特征。运用实验探究与理论相结合的方法,通过学生自主学习,掌握平抛运动的特点及规律。所以在本节教学中,要注意突出学生活动,给学生充分的时间探究,讨论。

【三维目标】

1.明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动);

2.理解和运动、分运动,能够运用平行四边形定则处理运动的合成与分解问题。

3.掌握平抛运动的分解方法及运动规律

4.通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力.

【教学重点】:平抛运动的特点及其规律

【教学难点】:运动的合成与分解

【教学方法】:讲练结合,计算机辅助教学

【教学过程】:

一、曲线运动

1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。

当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动。

当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.)

如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.

2.曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。需要重点掌握的两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。

二、运动的合成与分解

1.从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。重点是判断合运动和分运动,这里分两种情况介绍。

一种是研究对象被另一个运动物体所牵连,这个牵连指的是相互作用的牵连,如船在水上航行,水也在流动着。船对地的运动为船对静水的运动与水对地的运动的合运动。一般地,物体的实际运动就是合运动。

第二种情况是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成问题。如两辆车的运动,甲车以v甲=8 m/s的速度向东运动,乙车以v乙=8 m/s的速度向北运动。求甲车相对于乙车的运动速度v甲对乙。

2.求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。

3.合运动与分运动的特征:

①等时性:合运动所需时间和对应的每个分运动时间相等

②独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。

4.物体的运动状态是由初速度状态(v0)和受力情况(F合)决定的,这是处理复杂运动的力和运动的观点.思路是:

(1)存在中间牵连参照物问题:如人在自动扶梯上行走,可将人对地运动转化为人对梯和梯对地的两个分运动处理。

(2)匀变速曲线运动问题:可根据初速度(v0)和受力情况建立直角坐标系,将复杂运动转化为坐标轴上的简单运动来处理。如平抛运动、带电粒子在匀强电场中的偏转、带电粒子在重力场和电场中的曲线运动等都可以利用这种方法处理。

5.运动的性质和轨迹

物体运动的性质由加速度决定(加速度得零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。

物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。

两个互成角度的直线运动的合运动是直线运动还是曲线运动?

决定于它们的合速度和合加速度方向是否共线(如图所示)。

常见的类型有:

⑴a =0:匀速直线运动或静止。

⑵a 恒定:性质为匀变速运动,分为:① v 、a 同向,匀加速直线运动;②v 、a 反向,匀减速直线运动;③v 、a 成角度,匀变速曲线运动(轨迹在v 、a 之间,和速度v 的方向相切,方向逐渐向a 的方向接近,但不可能达到。)

⑶a 变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。

6.过河问题

如右图所示,若用v 1表示水速,v 2表示船速,则:

①过河时间仅由v 2的垂直于岸的分量v ⊥决定,即⊥

=v d t ,与v 1无关,所以当v 2⊥岸时,过河所用时间最短,最短时间为2

v d t =

也与v 1无关。 ②过河路程由实际运动轨迹的方向决定,当v 1<v 2时,最短路程为d ;当v 1>v 2时,最短路程程为d v v 2

1(如右图所示)。 7.连带运动问题

指物拉绳(杆)或绳(杆)拉物问题。由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。

【例1】如图所示,汽车甲以速度v 1拉汽车乙前进,

乙的速度为v 2,甲、乙都在水平面上运动,求v 1∶v 2

解析:甲、乙沿绳的速度分别为v 1和v 2cos α,两者应

该相等,所以有v 1∶v 2=cos α∶1

【例2】 两根光滑的杆互相垂直地固定在一起。上面

分别穿有一个小球。小球a 、b 间用一细直棒相连如图。当

细直棒与竖直杆夹角为α时,求两小球实际速度之比v a ∶v b

解析:a 、b 沿杆的分速度分别为v a cos α和v b sin α

∴v a ∶v b = tan α∶

1

b

三、平抛运动

当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。其轨迹为抛物线,性质为匀变速运动。平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。

1、平抛运动基本规律

① 速度:0v v x =,gt v y =

合速度 22y x v v v +=

方向 :tan θ=o

x y

v gt v v = ②位移x =v o t y =22

1gt 合位移大小:s =22y x + 方向:tan α=t v g x y o

?=2 ③时间由y =221gt 得t =x

y 2(由下落的高度y 决定) ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

2.应用举例

(1)方格问题

【例3】平抛小球的闪光照片如图。已知方格边长a 和闪光

照相的频闪间隔T ,求:v 0、g 、v c

解析:水平方向:T

a v 20= 竖直方向:22,T

a g gT s =∴=? 先求C 点的水平分速度v x 和竖直分速度v y ,再求合速度v C :

412,25,20T a v T a v T a v v c y x =∴===

(2)临界问题

典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范围应是多少?

【例4】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。

解析:假设运动员用速度v max 扣球时,球刚好不会出界,用速度v min 扣球时,球刚好不触网,从图中数量关系可得:

()h g s L g h s L v 2)(2/max +=+=; )(2)(2/min H h g s g H h s v -=-= 实际扣球速度应在这两个值之间。

【例5】如图所示,长斜面OA 的倾角为θ,放在水平地面上,现从顶点O 以速度v 0平抛一小球,不计空气阻力,重力加速度为g ,求小球在飞行过程中离斜面的最大距离s 是多少?

解析:为计算简便,本题也可不用常规方法来处理,而是将

速度和加速度分别沿垂直于斜面和平行于斜面方向进行分解。如

图15,速度v 0沿垂直斜面方向上的分量为v 1= v 0 sin θ,加速度g

在垂直于斜面方向上的分量为a =g cos θ,根据分运动各自独立的

原理可知,球离斜面的最大距离仅由和决定,当垂直于斜面的分速度减小为零时,球离斜面的距离才是最大。θ?cos 2sin 220

21g v a v s ==。 点评:运动的合成与分解遵守平行四边形定则,有时另辟蹊径可以收到意想不到的效果。

(3)一个有用的推论

平抛物体任意时刻瞬时时速度方向的反向延长线与初速度

延长线的交点到抛出点的距离都等于水平位移的一半。

证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则

末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t ,

s h v v 2tan x y ==α, 所以有2tan s h s =='α

v t x /

【例6】 从倾角为θ=30°的斜面顶端以初动能E =6J 向下

坡方向平抛出一个小球,则小球落到斜面上时的动能E /为

______J 。

解析:以抛出点和落地点连线为对角线画出矩形ABCD ,

可以证明末速度v t 的反向延长线必然交AB 于其中点O ,由图

中可知AD ∶AO =2∶3,由相似形可知v t ∶v 0=7∶3,因

此很容易可以得出结论:E /=14J 。 点评:本题也能用解析法求解。列出竖直分运动和水平分运动的方程,注意到倾角和下落高度和射程的关系,有:h=

21gt 2,s=v 0t ,θtan =s h 或 h=21v y t , s=v 0 t ,θtan =s

h 同样可求得v t ∶v 0=7∶3,E /=14J

四、曲线运动的一般研究方法

研究曲线运动的一般方法就是正交分解法。将复杂的曲线运动分解为两个互相垂直方向上的直线运动。一般以初速度或合外力的方向为坐标轴进行分解。

【例7】 如图所示,在竖直平面的xoy 坐标系内,oy 表示竖直向上方向。该平面内存在沿x 轴正向的匀强电

场。一个带电小球从坐标原点

沿oy 方向竖直向上抛出,初动

能为4J ,不计空气阻力。它达

到的最高点位置如图中M 点所

示。求:

