当前位置:文档之家› 变频器热测试规范

变频器热测试规范

变频器热测试规范
变频器热测试规范

测试部测试规范

变频器热测试规范

拟制:刘建平日期: 2010.04.29审核:_ 日期:_ 批准:_ 日期:_

更改信息登记表

文件名称: 变频器热测试规范

文件编码:

评审会签区:

目录

1、目的 (4)

2、范围 (4)

3、定义 (4)

4、引用标准和参考资料 (4)

5、测试环境 (5)

6、测试设备 (5)

7、热电偶测试点 (5)

7.1 驱动电源板测试点选取 (5)

7.2 整机的测试点选取 (6)

7.3 环境温度测试点位置选取 (6)

7.4 测试点的布置 (7)

7.5 热电偶的固定 (9)

8、测试项目 (11)

9、测试方法 (11)

9.1 驱动电源板温升测试 (11)

9.2 额定运行温升测试 (12)

9.3 交变式负载温升测试 (13)

9.4 过温保护测试 (14)

9.5 输入缺相测试 (14)

9.6 缓冲电阻温升测试 (14)

10、判定标准 (15)

11、关键器件温升限值要求 (15)

12、测试数据及测试报告 (16)

附件1.热测试报告模板 (17)

附件2.温升数据表格模板 (17)

附件3.红外热像仪(Ti20)操作指导书 (17)

附件4.安捷伦34972A数据采集仪操作指导书 (17)

附录A.温升与环境温度之间的推算关系 (18)

附录B.红外热像仪使用注意事项 (19)

附录C.温升数据表格 (20)

英威腾电气股份有限公司测试技术规范

变频器热测试规范

1、目的

检验我司变频器产品的热设计是否合理,验证器件应用在热应力方面是否满足器件的热应力降额要求。

2、范围

本规范规定了样机的热测试方法,适用于英威腾电气股份有限公司开发的所有变频器产品。

3、定义

●变频器额定运行:是指变频器工作在额定输入电压和缺省载频下,驱动适配电机50Hz

运行,输出额定电流。

●变频器通常工况:是指变频器用户现场中通常的运行工况,若规格书中无明确界定则

为额定运行。

●适配电机:与变频器同功率或者是大一功率,小一功率的电机。(不包括电机并联)

4、引用标准和参考资料

(1)GB/T 12992-91 电子设备强迫风冷热特性测试方法

(2)GB/T 12993-91 电子设备热性能评定

(3)GB 2421 电工电子产品基本环境试验规程总则

(4)GB 2423 电工电子产品基本环境试验规程试验方法

5、测试环境

(1)常温实验室环境

(2)环境试验箱

6、测试设备

(1)34972A型数据采集仪(Agilent安捷伦)

(2)DR230型混合记录仪(YOKOGAW A横河)

(3)Ti20型手持式红外热像仪(FLUKE福禄克)

7、热电偶测试点

7.1 驱动电源板测试点选取

7.1.1 开关电源关键器件:输入端整流二极管或桥堆、整流电路限流电阻、滤波电容及电容均压电阻、开关变压器、MOS管、MOS管驱动芯片及芯片启动电阻、原边检流电阻、吸收电路二极管及电阻、副边整流二极管、负载电阻、稳压管、电压反馈的检测光耦及线性稳压芯片等。

7.1.2 功能电路关键器件:输入缺相检测电路中的功率电阻和光耦、母线电压检测电路中的功率电阻和光耦、风扇及接触器的驱动电路中的开关管和光耦、电流检测电路中的稳压芯片及光耦等。

7.1.3 主回路PCB铜箔(使用红外热像仪进行预测试,找出温度最高点)。

7.1.4 热电偶粘点前,先使用Ti20红外热像仪进行预测试,找出除7.1.1、7.1.2以外的温度较高器件,以及找出各被测器件的温度最高点,再进行热电偶粘点测试。

注:

a)热电偶:TT-K-30-SLE,K型热电偶线,线径2*0.255mm,红色线为镍-铬合金,

黄色线为镍-铝合金,外层绝缘材质耐温-200℃~260℃。

b)热电偶工作端:与被测器件表面相粘接的一端。

c)热电偶参考端:与测温仪相连接的一端。

7.2 整机的测试点选取

7.2.1 主回路功率器件:整流桥、逆变模块、母线电容及电容均压电阻、上电缓冲电阻、变压器线圈(大功率变频器中)、接触器主触点、铜皮和铜排、交/直流电抗器(内置)、输出电流检测电阻/霍尔、功率模块的温度检测点等。

7.2.2 如果被测样机是新设计的产品,或者机器内的驱动电源板和其它单板是新板(未转产或硬件升级)时,在整机测试时还要对7.1.1 、7.1.2、7.1.3 中的关键器件进行选取测试。

7.2.3 对于同一电路中实现相同功能的一类器件(如多个电阻或电容串并联),应选取散热条件相对差、裕量相对小的器件进行测量,选取数量为2个。

7.2.4 热电偶粘点前,先使用Ti20红外热像仪进行预测试,找出除7.2.1、7.2.2以外的温度较高器件,以及找出各被测器件的温度最高点,再进行热电偶粘点测试。