⑴小球在M 点时的动能E 1。

⑵在图上标出小球落回x 轴时的位置N 。

⑶小球到达N 点时的动能E 2。

解析:⑴在竖直方向小球只受重力,从O →M 速度由v 0减小到0;在水平方向小球只受电场力,速度由0增大到v 1,由图知这两个分运动平均速度大小之比为2∶3,因此v 0∶v 1=2∶3,所以小球在M 点时的动能E 1=9J 。

⑵由竖直分运动知,O →M 和M →N 经历的时间相同,因此水平位移大小之比为1∶3,故N 点的横坐标为12。

v

⑶小球到达N 点时的竖直分速度为v 0,水平分速度为2v 1,由此可得此时动能E 2=40J 。

五、综合例析

【例8】如图所示,为一平抛物体运动的闪光照片示意图,照片与实际大小相比缩小10倍.对照片中小球位置进行测量得:1与4闪光点竖直距离为1.5 cm ,4与7闪光点竖直距离为2.5 cm ,各闪光点之间水平距离均为0.5 cm.则

(1)小球抛出时的速度大小为多少?

(2)验证小球抛出点是否在闪光点1处,若不在,则抛出点距闪光点1的实际水平距离和竖直距离分别为多少?(空气阻力不计,g =10 m/s 2)

解析:

(1)设1~4之间时间为T ,

竖直方向有:(2.5-1.5)×10-2×10 m =gT 2

所以T = 0.1 s

水平方向:0.5×10-2×3×10 m =v 0T

所以v 0=1.5 m/s

(2)设物体在1点的竖直分速度为v 1y

1~4竖直方向:1.5×10-2×10 m=v 1y T +

2

1gT 2 解得v 1y =1 m/s

因v 1y ≠0,所以1点不是抛出点

设抛出点为O 点,距1水平位移为x m ,竖直位移为y m ,有

水平方向 x =v 0t 竖直方向:??

???==gt v gt y y 122

1 解得t = 0.1 s ,

x

=0.15 m=15 cm

y=0.05 m=5 cm

即抛出点距1点水平位移为15 cm,竖直位移为5 cm

【例9】柯受良驾驶汽车飞越黄河,汽车从最高点开始到着地为止这一过程的运动可以看作平抛运动。记者从侧面用照相机通过多次曝光,拍摄到汽车在经过最高点以后的三副运动照片如图2所示,相邻两次曝光时间间隔相等,均为Δt,已知汽车的长度为l,则

A.从左边一幅照片可推算出汽车的水平分速度的大小

B.从左边一幅照片可推算出汽车曾经到达的最大高度

C.从中间一幅照片可推算出汽车的水平分速度的大小和汽车曾经到达的最大高度D.从右边一幅照片可推算出汽车的水平分速度的大小

解析:首先应动态的看照片,每幅照片中三个汽车的像是同一辆汽车在不同时刻的像,根据题目的描述,应是由高到低依次出现的,而且相邻两像对应的时间间隔是相等的,均为已知的Δt。

题目中“汽车的长度为l”这一已知条件至关重要,我们量出汽车在照片中的长度,就能得到照片与实际场景的比例,这样照片中各点间的真实距离都能算出。

物理知识告诉我们,汽车在通过最高点后的运动,可抽象为质点的平抛运动,因此水平方向为匀速运动,竖直方向为自由落体运动。

关于水平速度,由于汽车在空中相邻的两个像对应的真实距离能算出,这段运动对应的时间Δt已知,因此由左、中两幅照片中的任意一幅都能算出水平速度。至于右边的一幅,因为汽车在空中的像只有一个,而紧接着的在地上的像不一定是刚着地时的像(汽车刚着地时,可能是在两次拍摄之间),因此在这个Δt内,可能有一段时间做的已经不是平抛运动了,水平方向不是匀速的。所以用该照片无法计算出水平速度。

关于最大高度,应分析竖直方向,同时对不同照片进行比较。左边一幅,没拍到地面,肯定不能计算最大高度。右边一幅,空中只有一个像,无法分析其自由落体运动。中间一幅,相邻像的两个真实距离均能知道,借用处理纸带的方法,能算出中间那个像对应的速度,进而由自由落体运动的公式算出最高点这个位置的高度,再加上这个位置的离地高度即可得到汽车离地的最大高度。因此该题选A、C。

点评:这是一道很典型的频闪照片的题,给我们很多分析频闪照片的启示:要能看出动态、要关注照片比例、要先确定运动的性质,以便在其指引下分析,多幅照片要进行细致的比较。

教学随感

掌握平抛运动的分解方法及运动规律,通过例题的分析,探究解决有关平抛运动实际,问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力

圆周运动

教学目标:

1.掌握描述圆周运动的物理量及相关计算公式;

2.学会应用牛顿第二定律解决圆周运动问题

3.掌握分析、解决圆周运动动力学问题的基本方法和基本技能

教学重点:匀速圆周运动

教学难点:应用牛顿第二定律解决圆周运动的动力学问题

教学方法:讲练结合,计算机辅助教学

教学过程:

一、描述圆周运动物理量:

1、线速度

(1)大小:v = t

s (s 是t 时间内通过的弧长) (2)方向:沿圆周的切线方向,时刻变化

(3)物理意义:描述质点沿圆周运动的快慢

2、角速度:

(1)大小:ω=t φ

(φ是t 时间内半径转过的圆心角)

(2)方向:沿圆周的切线方向,时刻变化

(3)物理意义:描述质点绕圆心转动的快慢

3、周期T 、频率f :

作圆周运动的物体运动一周所用的时间,叫周期;单位时间内沿圆周绕圆心转过的圈数,叫频率。即周期的倒数。

4、v 、ω、T 、f 的关系

v =T

r π2=ω r =2πrf 点评:ω、T 、f ,若一个量确定,其余两个量也就确定了,而v 还和r 有关。

5、向心加速度a :

(1)大小:a =ππω442222===r T

r r v 2 f 2r (2)方向:总指向圆心,时刻变化

(3)物理意义:描述线速度方向改变的快慢。

【例1】如图所示装置中,三个轮的半径分别

为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。 解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,所以

v a ∶ v b ∶v c ∶v d =2∶1∶2∶4;ωa ∶ωb =2∶1,而ω

b =ω

c =ω

d ,所以ωa ∶ωb ∶ωc ∶ωd =2∶1∶1∶1;再利用a =v ω,可得a a ∶a b ∶a c ∶a d =4∶1∶2∶4

点评:凡是直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点的线速度大小相等;凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。

【例2】如图所示,一种向自行车车灯供电的小发电机的上端有一半径r 0=1.0cm 的摩擦小轮,小轮与自行车车轮的边缘接

触。当车轮转动时,因摩擦而带动小轮转

动,从而为发电机提供动力。自行车车轮的

半径R 1=35cm ,小齿轮的半径R 2=4.0cm ,

大齿轮的半径R 3=10.0cm 。求大齿轮的转速n 1和摩擦小轮的转速n 2之比。(假定摩擦

小轮与自行车轮之间无相对滑动)

解析:大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边缘各点的线速度大小相等,由v =2πnr 可知转速n 和半径r 成反比;小齿轮和车轮同轴转动,两轮上各点的转速相同。由这三次传动可以找出大齿轮和摩擦小轮间的转速之比n 1∶n 2=2∶175

二、牛顿运动定律在圆周运动中的应用(圆周运动动力学问题)

1.向心力

(1)大小:R f m R T

m R m R v m ma F 2222

2244ππω=====向 (2)方向:总指向圆心,时刻变化

点评:“向心力”是一种效果力。任何一个力,或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以作为向心力。“向心力”不一定是物体所受合外力。做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变。

2.处理方法:

一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。

做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:F n =ma n 在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用R T m R m R mv 2

222??