7.3 环境温度测试点位置选取

按照用户手册中确定的变频器安装方式摆放样机,环境温度的测试点选取在距离被测样机某一侧面几何中心点的80mm处,如下图所示。

环境温度测试点位置(图中红色圆点)

以上是GB/T 12992-91标准中所规定的环境温度测试点布置方法。在实际测试环境中,将热电偶直接放置在空气中时,温度会容易出现波动的现象,因此:

a)在常温环境下进行温升测试时,将环境温度测试点热电偶用温升胶固定在一个小

型的专用散热器上,并将散热器固定在温度测试设备上(现公司所使用的测温仪

都已将环境测试点热电偶连接到1号通道上)。在测试时,可将温度测试设备按以

上标准大致的位置放置温度测试设备,但要注意温度测试设备的放置不能影响被

测样机的散热风道(例如,不能太贴近变频器箱体侧面设计的百叶窗)。

b)当在环境试验箱进行高温环境温升测试时,将环境温度测试点热电偶工作端点上

少量的温升胶(如下图),覆盖工作端裸露部分即可,将该热电偶直接放入环境试

验箱内,放置位置要尽量避开风口。

环境温度测试点热电偶(环境试验箱内使用)

7.4 测试点的布置

7.4.1 功率模块(整流桥、IGBT)的测试点应粘在模块的散热基板上,且尽量靠近模块中的功率结点。

7.4.2 对于母线电解电容至少选择两个散热条件差的电容进行测试,母线电解电容的测试点要布置在电容的铝外壳上和芯包中心点处。使用1.5mm或1.7mm规格的钻头在电容顶部接线端子面的中心点处打孔,将热电偶工作端放入到电容芯包的中心点位置进行测试。测电容铝外壳温度时,要将测试点位置上的电容外层绝缘套管刮开,刮开大小比热电偶工作端大一点即可。

7.4.3 半导体功率晶体管管壳温度测试点,应设置在距管芯最近的热点位置上。

7.4.4 集成器件的表面温度测试点,应设置在器件表面的中心点(晶圆位置)上。

7.4.5 垂直放置的功率电阻器,表面温度测试点应设置在垂直高度的三分之二处;水平放置的功率电阻器,测试点应设置在中间位置。

7.4.6 温度临界或对温度敏感的元器件表面温度,一般应在其热点附近布设两个测试点,其值应取大者。

7.4.7 铜排的温度测试点,应选取在截面积最小(同一铜排上)的位置,以及两铜排的连接点上。

7.4.8 所有的整机温度检测点上,都要布置热电偶测试点,用于温度检测精度测试。

7.4.9 其它元器件表面温度测试点的位置,应视其热点情况而定。

以下为部分器件的测试点布置示图,图中红色圆点为热电偶粘点测试位置。

单桥臂整流模块测试点布置

PIM模块测试点布置

单桥臂IGBT模块测试点布置

电解电容测试点布置

温度检测点的测试点布置

注意事项:

a)测试元件表面温度的测点布置的原则,就是将测点布置在元器件温度最高或较高

的热点上,这些点通常在距离元件内部发热点最近或散热条件最差的地方。

b)电解电容打孔放入热电偶后,必须用温升胶将孔口密封。

c)电解电容打孔要注意力度,以免钻头绞到芯包中的隔离纸或电极箔片而损坏电容。

d)体积小的电解电容,如同江海CD293系列产品,从电容顶部接线端子面中点打孔

时很容易碰到电容内部的电极引出线,所以要从底部的中心点打入。底部铝壳的

厚度约为0.5mm,铝壳到芯包的距离约1mm,使用手持电钻打孔,转速尽量控制

到最小,慢慢磨穿电容铝外壳,注意要紧握电钻,避免孔打穿时由于惯力使电钻

再往前冲而损坏电容。

7.5 热电偶的固定

7.5.1 将热电偶工作端焊接成一个圆焊球,焊球表面要光滑、无严重的氧化层,工作端的导线裸露部分控制在2 mm以内。

热电偶工作端的焊接

7.5.2 测试表面温度时,应保证热电偶工作端与被测表面间紧密接触,使接触热阻最小,以减小测试误差。而且两者之间是点接触,避免面接触。

7.5.3 固定的方法:将热电偶工作端紧贴被测表面后,用satlonD-3温升胶滴在热电偶工作端上,再用satlon-606催化剂进行固化。温升胶的用量不能太多,能覆盖热电偶工作端裸露部分,并能起到固定的作用即可,温升胶的用量太多可能会影响元器件的正常散热,特别是对于被测表面较小的元器件。

IGBT模块上热电偶工作端的固定

7.5.4 对于被测表面带电的元器件(如铜排),热电偶工作端不能与其直接接触,否则会使测试数据严重不准确,或损坏测温设备,应该与被测表面保持绝缘。绝缘方法:先滴一滴satlonD-3温升胶在测试点上,直接用温升胶的瓶嘴将其搅匀、平整,使温升胶厚度最小,用satlon-606催化剂固化,再用温升胶将热电偶工作端固定在先前已固化的温升胶上,使热电偶工作端不与带电表面相接触。要注意先铺的一层温升胶的厚度和面积,尽量最小,以减小温升误差。