? ??πω或或等各种形式)。 如果沿半径方向的合外力大于做圆周运动所需的向心力,物体将做向心运动,半径将减小;如果沿半径方向的合外力小于做圆周运动所需的向心力,物体将做离心运动,半径将增大。如卫星沿椭圆轨道运行时,在远地点和近地点的情况。

3.处理圆周运动动力学问题的一般步骤:

(1)确定研究对象,进行受力分析;

(2)建立坐标系,通常选取质点所在位置为坐标原点,其中一条轴与半径重合;

(3)用牛顿第二定律和平衡条件建立方程求解。

4.几个特例

(1)圆锥摆

圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。

【例3】 小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v 、周期T 的关系。(小球的半径远小于R 。)

解析:小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力F 是重力G 和支持力N 的合力,所以重力和支持力的合力方向必然水平。如图所示有: 22sin sin tan θωθ

θmR R mv mg ==, 由此可得:g

h g R T gR v πθπθθ2cos 2,sin tan ===, (式中h 为小球轨道平面到球心的高度)。

可见,θ越大(即轨迹所在平面越高),v 越大,T 越小。

点评:本题的分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。

(2)竖直面内圆周运动最高

点处的受力特点及分类

这类问题的特点是:由于机械

能守恒,物体做圆周运动的速率时

刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。 ①弹力只可能向下,如绳拉球。这种情况下有mg R

mv mg F ≥=+2

即gR v ≥,否则不能通过最高点。

G

F

②弹力只可能向上,如车过桥。在这种情况下有:

gR v mg R

mv F mg ≤∴≤=-,2,否则车将离开桥面,做平抛运动。 ③弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小v 可以取任意值。但可以进一步讨论:①当gR v >时物体受到的弹力必然是向下的;当gR v <时物体受到的弹力必然是向上的;当gR v =时物体受到的弹力恰好为零。②当弹力大小F mg 时,向心力只有一解:F +mg ;当弹力F =mg 时,向心力等于零。

【例4】 如图所示,杆长为L ,球的质量为m ,杆连球在竖直平面内绕轴O 自由转动,已知在最高点处,杆对球的弹力大小为F =mg ,求这时小球的瞬时速度大小。

解析:小球所需向心力向下,本题中F =mg <mg ,所以弹力的方

向可能向上也可能向下。⑴若F 向上,则2

,2gL v L

mv F mg ==- ⑵若F 向下,则23,2gL v L mv F mg ==+ 点评:本题是杆连球绕轴自由转动,根据机械能守恒,还能求出小球在最低点的即时速度。

需要注意的是:若题目中说明小球在杆的带动下在竖直面内做匀速圆周运动,则运动过程中小球的机械能不再守恒,这两类题务必分清。

【例5】 如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高h 的A 处静止开始下滑,沿轨道ABC 运动后进入圆环内作圆周运动。已知小球所受到电场力是其重力的3/4,圆滑半径为R ,斜面倾角为θ,s BC =2R 。若使小球在圆环内能作完整的圆周运动,h 至少为多少?

解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力F ,如图所示。可知F =1.25mg ,方向与竖直方向左偏下37o,从图6中可知,能否作完整的圆周运动的临界点是能否通过D 点,若恰好能通过D 点,即达到D 点时球与环的弹力恰好为零。

由圆周运动知识得:R

v m F D 2= 即:R

v m m g D 225.1= 由动能定理有:22

1)37sin 2cot (43)37cos (D mv R R h mg R R h mg =?++?-

?--θ 联立①、②可求出此时的高度h 。

三、综合应用例析 【例6】如图所示,用细绳一端系着的质量为M =0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m =0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f =2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g =10m/s 2)

解析:要使B 静止,A 必须相对于转盘静止——具有与转盘相同的角速度.A 需要的向心力由绳拉力和静摩擦力合成.角速度取最大值时,A 有离心趋势,静摩擦力指向圆心O ;角速度取最小值时,A 有向心运动的趋势,静摩擦力背离圆心O .

对于B ,T =mg

对于A ,21ωMr f T =+

22

ωMr f T =- 5.61=ωrad/s 9.22=ωrad/s

所以 2.9 rad/s 5.6≤≤ωrad/s

【例7】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A 球的质量为m 1,B 球的质量为m 2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v 0.设A 球运动到最低点时,B 球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m 1、m 2、R 与v 0应满足的关系式是______.

解析:这是一道综合运用牛顿运动定律、圆周运动、机械能守恒定律的高考题.

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为口,则在过碗底时滑块受到摩擦力的大小为( ) v2v2V2 A.(! mg B.(i m— C .口m(g+ ) D .口m(——g) R R R 2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的 临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力大小是() A. 0 B . mg C . 3mg D . 5mg 3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v o,则: (1)当小球以2v o的速度经过轨道最高点时,对轨道的压力为多少? (2)当小球以后吩的速度经过轨道最低点时.轨道对小球的弾力为事少? 4、如图所示,长度为L=1.0m的绳,系一小球在竖直面内做圆周运 动, 小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求: (1)小球在最低点所受绳的拉力(2)小球在最低的向心加速度 小球的质量为M=5kg 1 5、如图所示,位于竖直平面上的丄圆弧轨道光滑,半径为R, OB沿竖直 4 方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达 B点时的速度为,2gR,最后落在地面上C点处,不计空气阻力,求: (1) 小球刚运动到B点时的加速度为多大,对轨道的压力多大; (2) 小球落地点C与B点水平距离为多少。 6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L, 当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低 点B时,线恰好断裂,球落在地面上的C点,C点距悬点0的水平距离为S (不计 空气阻力).求: (1)小球从A点运动到B点时的速度大小; (2)悬线能承受的最大拉力; 7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m ,轨道A端与水平面 相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的 压力恰好为零,g取10m/s 2,求: (1)小球经B点时的速度大小;(2)小球落地点到A点的距离. 时,对管壁上部的压力为3mg , b通过最高点A时,对管壁下部的压力为 0.75mg ,求: (1) a球在最高点速度. (2) b球在最高点速度. (3) a、b两球落地点间的距离