7.5.5 在将热电偶导线引出机箱/柜的路径中,用高温胶纸在一些合适的位置将其固定,防止意外拉扯使热电偶探头松动,影响测量精度。同时还要尽量避免热电耦从风道进气口或出气口引出。

注意事项:

a)SatlonD-3温升胶的软化点是130℃,熔点是175℃。当被测表面的温度到达130℃

以上时,温升胶就会因软化而变形、松动或脱落,对测试结果带来一定的误差。

因此,在对于温度高于130℃的情况下,测试结果不能直接作为判定依据,只能

做为参考依据。

b)使用satlon-606催化剂的时候,不需要太用力按压喷头,喷嘴导管不要太靠近温

升胶,否则喷射压力会将温升胶吹走或吹起,使温升胶固化后内部形成气泡,热

电偶固定不牢,影响测试精度。

8、测试项目

●驱动电源板温升测试

●额定运行温升测试

●交变式负载温升测试

●过温保护测试

●输入缺相测试

●缓冲电阻温升测试

9、测试方法

9.1 驱动电源板温升测试

9.1.1 常温实验室环境

9.1.1.1 在常温实验室环境下,被测单板的摆放位置要避开气流,如空调的循环风等。

9.1.1.2 根据7.1 选取好测试点,用温升胶将热电偶固定好,并以照片的形式记录各测试点位置。将热电偶参考端连接至测温仪,记录下测试点与热电耦测试通道的对应关系。

9.1.1.3 将开关电源副边各路输出连接至电子负载设备,并根据开发设计人员提供的开关电源技术参数规格,设置电子负载设备的输出参数。

9.1.1.4 设置测温仪的各通道配置,注意要正确设置热电偶的类型(目前使用的都是K型),电源板输入Uinnom电压,满载输出,开始温升测试。观察各测试点测量的温度是否正常。如发现坏点或温度异常测试点,掉电后重新处理好后再进行测试。

9.1.1.5 测温仪设置为自动温度扫描(打印),间隔时间为2分钟。

9.1.1.6 温度曲线没有上升的趋势后则认为各测试点的温度已达稳定值,使用Ti20红外热像仪对被测单板进行热成像测试,并保存热成像图,热成像数据中必须包含单板的整体温度分布,以及各测试点的热成像数据。

9.1.1.7 温升稳定后要再持续测试20分钟,但温升测试时间不能小于90分钟。

9.1.1.8 测温仪再扫描(打印)一组数据后,结束测试。

9.1.1.9 被测电源板输入分别调至Uinmin和Uinmax电压,再进行满载温升测试,并记录两种状态下温定稳定后的温升数据和热成像数据。

9.1.2 试验箱高温环境

9.1.2.1 被测电源板置入QTT-80L可程式湿热箱内,电源板开关电源副边各路输出连接至电子负载设备。

9.1.2.2 湿热箱温度设置为40℃,显示温度到达40℃,再经20分钟后,给被测电源板输入Uinnom电压,满载输出,开始温升测试。

9.1.2.3 测温仪设置为自动温度扫描(打印),间隔时间为2分钟。

9.1.2.4 温升稳定后要再持续测试20分钟,但温升测试时间不能小于2小时。

9.1.2.5 测温仪再扫描(打印)一组数据后,结束测试。

注意事项:

温升测试结束后,不要立即停止运行,要让电机空载运行30分钟左右,以免励磁电机过热损坏。

9.2 额定运行温升测试

9.2.1 常温实验室环境

9.2.1.1 将被测样机按工程应用安装方式放置。对于壁挂式机器,样机必须安装在专用的变频器测试安装架上;对于立柜式机器,样机必须直立放置在木栈板上,木栈板上要垫一层纸皮;对于功率单元(低压),被测单元必须按照整机上的单元安装方向放置。

9.2.1.2 根据7.2选取好整机测试点,用温升胶将热电偶固定好,并以照片的形式记录各测试点位置。将热电偶参考端连接至测温仪,记录下测试点与热电耦测试通道的对应关系。

9.2.1.3 设置测温仪的各通道配置,注意要正确设置热电偶的类型(目前使用的都是K型),被测样机连接上适配电机,输入额定电压,缺省参数运行,调节励磁电机电压或对拖机组的运行参数,使被测样机输出额定电流并保持稳定,开始温升测试;观察各测试点测量的温度是否正常,如发现坏点或异常测试点,掉电后重新处理好后再进行测试。