平抛运动的特点和规律

平抛运动的特点及规律 一、知识目标: 1、知道什么是平抛及物体做平抛运动的条件。 2、知道平抛运动的特点。 3、理解平抛运动的基本规律。 二、能力目标: 通过平抛运动的研究方法的学习,使学生能够综合运用已学知识,来探究新问题的研究方法。 三、德育目标: 通过平抛的理论推证和实验证明,渗透实践是检验真理的标准。 教学重点: 1、平抛运动的特点和规律 2、学习和借借鉴本节课的研究方法 教学难点: 平抛运动的规律 教学方法: 实验观察法、推理归纳法、讲练法 教学用具: 平抛运动演示仪、自制投影片、电脑、多媒体课件 教学步骤: 一、导入新课: 用枪水平地射出一颗子弹,子弹将做什么运动,这种运动具有什么特点,本节课我们就来学习这个问题。 二、新课教学 (一)用投影片出示本节课的学习目标 1、理解平抛运动的特点和规律 2、知道研究平抛运动的方法 3、能运用平抛运动的公式求解有关问题 (二)学习目标完成过程 1:平抛物体的运动 (1)简介平抛运动: a:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动,叫平抛运动。 b:举例:用力打一下桌上的小球,使它以一定的水平初速度离开桌面,小球所做的就是平抛运动,并且我们看它做的是曲线运动。 c:分析说明平抛运动为什么是曲线运动(因为物体受到与速度方向成角度的重力作用)(2)巩固训练 a:物体做平抛运动的条件是什么 b:举几个物体做平抛运动的实例 (3)a:分析说明:做平抛运动的物体;在水平方向上由于不受力,将做匀速直线运动b:在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。 c:实验验证: 1.用CAI课件模拟平抛运动, 2.模拟的同时,配音说明: 用小锤打击弹性金属片时,A球就向水平方向飞出,做平抛运动,而同时B球被松开,做自由落体运动。 3.实验现象:(学生先叙述,然后教师总结) 现象一:越用力打击金属片,A飞出水平距离就越远。 现象二:无论A球的初速度多大,它会与B球同时落地。 ?→ ?对现象进行分析:得到平抛运动在竖直方向上是自由落体运动,水平方向的速 ..........................

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m 的滑块从半径为R 的半球形碗的边缘滑向碗底,过碗底时速度为v ,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为() A .μmg B .μm C .μm(g +) D .μm(-g) 2、质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为,当小球以2的速度经过最高点时,对轨道的压力大小是( ) A .0 B .mg C .3mg D .5mg 3、质量为m 的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v 0,则: (1)当小球以2v 0的速度经过轨道最高点时,对轨道的压力为多少? 4、如图所示,长度为L=1.0m 的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg ,小球半径不计,小球在通过最低点的速度大小为v =20m/s,试求: (1)小球在最低点所受绳的拉力(2)小球在最低的向心加速度 5、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,到达 B 点时的速度为,最后落在地面上 C 点处,不计空气阻力,求: (1)小球刚运动到B 点时的加速度为多大,对轨道的压力多大; (2)小球落地点C 与B 点水平距离为多少。 6、质量为m 的小球被一根细线系于O 点,线长为L ,悬点O 距地 面的高度为2L ,当小球被拉到与O 点在同一水平面上的A 点时由 静止释放,球做圆周运动至最低点B 时,线恰好断裂,球落在地 面上的C 点,C 点距悬点O 的水平距离为S (不计空气阻力).求: (1)小球从A 点运动到B 点时的速度大小; (2)悬线能承受的最大拉力; 7、如图,AB 为竖直半圆轨道的竖直直径,轨道半径R=10m ,轨 道A 端与水平面相切.光滑木块从水平面上以一定初速度滑上轨 道,若木块经B 点时,对轨道的压力恰好为零,g 取10m/s 2,求: (1)小球经B 点时的速度大小;(2)小球落地点到A 点的距离. 8、如图所示,半径为R ,内径很小的光滑半圆管竖直放置.两个 质量均为m 的小球a 、b 以不同的速度进入管内,a 通过最高点A 时,对管壁上部的压力为3mg ,b 通过最高点A 时,对管壁下部 的压力为0.75mg ,求: (1)a 球在最高点速度.(2)b 球在最高点速度. (3)a 、b 两球落地点间的距离 R v 2R v 2R v 2 v v 4 1gR 2

备考2019年高考物理一轮复习:第四章第2讲平抛运动的规律及应用练习含解析

板块三限时规范特训 时间:45分钟满分:100分 一、选择题(本题共10小题,每小题7分,共70分。其中1~6为单选,7~10为多选) 1.一个物体以初速度v0被水平抛出,落地时速度为v,那么物体运动的时间是() A.v-v0 g B. v+v0 g C.v2-v20 g D. v2+v20 g 答案 C 解析由v2=v2x+v2y=v20+(gt)2,得出t=v2-v20 g,故C正确。 2.[2017·江西联考]在空间某一点以大小相等的速度分别竖直向上、竖直向下、水平抛出质量相等的小球,不计空气阻力,经过相等的时间(设小球均未落地)() A.做竖直下抛运动的小球加速度最大 B.三个小球的速度变化相同 C.做平抛运动的小球速度变化最小 D.做竖直下抛的小球速度变化最小 答案 B 解析由于不计空气阻力,抛出的小球只受重力作用,因此它们的加速度相同,均为重力加速度g,A错误;加速度相同,相等时间内三个小球的速度变化相同,B正确,C、D错误。 3.物体做平抛运动时,它的速度方向与水平方向的夹角α的正切tanα随时间t变化的图象是图中的()

答案 B 解析 根据几何关系:tan α=v y v 0=gt v 0 ,则tan α与t 成正比例函数关系,B 正确。 4.[2018·山西太原模拟]将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直墙面上,如图所示。不计空气阻力,则下列说法正确的是 ( ) A .从抛出到撞墙,第二次球在空中运动的时间较短 B .篮球两次抛出时速度的竖直分量第一次小于第二次 C .篮球两次撞墙的速度可能相等 D .抛出时的速度大小,第一次一定比第二次小 答案 A 解析 由于两次篮球垂直撞在竖直墙面上,篮球被抛出后的运动可以看 作是平抛运动的反向运动。加速度都为g 。在竖直方向上,h =12gt 2,因

平抛运动知识点总结及解题方法归类总结

三、平抛运动及其推论 一、 知识点巩固: 1.定义:①物体以一定的初速度沿水平方向抛出,②物体仅在重力作用下、加速度为重力加速度g ,这样的运动叫做平抛运动。 2.特点:①受力特点:只受到重力作用。 ②运动特点:初速度沿水平方向,加速度方向竖直向下,大小为g ,轨迹为抛物线。 ③运动性质:是加速度为g 的匀变速曲线运动。 3.平抛运动的规律:①速度公式:0x v v = y v gt = 合速度:()2 2220t x y v v v v gt =+=+ ②位移公式:2 0,2 gt x v t y == 合位移:2 2 2 22 20 12s x y v t gt ?? =+=+ ??? tan 2y gt x v α== ③轨迹方程:2 202gx y v =,顶点在原点(0、0),开口向下的抛物线方程。 注: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为 。 (3)平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相 等的时间内相邻的位移的高度之比为 … 竖直方向上在相等的时间内相邻 的位移之差是一个恒量(T 表示相等的时间间隔)。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为ɑ)方向和位移方向(与水平方向之间的夹角是)是不相同的,其关系式(即任意一点的速度延长线 必交于此时物体位移的水平分量的中点)。 V y x S O x x 2/V y V 0V x =V 0 P ()x y ,θα0 tan y x v gt v v θ= = ɑ θ ɑ