9.2.1.4 测温仪设置为自动温度扫描(打印),间隔时间为2分钟。同时,要记录被测样机的键盘显示温度。

9.2.1.5 温度曲线没有上升的趋势后则认为各测试点的温度已达稳定值,温升稳定后要再持续测试20分钟,但温升测试时间不能小于2小时。

9.2.1.6 测温仪再扫描(打印)一组温升数据后,停止扫描(打印)。

9.2.1.7 使用Ti20红外热像仪对被测样机进行热成像测试,并保存热成像图。先对从样机

外围可见的器件进行热成像测试(如电抗器、母线电解电容等);然后掉电并使用放电电阻对被测样机进行放电,快速将样机的面盖板或其它挡板取下(时间越短,样机温度下降越少),再上电加满载运行,温升稳定后,使用红外热像仪对样机内单板及主回路的各元器件进行热成像测试。

9.2.1.8 如果被测样机是G/P合一的机型,将样机设置为P型机,加载使样机输出(P型)额定电流,再按9.2.1.4 ~9.2.1.7步骤,测试并记录P型机的温升。

9.2.2 试验箱高温环境

9.2.2.1 被测样机放入KMH-1000RL5可程式快速温变湿热箱内,湿热箱温度设置为40℃,显示温度到达40℃,再经30分钟后,开始温升测试。

9.2.2.2 连接上适配电机,输入标准电压,缺省参数运行,调节励磁电机电压或对拖机组的运行参数,使被测样机输出额定电流并保持稳定。

9.2.2.3 测温仪设置为自动温度扫描(打印),间隔时间为2分钟。同时,要记录被测样机的键盘显示温度。

9.2.2.4 温升稳定后要再持续测试20分钟,但温升测试时间不能小于2小时。

9.2.2.5 测温仪再扫描(打印)一组温升数据后,结束温升测试。

9.3 交变式负载温升测试

9.3.1 在常温实验室环境下,将被测样机按工程应用安装方式放置。对于壁挂式机器,样机必须安装在专用的变频器测试安装架上;对于立柜式机器,样机必须直立放置在木栈板上,木栈板上要垫一层纸皮;对于功率单元(低压),被测单元必须按照整机上的单元安装方向放置。

9.3.2 根据7.2选取好整机测试点,用温升胶将热电偶固定好,并以照片的形式记录各测试点位置。将热电偶参考端连接至测温仪,记录下测试点与热电耦测试通道的对应关系。9.3.3 使用两个直流电源设备交替给机组的励磁电机提供定值直流电压,用PLC(或变频器的继电器输出功能)对直流电源设备的输出进行通断控制,使励磁电机电流交变,实现被测样机的负载交变。

9.3.4 设置测温仪的各通道配置,注意要正确设置热电偶的类型(目前使用的都是K型),被测样机连接上适配电机,输入额定电压,缺省参数运行,设置PLC或(控制用的)变频器继电器输出参数,使交变间隔时间为10秒,分别调节两个直流电源设备的输出电压,

使被测样机100%与120%额定输出交变(平均负载率为110%),开始温升测试;观察各测试点测量的温度是否正常,如发现坏点或异常测试点,掉电后重新处理好后再进行测试。