曲线运动、平抛运动、圆周运动练习题

《曲线运动》练习题 一选择题 1. 关于运动的合成的说法中,正确的是() A.合运动的位移等于分运动位移的矢量和 B.合运动的时间等于分运动的时间之和 C.合运动的速度一定大于其中一个分运动的速度 D.合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是() A.静止 B.匀加速直线运动 C.匀速直线运动 D.匀速圆周运动 3.某质点做曲线运动时() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5.一个质点在恒力F作用下,在xOy平面从O点运动到A点的轨迹如图所示,且在A点的速度方向与x轴平行,则恒力F的方向不可能() A.沿x轴正方向 B.沿x轴负方向 C.沿y轴正方向 D.沿y轴负方向 6在光滑水平面上有一质量为2kg的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N力水平旋转90o,则关于物体运动情况的叙述正确的是() A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 7. 做曲线运动的物体,在运动过程中一定变化的物理量是() A.速度 B.加速度 C.速率 D.合外力 9 关于曲线运动,下面说确的是() A. 物体运动状态改变着,它一定做曲线运动 B. 物体做曲线运动,它的运动状态一定在改变 C. 物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D. 物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做() A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是() A. 物体做曲线运动时,它所受的合力一定不为零 B. 做曲线运动的物体,有可能处于平衡状态 C. 做曲线运动的物体,速度方向一定时刻改变 D. 做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动( ) A.可能是直线运动B.可能是曲线运动C.可能是匀速圆周运动D.一定是匀变速运动 18.如图所示,蜡块可以在竖直玻璃管的水中匀速上升,若在蜡块从A点开始匀速上升的同时,玻璃管从AB位置水 A.直线P B.曲线Q C.曲线R D.三条轨迹都有可能

物理一轮复习 4.2 平抛运动的规律及应用学案 新人教版必修2

物理一轮复习 4.2 平抛运动的规律及应用学案 新人教版必 修2 【考纲知识梳理】 一、平抛运动的定义和性质 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、运动性质: ①水平方向:以初速度v 0做匀速直线运动. ②竖直方向:以加速度a=g 做初速度为零的匀变速直线运动,即自由落体运动. ③平抛运动是加速度为重力加速度(a=g)的匀变速曲线运动,轨迹是抛物线. 二、研究平抛运动的方法 1、通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性. 2、 平抛运动规律:(从抛出点开始计时) (1).速度规律: V X =V 0 V Y =gt (2).位移规律: X=v 0t Y= 2 2 1gt (3).平抛运动时间t 与水平射程X 平抛运动时间t 由高度Y 决定,与初速度无关;水平射程X 由初速度和高度共同决定 三、斜拋运动及其研究方法 1.定义:将物体以v 沿斜向上方或斜向下方抛出,物体只在重力作用下的运动。 2.斜抛运动的处理方法:斜抛运动可以看作水平方向的匀速直线运动和竖直方向的竖直

抛体运动的合运动 【要点名师透析】 一、对平抛运动规律的进一步理解 1、飞行的时间和水平射程 (1)落地时间由竖直方向分运动决定: 由 2 2 1 gt h= 得: g h t 2 = (2)水平飞行射程由高度和水平初速度共同决定: g h v t v x 2 = = 2、速度的变化规律 (1)平抛物体任意时刻瞬时速度v与平抛初速度v0夹角θa的正切值为位移s与水平位移x 夹角θ正切值的两倍。 (2)平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明: 2 2 1 tan 2 x s s gt v gt = ? = = α (3)平抛运动中,任意一段时间内速度的变化量Δv=gΔt,方向恒为竖直向下(与g同向)。任意相同时间内的Δv都相同(包括大小、方向),如右图。 3、平抛运动的两个重要结论 (1)以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。)

平抛与圆周运动综合

平抛与圆周运动综合 【方法归纳】所谓平抛与圆周运动综合是指物体先做圆周运动后做平抛运动或先做平抛运动后做竖直面内的圆周运动。解答此类题的策略是:根据物体的运动过程,分别利用平抛运动的规律和圆周运动的规律列方程解得。 例34.(2010重庆理综)晓明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动,当 球某次运动到最低点时,绳突然断掉。球飞离水平距离d 后 落地,如图9所示,已知握绳的手离地面高度为d ,手与球 之间的绳长为3d/4,重力加速度为g ,忽略手的运动半径和 空气阻力。 (1) 求绳断时球的速度大小v 1,和球落地时的速度大小 v 2。 (2) 问绳能承受的最大拉力多大? (3) 改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少? 【解析】(1)设绳断后球飞行时间为t ,由平抛运动规律,有 竖直方向 41d=2 1gt 2 水平方向d=v 1t , 联立解得v 1=gd 2。 由机械能守恒定律,有 21mv 22=2 1mv 12+mg (d -3d /4) 解得v 2=gd 25。 (2) 设绳能承受的拉力大小为T ,这也是球受到绳的最大拉力。 球做圆周运动的半径为R =3d/4 对小球运动到最低点,由牛顿第二定律和向心力公式有T-mg=m v 12/R , 联立解得T=3 11mg 。 (3) 设绳长为L ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有 T-mg=m v 32/L

解得v 3=L g 3 8。 绳断后球做平抛运动,竖直位移为d-L ,水平位移为x ,飞行时间为t 1,根据 平抛运动规律有d-L =2 1gt 12,x = v 3 t 1 联立解得x =4()3 L d L -. 当L=d /2时,x 有极大值,最大水平距离为x max = 332d . 【点评】此题将竖直面内的圆周运动和平抛运动有机结合,涉及的知识点由平抛运动规律、牛顿运动定律、机械能守恒定律、极值问题等,考查综合运用知识能力。 衍生题1.如图所示,一质量为M =5.0kg 的平板车静止在光滑水平地面上,平板车的上表面距离地面高h =0.8m ,其右侧足够远处有一固定障碍物A 。另一质量为m =2.0kg 可视为质点的滑块,以v 0=8m/s 的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5N 的恒力F 。当滑块运动到平板车的最右端时,两者恰好相对静止。此时车去恒力F 。当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B 点切入光滑竖直圆弧轨道,并沿轨道下滑。已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R =1.0m ,圆弧所对的圆心角∠BOD =θ=106°,取g =10m/s 2,sin53°=0.8,cos53°=0.6,求: (1)平板车的长度。 (2)障碍物A 与圆弧左端B 的水平距离。 (3)滑块运动圆弧轨道最低点C 时对轨道压力的大小。

2021届高考物理一轮复习方略关键能力·题型突破+4.2 平抛运动的规律及应用

关键能力·题型突破 考点一平抛运动的规律 单个物体的平抛运动 【典例1】(多选)一位同学玩投掷飞镖游戏时,将飞镖水平抛出后击中目标。当飞镖在飞行过程中速度的方向平行于抛出点与目标间的连线时,其大小为v。不考虑空气阻力,已知连线与水平面间的夹角为θ,则飞镖( ) A.初速度v0=vcos θ B.飞行时间t= C.飞行的水平距离x= D.飞行的竖直距离y= 【一题多解】选A、C。 方法一:将运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动,飞镖的初速度v0=vcos θ,选项A正确;根据平抛运动的规律有x=v0t,y=gt2,tan θ=,解得t=,x=,y=,选项C正确,B、D错误。 方法二:求飞行时间还可以沿抛出点与目标间的连线和垂直连线方向

建立平面直角坐标系,则沿连线方向上,飞镖做初速度为v0cos θ,加速度为gsin θ的匀加速直线运动;垂直连线方向上做初速度为v0sin θ,加速度为-gcos θ的类竖直上抛运动,故由题意可知飞镖飞到速度为v时,垂直连线方向的速度减为0,所用时间为,再次回到连线所用的时间也为(竖直上抛运动的对称性),故飞行时间为。 多个物体的平抛运动 【典例2】(2019·潮州模拟)甲、乙两位同学在不同位置沿水平各射出一枝箭,箭落地时,插入泥土中的形状如图所示,已知两支箭的质量、水平射程均相等,若不计空气阻力及箭长对问题的影响,则甲、乙两支箭 ( ) A.空中运动时间之比为1∶ B.射出的初速度大小之比为1∶ C.下降高度之比为1∶3 D.落地时动能之比为3∶1 【通型通法】

1.题型特征:两个物体水平抛出。 2.思维导引: 【解析】选B。根据竖直方向的自由落体运动可得 h=gt2 水平射程:x=v0t 可得:x=v0 由于水平射程相等,则:v甲=v乙① 末速度的方向与水平方向之间的夹角的正切值: tan θ== 可得:2gh 甲=3,6gh乙=② 联立①②可得:h甲=3h乙,即下落的高度之比为3∶1; 根据竖直方向的自由落体运动可得h=gt2,可知运动时间之比为∶1,故A、C错误;射出的初速度大小之比为1∶,故B正确;它们下落的高度之比为3∶1;但射出的初速度大小之比为1∶,

新高考物理第一轮复习课时强化训练:探究平抛运动的特点(解析版)

2021届新高考物理第一轮复习课时强化训练 探究平抛运动的特点 一、选择题 1、如图,在探究平抛运动的水平分运动的规律的实验中,下列哪些因素对探究规律没有影响( ) A.弧形轨道末端不水平 B.弧形轨道不光滑 C.实验小球为轻质小球 D.水平轨道不光滑 答案 B 解析弧形轨道末端不水平,小球抛出后不做平抛运动,对实验有影响,故A错误;只要每次释放小球的位置相同,轨道末端水平,弧形轨道是否光滑对实验没有影响,故B正确;实验小球为轻质小球,空气阻力对小球影响较大,故C错误;水平轨道不光滑,沿水平轨道运动的小球做减速直线运动,对实验有影响,故D错误。 2、用如图所示的装置研究平抛运动。小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落。关于该实验,下列说法中不

正确的是( ) A.两球同时落地 B.应改变装置的高度,多次实验 C.实验能说明A球在竖直方向上做自由落体运动 D.实验能说明A球在水平方向上做匀速直线运动 答案 D 解析根据装置图可以知道,两球由相同高度同时运动,A做平抛运动,B做自由落体运动,因此将同时落地,所以A正确;要多次实验,观察现象,则应改变装置的高度,多次实验,所以B正确;因为两球同时落地,因此说明A、B在竖直方向运动规律是相同的,故根据实验结果可以知道,平抛运动在竖直方向的分运动是自由落体运动,所以C正确,D错误。 3、为了探究平抛运动的规律,将小球A和B置于同一高度,在小球A做平抛运动的同时静止释放小球B。同学甲直接观察两小球是否同时落地,同学乙拍摄频闪照片进行测量、分析。通过多次实验( )

A.只有同学甲能证明平抛运动在水平方向是匀速运动 B.两位同学都能证明平抛运动在水平方向是匀速运动 C.只有同学甲能证明平抛运动在竖直方向是自由落体运动 D.两位同学都能证明平抛运动在竖直方向是自由落体运动 答案 D 解析在图甲的实验中,改变高度和平抛小球的初速度大小,发现两球同时落地,说明平抛运动在竖直方向上做自由落体运动,不能得出水平方向上的运动规律。在图乙的实验中,通过频闪照片,发现自由落体运动的小球与平抛运动的小球任何一个时刻都在同一水平线上,知平抛运动在竖直方向上的运动规律与自由落体运动相同,所以平抛运动竖直方向上做自由落体运动。频闪照片显示小球在水平方向相等时间内的水平位移相等,知水平方向做匀速直线运动,所以D 正确,A、B、C错误。 4、(多选)为了研究平抛运动的分运动性质,用如图所示的装置进行实验。小锤打击弹性金属片,A球水平抛出,同时B球被松开下落。关于该实验,下列说法中正确的是( )

高考专题训练 平抛运动与圆周运动

高考专题训练平抛运动与圆周运动 时间:40分钟分值:100分 1. (2013·陕西模拟)小船横渡一条河,小船本身提供的速度大小、方向都不变(小船速度方向垂直于河岸).已知小船的运动轨迹如图所示,则( ) A.越接近B岸,河水的流速越小 B.越接近B岸,河水的流速越大 C.由A岸到B岸河水的流速先增大后减小 D.河水的流速恒定 解析小船在垂直于河岸方向做匀速直线运动,速度大小和方向均不变,根据曲线的弯曲方向与水流方向之间的关系可知,由A岸到B岸河水的流速先增大后减小,C正确.答案 C 2. (2013·安徽省江南十校联考)如图所示,从水平地面上的A点,以速度v1在竖直平面内抛出一小球,v1与地面成θ角.小球恰好以v2的速度水平打在墙上的B点,不计空气阻力,则下面说法中正确的是( ) A.在A点,仅改变θ角的大小,小球仍可能水平打在墙上的B点 B.在A点,以大小等于v2的速度朝墙抛出小球,它也可能水平打在墙上的B点

C.在B点以大小为v1的速度水平向左抛出小球,则它可能落在地面上的A点 D.在B点水平向左抛出小球,让它落回地面上的A点,则抛出的速度大小一定等于v2解析根据平抛运动规律,在B点水平向左抛出小球,让它落回地面上的A点,则抛出的速度大小一定等于v2,选项D正确. 答案 D 3. (2013·上海市七校调研联考)如图所示,水平固定的半球形容器,其球心为O点,最低点为B点,A点在左边的内壁上,C点在右边的内壁上,从容器的边缘向着球心以初速度v0平抛一个小球,抛出点及O、A、B、C点在同一个竖直面内,则( ) A.v0大小适当时可以垂直打在A点 B.v0大小适当时可以垂直打在B点 C.v0大小适当时可以垂直打在C点 D.一定不能垂直打在容器内任何一个位置 解析若垂直打在内壁上某点,圆心O一定为水平分位移的中点,这显然是不可能的,只有D正确. 答案 D 4.

平抛运动和圆周运动典型例题

平抛运动、圆周运动 一、 平抛运动 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、条件: a 、只受重力; b 、初速度与重力垂直. 3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。g a = 4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性. 5、平抛运动的规律 ①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:2 2y x v v v += 物体的合速度v 与x 轴之间的夹角为: tan v gt v v x y = = α ②水平位移:t v x 0=,竖直位移22 1gt y = 合位移(实际位移)的大小:22y x s += 物体的总位移s 与x 轴之间的夹角为: 2tan v gt x y == θ 可见,平抛运动的速度方向与位移方向不相同。

而且θαtan 2tan =而θα2≠ 轨迹方程:由t v x 0=和2 21gt y =消去t 得到:22 2x v g y =。可见平抛运动的轨迹为抛物线。 6、平抛运动的几个结论 ①落地时间由竖直方向分运动决定: 由221gt h = 得:g h t 2= ②水平飞行射程由高度和水平初速度共同决定: g h v t v x 20 0== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移x 夹角θ正切值的两倍。 ④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:2 21tan 20x s s gt v gt =?==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt,方向恒为竖直向下(与g 同向)。任意相同时间内的Δv 都相同(包括大小、方向),如右图。 二、 V V V ⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。) 三、 如右图:所以θtan 20 g v t =