9.3.5 测温仪设置为自动温度扫描(打印),间隔时间为2分钟。同时,要记录被测样机的键盘显示温度。

9.3.6 温度曲线没有上升的趋势后则认为各测试点的温度已达稳定值,温升稳定后要再持续测试20分钟,但温升测试时间不能小于3小时。

9.3.7 测温仪再扫描(打印)一组温升数据后,结束温升测试。

9.4 过温保护测试

9.4.1 在9.2额定运行温升测试完成后,在常温实验室环境下进行过温保护试验。

9.4.2 将被测样机散热风扇的电源线插座拔开(自然冷却式被测样机可将其放置在密闭容器内),轻载运行,使被测样机温升缓慢上升直至过温保护。

9.4.3 反复进行3次过温保护试验,每次过温保护时要用测温仪扫描(打印)一组温升数据,并记录被测样机的键盘显示温度。

9.5 输入缺相测试

9.5.1 在9.2额定运行温升测试完成后,在常温实验室环境下进行输入缺相测试。

9.5.2 设置功能码将被测样机的输入缺相保护功能屏蔽,被测样机输入端只接线R、S、T 中的任意两相,连接上适配电机,输出额定负载,缺省参数运行测试。

9.5.3 测温仪设置为自动温度扫描(打印),间隔时间为2分钟。同时,要记录被测样机的显示温度。

9.5.4 持续运行3小时,测温仪再扫描(打印)一组温升数据后,结束温升测试。

9.6 缓冲电阻温升测试

9.6.1 在常温实验室环境下,进行反复上下电试验,测试缓冲电阻的温升。

9.6.2 采用反复上下电测试工装是进行测试,上电时间设为10秒,放电时间设为50秒(测试工装带放电电阻),被测样机设置上电自动运行,不需要带负载。

9.6.3 对被测样机主回路缓冲电阻进行热电偶粘点测试温升。

9.6.4 测试时间为4小时,测试结束前用测温仪扫描(打印)缓冲电阻的温升数据。

10、判定标准

10.1 额定负载和交变负载工作条件下测试,器件的温度或者温升降额应满足器件使用要求。

10.2 过温保护动作点在设计误差范围内,器件的温度或温升降额满足器件使用要求,且过温保护测试后应无器件损坏。

10.3 输入缺相工作条件下测试,被测样机应无故障、无器件损坏。

10.4 反复上下电测试,被测样机应无故障,缓冲电阻自身不能损坏且不能导致周边异常。

11、关键器件温升限值要求

在变频器内部存在很多种类型的器件,由于不同的器件其所能承受的温度上限不同,因而在实际温升测试时,应该设置不同的温度限值。

12、测试数据及测试报告

12.1 热成像数据

在测试报告中要求有经过处理的热成像图片,包括在图像中标出温度最高点和对应发热严重区的平均温度值,以图像格式导出热成像。原始的热成像集合要求作为附件归档。

12.2 测温仪数据

12.2.1 各热电偶测试点的分布位置图。测试点的分布位置要以照片的形式记录,无法拍照的位置,要以画图的方式标示测试点的分布位置。

12.2.2 元器件温升数据。各测试点的温升数据结果要以统一的表格形式呈现。

12.2.3 元器件温升曲线图。根据安捷伦34972A型数据采集仪的温度测试数据,在其上位机软件中制作并导出温升曲线图。

(热测试报告格式请参见附件1.热测试报告模板

温升数据记录表格格式请参见附件2.温升数据表模板)

附件1.热测试报告模板

热测试报告模板.do

c

附件2.温升数据表格模板

温升数据表模板.do

c

附件3.红外热像仪(Ti20)操作指导书

附件4.安捷伦34972A数据采集仪操作指导书

附录A.温升与环境温度之间的推算关系

由于在进行变频器温升试验时,基本上都是在常温实验室环境下进行测试,其实际换算到40℃环境温度时,其对应的元器件的实际温度不能简单地只加上40℃与室温的差,而应通过以下的图表换算得来。

示例:

若在+20℃自由空气中,物体耗散一定功率后表面温度达到+70℃时,在+55℃的环境温度中,其耗散相同的功率时,表面温度是多少?

从T a(周围温度)尺上的+20℃到T c(试验样品表面温度)尺上的+70℃之间画一条直线,记下其与枢轴线的交点,然后从T a尺上+55℃点到枢轴线上记录下的交点画一条直线,并延长至T c尺上,得出新交点为+98℃,这就是所求+55℃环境温度中的物体表面温度。

附录B.红外热像仪使用注意事项

1:所有物体都反射、透射和辐射能量。只有发射的能量表示物体的温度。使用红外热像仪测量的精度取决于发射率(ε)和反射温度补偿(RTC)的设置是否恰当,非金属和涂过漆的或重度氧化的金属体的发射率较高,发光金属体的发射率较低,发射率低的物体对它们的热环境有较高的反射。发射率低于 0.6 的测量是不可靠的,既使正确地设置了发射率值。

2:红外热像仪只能测量被测物体的表面温度,无法测量电感内部线圈的温度或电解电容的芯子温度,人眼无法看到的位置,基本上红外热像仪就无法测量,只能通过热电偶进行测量。

3:发射率小于0.9,仪器要垂直对准被测表面进行测试。任何情况下,偏离入射角不得超过30度。

4:热像仪的操作使用环境温度范围为 0℃至50℃。当环境温度与25℃慢慢偏离时,热像仪的测量精度规格下降±0.2 ℃/℃或±0.2 %/℃(以较大值为准)。

例如,如果 Imager 在35℃环境温度下工作,则测量精度规格为

± [2 + (35 - 25) x 0.2] = ± 4 ℃ --- 对低于100℃的温度,或,± [0.02 + (35 - 25) x 0.002] x T (T:所测得温度) --- 对高于100℃的温度。

5:红外热像仪的镜头和被测表面之间不能有任何物体遮挡,否则无法获得精确的红外温度读数。(例如透过玻璃进行测量)

附录C.温升数据表格

变频器试验及标准

国家标准低压变频器参数额定值 变频调速的控制方式经历了脉宽调制变压变频(PWM —VVVF)、转差频率控制、矢量控制、直接转矩控制等技术的发展历程,在控制精度、控制算法的复杂度、通用性等方面得到很大提高。 最新的技术是矩阵式交-交变频,省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为1,输入电流为正弦且能四象限运行,系统的功率密度大。 变频器的试验要求 目前,已制订了6项电气传动调速系统的国家及行业标准:GB/T3886.1-2002、JB/T1 0251-2001、GB/T12668.1-2003、GB/T12668.2-2003、GB/12668.3-2004、GB/T12668.4。此外,GB/12668.5、GB/12668.6正在进行最后阶段的审批。 变频器的试验类型包括型式试验、出厂试验、抽样试验、选择试验、车间试验、验收试验、现场调试试验、目击试验等。 电气试验方面主要是测量变频器的输入、输出值,包括: 1)输入值:额定输入电压、额定输入电流、额定容量、有功功率、功率因数、输入各次谐波、输入总失真度。 2)输出值:最大额定输出电压、额定连续电流、额定功率、频率范围、过载能力(过载能力适用于额定的转速范围)、输出各次谐波、输出总失真度。 3)效率:在设计的频率范围内,各个频率下的效率。 变频器的测量与仪器 1、测量仪器仪表简介 目前常见的测量仪表很多,这里介绍几种常见的仪表。 1) 动铁式仪表: 这种仪表测量的是有效值,它的值由固定线圈磁场与其内可动铁之间相互作用的电磁力所确定的偏转角度而确定。读数误差由动铁的磁饱和以及谐波对线圈内电感的影响引起。仪表精度一般为0.5级。 2) 整流式仪表:交流电流经整流然后作用于动圈式直流表,按交流电流的有效值确定刻度,其有效值是由整流平均值乘以波形系数求出的。该种仪表基本用于测量正弦电流波形,在测量非正弦电流的波形时,应注意波形系数。典型的仪表精度是1.0级。