第18讲 平抛运动的规律及应用

第18讲平抛运动的规律及应用 基础命题点平抛运动的基本规律 1.抛体运动 定义:以一定的初速度将物体抛出,如果物体只受01重力作用,这时的运动叫做抛体运动。 2.平抛运动 (1)定义:以一定的初速度沿水平方向抛出的物体只在02重力作用下的运动。 (2)性质:平抛运动是加速度为g的03匀变速曲线运动,其运动轨迹是04抛物线。 (3)平抛运动的条件:v0≠0,沿05水平方向;只受06重力作用。 (4)研究方法:平抛运动可以分解为水平方向的07匀速直线运动和竖直方向的08自由落体运动。 3.平抛运动的规律:如图所示,以抛出点为原点,以水平方向(初速度v0方向)为x轴,以竖直向下的方向为y轴,建立平面直角坐标系,则: (1)09匀速直线运动,速度v x10v0,位移x11v0t。 (2)12自由落体运动,速度v y13gt,位移y141 2gt 2。 (3)合运动

①合速度v =v 2x +v 2 y ,方向与水平方向夹角为α,则tan α=v y v 0=15gt v 0。 ②合位移x 合=x 2+y 2,方向与水平方向夹角为θ,则tan θ=y x =16gt 2v 0。 4.平抛运动的规律应用 (1)飞行时间:由t =17 2h g 知, 时间取决于下落高度h ,与初速度v 0无关。 (2)水平射程:x =v 0t =18v 02h g ,即水平射程由初速度v 0和下落高度h 共 同决定,与其他因素无关。 (3)落地速度v =v 2x +v 2 y =19 v 20+2gh ,以α表示落地速度与x 轴正方向 的夹角,有tan α=v y v x =20 2gh v 0 ,所以落地速度也只与初速度v 0和下落高度h 有关。 (4)速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图甲所示。 5.两个重要推论 (1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的21中点,如图乙所示。 (2)做平抛(或类平抛)运动的物体在任意时刻任意位置处,设其末速度方向与

动能定理和圆周运动平抛运动相结合

动能定理和圆周运动相结合临界 例题1如图所示,小球用不可伸长的长为L的轻绳悬于O点,小球在最低点的速度必需为多大时,才能在竖直平面内做完整个圆周运动? (2)若所给的速度逐渐增大时,绳子在最高点时拉力变化?(3)最低点和最高点的拉力变化多少? 拓展:若绳子改为杆 变式训练1-1如图所示,小球自斜面顶端A由静止滑下,在斜面底端B进入半径为R的圆形轨道,小球刚好能通过圆形轨道的最高点C,已知A、B两点间高度差为3R,试求整个过程中摩擦力对小球所做的功。 例题2如图,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC竖直,圆轨道半径为R一个质量为m的物体放在A处,AB=2R,物体在水平恒力F的作用下由静止开始运动,当物体运动到B点时撤去水平外力之后,物体恰好从圆轨道的顶点C水平抛出,求水平力 变式训练2-1如果在上题中,物体不是恰好过C点,而是在C点平抛,落地点D点距B点的水平位移为4R,求水平力。 变式训练2-2如图上题,滑块在恒定外力作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后又刚好落到原出发点A,试求滑块在AB段运动过程中的加速度。

A H R O B D E 例题3如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A端与圆心O等高,AD为水平面,B点在O的正上方,一个小球在A点正上方由静止释放,自由下落至A点进入圆轨道并恰能到达B点。求: ⑴释放点距A点的竖直高度; ⑵落点C与A点的水平距离。 例题4如图上题图所示,四分之三周长圆管的半径R=0.4m,管口B和圆心O在同一水平面上,D是圆管的最高点,其中半圆周BE段存在摩擦,BC和CE段动摩擦因数相同,ED段光滑;直径稍小于圆管内径、质量m=0.5kg的小球从距B正上方高H=2.5m处的A处自由下落,到达圆管最低点C时的速率为6m/s,并继续运动直到圆管的最高点D飞出,恰能再次进入圆管,假定小球再次进入圆管时不计碰撞能量损失,取重力加速度g=10m/s2,求 (1)小球飞离D点时的速度 (2)小球从B点到D点过程中克服摩擦所做的功 (3)小球再次进入圆管后,能否越过C点?请分析说明理由 变式训练4-1如图所示,质量为m的小球用不可伸长的细线悬于O点,细线长为L,在O点正下方P处有一钉子,将小球拉至与悬点等高的位置无初速释放,小球刚好绕P处的钉子作圆周运动。那么钉子到悬点的距离OP等于多少?若绳子最大拉力4mg时那么钉子到悬点的距离OP等于多少? 变式训练4-2半径R=1m的1/4圆弧轨道下端与一水平轨道连接,水平轨道离地面高度h=1m,如图所示,有一质量m=1.0kg的小滑块自圆轨道最高点A由静止开始滑下,经过水平轨迹末端B时速度为4m/s,滑块最终落在地面上,试求: (1)不计空气阻力,滑块落在地面上时速度多大? (2)滑块在轨道上滑行时克服摩擦力做功多少? A C D B O

考点03 平抛运动与圆周运动-2021年高考物理核心考点总动员(原卷版)【高考物理专题】

2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动 【命题意图】 考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。 【专题定位】 本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。 【考试方向】 高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。 单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。 【应考策略】 熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。 【得分要点】 1.对于平抛运动,考生需要知道以下几点: (1)解决平抛运动问题一般方法 解答平抛运动问题时,一般的方法是将平抛运动沿水平和竖直两个方向分解,这样分解的优点是不用分解初速度,也不用分解加速度,即先求分速度、分位移,再求合速度、合位移;特别提醒:分解平抛运动的

第2讲 平抛运动的规律及应用

第2讲平抛运动的规律及应用 主干梳理对点激活 对应学生用书P076知识点抛体运动Ⅱ 1.平抛运动 (1)定义:将物体以一定的初速度沿□01水平方向抛出,物体只在□02重力作用下的运动。 (2)性质:平抛运动是加速度为g的□03匀变速曲线运动,运动轨迹是□04抛物线。 (3)条件 ①v0≠0,且沿□05水平方向。 ②只受□06重力作用。 2.斜抛运动 (1)定义:将物体以初速度v0沿□07斜向上方或□08斜向下方抛出,物体只在□09重力作用下的运动。 (2)性质:斜抛运动是加速度为g的□10匀变速曲线运动,运动轨迹是□11抛物线。 (3)条件 ①v0≠0,且沿□12斜向上方或斜向下方。 ②只受□13重力作用。 知识点抛体运动的基本规律Ⅱ 1.平抛运动 (1)研究方法:平抛运动可以分解为水平方向的□01匀速直线运动和竖直方向的02自由落体运动。 □ (2)基本规律(如图所示) ①速度关系