变频器维护检修规程(维护内容、安全措施)

目录 一、总则 二、维护标准 三、检修周期与内容 四、检修与质量标准 五、试验 六、设备整体评估

一、总则 主题内容与适用范围 主题内容 本规程规定了高压变频器及低压变频装置的维护标准、检修周期、项目及质量标准、检修后试验、常见故障及处理方法等。 适用范围 本规程适用于杭州晟途机电有限公司内的高压及低压变频器的检修及维护。 编写依据 参照厂家提供的使用说明书、技术资料和图纸,结合现场具体情况进行制定。 二、维护标准 变频器外观应清洁,盘面应无脱漆、锈蚀,标志应正确、齐全; 所有接线应无过热,元器件、插件的固定螺栓应无松动和锈蚀;元器件、插件应清洁,无损伤和过热,插件及控制板上的电子元件应无脱焊、虚焊、过热、老化现象,功能参数符合说明书要求; 电压表、电流表、干式变压器温度表、高压带电指示装置等表计指

示正常; 所有开关应完好无损且动作灵活、可靠; 照明、冷却风扇等辅助系统应完好,运行正常; 保护回路中的元器件应无损伤,运行参数整定值准确; 整流干式变压器运行正常,绕组温度正常,无异常声音; 控制系统电源工作正常,市电控制电源消失后柜内UPS切换应正常。 IGBT模块静态测试应正常,标准值为; M; 主回路的绝缘电阻应大于5 模拟保护动作时,信号显示系统应显示正确,报警电路应可靠报警。 三、高压变频器检修周期与内容 高压变频器检修周期和项目: 检修项目: 基本维护 a.柜内的清洁; b.空气滤清器的清洁;

c.电路部件的变色、变形,漏液(电容器电阻电抗器变压器等)的确认; e.控制板(电阻、电容器的变色、变形,基板的变色、变形、脏污、焊接的老化等)的确认和清洁; f.配线(有无因发热导致的变色、腐蚀)的确认; g.紧固部分(螺栓,螺帽,螺钉类的松动)的确认; h.进行本装置的主电路部分的检查时,应在断开(OFF)输入电源后,经过约5分钟以上,在验电后进行。 i.装置内部的电容器在将输入电源断开(OFF)后电荷仍会残留一段时间,会有触电的危险。 j.为防止发生触电事故,在设备运转的状态下请不要打开门。 深度维护 第一步主电路器件及控制回路器件的清洁 第二步柜体,结构用品 a.冷却风扇:确认风量有无异常,风扇的噪声是否増加。特别是拆除后重新安装时,如果忘记拧紧螺栓等,会因为振动使轴承叶片等受到损坏,因此要特别小心。 b.滤网:目测检查滤网是否堵塞,在室外轻轻拍打,去掉粉尘,在中性清洗剂的溶液中去掉脏物,水洗后干燥。 c.主电路部件,柜内所有部件:检查机壳内有无灰尘堆积,变压器、导体紧固部分、保险丝、电容器、电阻有无变色、发热、异常声音、异味、损坏;仔细检查配线、安装零件有无断线、断开的配线、紧固

变频器的主电路(一)

小孙学变频——第一讲变频器的主电路 小孙是蓝天公司的电气工程师,多年来从事电子设备的维修工作。近几年来,各种设备里应用的变频器越来越多,小孙被安排来专门从事变频器的调试和维护。 这一天,小孙从仓库里领出了一台变频器,打算配用到鼓风机上。按照规定,先通电测试一下。谁知一通电,就发现冒烟,立刻切断了电源。把盖打开后,发现有一个电阻很烫。小孙想,在开盖情况下再通电观察一次。这一回,电阻倒是不冒烟了,但不一会儿,变频器便因“欠压”而跳闸了。用万用表一量,那个电阻已经烧断了。 经人介绍,小孙找到了一位退休老高工张老师。 “你们那台变频器在仓库里存放了多长时间?”听完了小孙的情况介绍后,张老师问。 “大约一年多一点。” “我知道了。”张老师胸有成竹地说。“在分析电阻冒烟的原因之前,先要弄清楚变频器里整流滤波电路的特点。” “老师,我不大明白,变频器的中间为什么要加进一个直流电路呢?” “好吧,那我们就先从交-直-交变频器的基本结构讲起。”张老师拿了一张纸,不紧不慢地画出了交-直-交变频器的框图,如图1-1所示,然后说: “你瞧,电网的电压和频率是固定的。在我国,低压电网的电压和频率统一为380v、50hz,是不能变的。要想得到电压和频率都能调节的电源,必须自己‘变出来’,才便于控制。所谓‘变出来’,当然不可能象变魔术那样凭空产生出来,而只能从另一种能源变过来。这‘另一种能源’,便是直流电。 因此,交-直-交变频器的工作可分为两个基本过程: (1)交-直变换过程 就是先把不可调的电网的三相(或单相)交流电经整流桥整流成直流电。

(2)直-交变换过程 就是反过来又把直流电“逆变”成电压和频率都任意可调的三相交流电。 你方才说的那台变频器的问题,我的判断是出在‘交-直变换’里。我们就来讨论这部分电路吧。 图1-1 交-直-交变频器框图 1 交-直变换电路 “所谓交-直变换电路就是是整流和滤波。在低压电路里,哪种滤波方式效果最好?”老张又问。“应该是π形滤波。”小孙答。 “可是,变频器里却不能用π形滤波。” 图1-2 整流和滤波电路 (a)低压整流滤波电路(b)变频器整流滤波电路

kV高压变频器招标技术规范书

k V高压变频器招标技术 规范书 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

江苏长强钢铁有限公司 180m2烧结机改造工程项目 高压电机变频调速装置 招标技术规范书 打印:编制:审核:主管总助复核:总经理审批:

目录1、 2、工程条件 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、

1、总则 本规范书仅适用于江苏长强钢铁有限公司180m2烧结机改造工程项目10KV高压变频调速装置。它提出了对该变频调速装置本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求及供货范围。 本规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,投标方应提供符合有关工业标准、国家标准和本规范书的优质产品。 如果投标方没有以书面形式对本规范书的条文提出异议,则意味着投标方提供的设备完全符合本规范书的要求。如有异议,应在投标书中以“差异表”为标题的专门章节中加以详细描述。 本规范书所使用的标准如遇与投标方所执行的标准不一致时,按较高标准执行。 所有文件、图纸采用中文,相互间的通讯、谈判、合同及签约后的联络和服务等均应使用中文。 投标书及合同规定的文件,包括图纸、计算、说明、使用手册等,均应使用国际单位制(SI)。 本技术规范书未尽事宜,由投标方、招标方双方协商确定。 2、工程条件 自然条件 靖江地区属于亚热带、温带过渡性季风气候。 气象条件: 年平均温度: 15.3℃ 年平均相对湿度: % 年平均气压: 最热月平均气温: 24.27℃ 极端最高温度: 39.6℃ 最冷月平均气温: -5.7℃ 极端最低温度: -11.2℃ 常年主导风向:东到东南 最大风速 27m/s 年平均风速 3.1m/s

变频器检修规程资料

变频器检修维护工作规程 目次 1总则 2完好标准 3检修周期与内容 4检修与质量标准 5试验与验收 6维护保养与故障处理 7附件 1总则 1.1内容与适用范围 1.1.1内容:本规程规定了高压变频器及低压变频装置的完好标准、检修周期、项目及质量标准、检修后试验及验收、常见故障及处理方法等。 1.1.2适用范围本规程适用于明湖热电厂高压及低压变频器的检修。 1.1.3参照厂家提供的使用说明书、技术资料和图纸,结合我厂设备具体情况进行制定。 2标准 2.1外观应清洁,盘面应无脱漆、锈蚀,标志应正确、齐全; 2.2所有接线应无过热,元器件、插件的固定螺栓应无松动和锈蚀;元器件、插件应清洁,无损伤和过热,插件及控制板上的电子元件应无脱

焊、虚焊、过热、老化现象,功能参数符合说明书要求; 2.3电压表、电流表、干式变压器温度表、高压带电指示装置等表计指示正常; 2.4所有开关应完好无损且动作灵活、可靠; 2.5照明、冷却风扇等辅助系统应完好,运行正常; 2.6保护回路中的元器件应无损伤,运行参数整定值准确; 2.7整流干式变压器运行正常,绕组温度正常,无异常声音; 2.8控制系统双电源互投装置工作正常,交流控制电源消失后柜内UPS 切换应正常。 2.9各IGBT 模块工作温度应正常; 2.10主回路的绝缘电阻应大于5 MΩ; 2.11模拟保护动作时,信号显示系统应显示正确,报警电路应可靠报警。 3检修周期与内容 3.1高压变频器检修周期和项目: 日检:每天1 次 月检:每3~6 月1 次年检:每1~2 年1 次 3.2.1检修项目: 3.2.1.1日检:对于以下项目,以目测检查为中心实施,有异常时应立即进行维修: a.确认安装环境:确认温度、湿度、有无特殊气体、有无尘埃; b.确认电抗器、变压器、冷却风扇等有无异常声音,有无振动;