②位移关系 ③轨迹方程:y=□10 g 2v20x 2。 2.斜抛运动 (1)研究方法:斜抛运动可以分解为水平方向的□11匀速直线运动和竖直方向的竖直上抛或竖直下抛运动。 (2)基本规律(以斜向上抛为例,如图所示) ①水平方向 v0x=□12v0cosθ,x=v0t cosθ。 ②竖直方向 v0y=□13v0sinθ,y=v0t sinθ-1 2gt 2。 3.类平抛运动的分析 所谓类平抛运动,就是受力特点和运动特点类似于平抛运动,即受到一个恒定的外力且外力与初速度方向垂直,物体做匀变速曲线运动。 (1)受力特点:物体所受合力为恒力,且与初速度的方向垂直。 (2)运动特点:沿初速度v0方向做匀速直线运动,沿合力方向做初速度为零的匀加速直线运动。 一堵点疏通 1.以一定的初速度水平抛出的物体的运动是平抛运动。() 2.做平抛运动的物体初速度越大,水平位移越大。()

实验:探究平抛运动的特点-教案

实验:探究平抛运动的特点 课题实验:探究 平抛运动的 特点 单元5学科物理年级高一 【教材分析】 本节课所采用的教材是人教版高中物理必修2第五章第3节的内容。 本节内容是通过实验探究平抛运动的规律,它既是前一节运动的合成与分解方法的具体实践应用,也是后一节抛体运动的规律得出的前提,更是学生自主设计、探索的好素材,在本章中有着重要的地位。学生会用合成与分解的方法分析抛体运动;能分别以物体在水平方向和竖起方向的位移为横坐标和纵坐标,描绘做抛体运动的物体的轨迹。要求学生知道平抛运动的受力特点;知道用实验方法得到平抛运动轨迹的方法;理解确定平抛运动在水平方向做匀速直线运动、竖直方向做自由落体运动所用的方法;知道水平方向的匀速直线运动和竖直方向的自由落体运动的独立性和同时性;体会研究曲线运动的基本方法。 【教学目标与核心素养】 一、教学目标 1.知道什么是平抛及物体做平抛运动的条件。 2.知道抛体运动只受重力作用 3.探究平抛运动在水平方向上是匀速直线运动和竖直方向自由落体运动,并且这两个运动互不影响。 二、核心素养 物理观念:理解平抛运动可以看成水平的匀速直线运动与竖直方向上的自由落体运动的合成,并且这两个分运动互相独立。 科学思维:经历不同层次的现察与分析,培养学生的观察能力,综合分析能力 科学探究:科学探究:利用生活中实际问题引入,创设矛盾所在,提出问题,结合平抛仪实验,动画,平抛与自由落体运动对比的频闪照片,逐步加深对平抛运动的认识.并根据实验结果在教师引导

思考3:你能总结抛体运动的定义吗?物体以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,这时的运动叫作抛体运动; 讲授新课一、平抛运动 1.平抛运动 将物体用一定的初速度沿水平方向抛出,且只在重力作用下所做的运动。 做平抛运动的物体有什么特点呢?下面我们通过实验来探究物体做平抛运动的特点。 二、探究平抛运动的特点 1.实验思路 按照把复杂的曲线运动分解为两个相对简单的直线运动的思路,把平抛运动看作是在竖直方向的分运动和水平方向的分运动的合运动。 如果这两个分运动研究清楚了,平抛运动的规律自然就清楚了。 2.进行实验 思考:如何通过实验方法获得平抛运动轨迹? 方法一:描迹法 观察记忆平抛运动的概念 学生阅读课文说一说实验思路 思考讨论:如何通 过实验方法获得平抛运动轨迹? 学生设计表格测量两球间的距离 学生思考讨论小球在水平方向和竖直方向分运动的特点 学生阅读理解实验步骤 学生观察实验现象并总结 掌握平抛运动初速度沿水平方向,只受重力两个关键点 锻炼学生自主学习能力 拓展学生的思维 掌握描述平抛运动的几种方法 锻炼学生的动手能力 锻炼学生的交流讨论能力理解平抛运动水平方向上做的是匀速运动,竖直方向上做的是自由落体运动。 掌握演示实验中平抛运动竖直分运动的特点 锻炼学生

2021届山东新高考物理一轮复习讲义:第4章 实验5 探究平抛运动的特点 Word版含答案

实验五 探究平抛运动的特点 一、实验目的 1.用实验与理论进行探究、分析,认识平抛运动的规律。 2.用实验方法描出平抛物体的运动轨迹。 3.根据平抛运动的轨迹确定平抛物体的初速度。 二、实验原理 平抛运动可看作两个分运动的合成:一个是水平方向的匀速直线运动,另 一个是竖直方向的自由落体运动,则水平方向上有x =v 0t ,竖直方向上有y =12 gt 2,令小球做平抛运动,利用追踪法逐点描出小球运动的轨迹,建立坐标系,测量出x 、y ,再利用公式可得初速度v 0=x g 2y 。 三、实验器材 斜槽、竖直固定在铁架台上的木板、铅笔、白纸、图钉、小球、刻度尺、重锤线。 四、实验步骤

甲乙 1.按图甲安装实验装置,使斜槽末端水平。 2.以水平槽末端端口上小球球心位置为坐标原点O,过O点画出竖直的y 轴和水平的x轴。 3.使小球从斜槽上同一位置由静止滚下,把笔尖放在小球可能经过的位置上,如果小球运动中碰到笔尖,就用铅笔在该位置画上一点。用同样方法,在小球运动路线上描下若干点。 4.将白纸从木板上取下,从O点开始连接画出的若干点描出一条平滑的曲线,如实验原理图乙所示。 五、数据处理 1.判断平抛运动的轨迹是不是抛物线 (1)原理:若平抛运动的轨迹是抛物线,则当以抛出点为坐标原点建立直角坐标系后,轨迹上各点的坐标具有y=ax2的关系,且同一轨迹上a是一个特定的值。 (2)验证方法 方法一:代入法 用刻度尺测量几个点的x、y坐标,分别代入y=ax2中求出常数a,看计算得到的a值在误差范围内是否为一常数。 方法二:图象法 建立y-x2坐标系,根据所测量的各个点的x、y坐标值分别计算出对应y值

高考物理专题 平抛运动 圆周运动及参考答案

高考专题四:平抛运动 圆周运动 一、选择题。本题共16小题。(每小题6分,共96分。第1—8题在每小题给出的四个选项中,只有一项符合题目要求,第9—16题有的有多项符合题目要求。) 1.如图所示,帆板在海面上以速度v 朝正西方向运动,帆船以速度v 朝正北方向航行,以帆板为参照物( ) A.帆船朝正东方向航行,速度大小为v B.帆船朝正西方向航行,速度大小为v C.帆船朝南偏东45°方向航行,速度大小为2v D.帆船朝北偏东45°方向航行,速度大小为2v 2.取水平地面为重力势能零点。一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等。不计空气阻力,该物块落地时的速度方向与水平方向的夹角为( ) A. 6π B. 4π C. 3 π D. 125π 3.如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下。重力加速度大小为g ,当小环滑到大 环的最低点时,大环对轻杆拉力的大小为( ) A.Mg-5mg B.Mg+mg C. Mg+5mg D. Mg+10mg 4.如图,一半径为R ,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平。一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道。质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小。用W 表示质点从P 点运动到N 点的过程中客服摩擦力所做的功。则( ) A. mgR W 21 = ,质点恰好可以到达Q 点 B. mgR W 21 >,质点不能到达Q 点 C. mgR W 21 =,质点到达Q 后,继续上升一段距离 D. mgR W 2 1 <,质点到达Q 后,继续上升一段距离 5.小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放,

相关主题
文本预览
相关文档 最新文档