变频器参数基本设置

变频器参数基本设置 变频器应用领域涉及到钢铁行业,化工行业,汽车行业,机床行业,电机机械行业,食品行业,造纸行业,水泥行业,矿业行业,石油行业,工厂建筑等,它促进企业实现了自动化,节约了能源,提高了产品质量和合格率以及生产率,延长了设备使用寿命。通过变频器的功能参数的设置调试,就可以实现相应的功能,一般都有数十甚至上百个参数供用户选择,在实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行参数的设定和调试。变频器调试的好坏决定了变频器运行的稳定性、应用效果以及使用寿命等,最终关系到企业经济效益的大小,调好了可能大大节约费用,调不好可能损失惨重。以下是作者在普传变频器使用中的经验总结,希望能供其他用户参考,使变频器能更好地推广使用,为企业带来更大的经济效益。 1 变频器调试的步骤 变频器能否成功地应用到各种负载中,且长期稳定地运行,现场调试很关键,必须按照下述相应的步骤进行。 1.1 变频器的空载通电检验 1)将变频器的电源输入端子经过漏电保护开关接到电源上。 2)将变频器的接地端子接地。 3)确认变频器铭牌上的电压、频率等级与电网的是否相吻合,无误后送电。 4)主接触器吸合,风扇运转,用万用表AC 挡测试输入电源电压是否在标准规范内。5)熟悉变频器的操作键盘键, 以普传科技变频器为例: FWD为正向运行键,令驱动器正向运行; REV为反向运行键,令驱动器反向运行; ESC/DISPL为退出/显示键,退出功能项的数据更改,故障状态退出,退出子菜单或由

功能项菜单进入状态显示菜单; STOP/RESET 为停止复位键,令驱动器停止运行,异常复位,故障确认; PRG为参数设定/移位键; SET 为参数设定键,数值修改完毕保存,监视状态下改变监视对象; ▲▼为参数变更/加减键,设定值及参数变更使用,监视状态下改变给定频率; JOG为寸动运行键,按下寸动运行,松开停止运行,不同变频器操作键的定义基本相同。6)变频器运行到50 Hz,测试变频器U V W三相输出电压是否平衡。 7)断电完全没显示后,接上电机线。 1.2 变频器带电机空载运行 1)设置电机的基本额定参数,要综合考虑变频器的工作电流。 2)设定变频器的最大输出频率、基频、设置转矩特性。v/f类型的选择包括最高频率、基本频率和转矩类型等项目。最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的v/f类型图和负载特点,选择其中的一种类型。通用变频器均备有多条v/f曲线供用户选择,用户在使用时应根据负载的性质选择合适的v/f 曲线。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持v/f为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。一般变频器均由用户进行人工设定补偿。普传变频器则为用户提供两种选择,即42种v/f提升方式,自动转矩提升。

变频器检测电路

变频器电压检测电路工作原理及故障实例分析 一、电路构成和原理简析 特定安全范围以内,若工作电源危及IGBT(包含电源本身的储通电容)器件的安全时,实施故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度上,起到对IGBT导通管压降检测的同样作用,取代驱动电路中IGBT的管压降检测电路。 1、电压检测电路的构成、电压采样方式及故障表现 图1 电路检测电路的构成(信号流程)框图 1、电压检测电路的电压采样形式(前级电路) 1)直接对DC530V电压采样

图2 DC530V电压检测电路之一 直接对P、N端DC530V整流后电源电压进行进行采样,形成电压检测信号。如阿尔法ALPHA2000型18.5kW变频器的电压检测电路,如图2所示。 处理得到5V电源所提供,电源地端与主电路N端同电位。输出侧供电,则由主板+5V所提供。 直流回路P、N端的DC530V电压,直接经电阻分压,取得约120mV的分压信号,输入U14(线性光耦合器,其工作原理前文已述)进行光、电隔离与线性放大后,在输出端得到放大了的检测电压信号,再由LF353减法放大器进一步放大,形成VPN直流电压检测信号,经CNN1端子,送入MCU主板上的电压检测后级电路。 2)由开关变压器次级绕组取得采样电路信号 图3 DC530V电压检测电路之二 图4 直流回路电压采样等效电路及波型示意图 主电路的DC550V直流电压检测信号,并不是从主电路的P、N端直接取得,而是“间接”从开关电源的二次绕组取出,这是曾经令一些检修人员感到困惑、找不到电压检测信号是从何处取出的一件事情,也成为该部分电路检修的一个障碍。电压采样电路如上图4所示。 在开关管VT截止期间,开关变压器TRAN中储存的磁能量,由次级电路进行整流滤波得到+5V工作电源,释放给负载电路;在VT饱和导通期间,TC2从电源吸取能量进行储存。

变频器主回路结构图及故障经验

下面先来说说变频器硬件故障如何判断技术人员凭借数字式万用表根据上图可简单判断主回路器件是否损坏。(主要是整流桥,IGBT,IPM) 为了人身安全,必须确保机器断电,并拆除输入电源线R 、S、T和输出线U、V、W后放可操作!首先把万用表打到?二级管?档,然后通过万用表的红色表笔和黑色表笔按以下步骤检测: 1、黑色表笔接触直流母线的负极P(+),红色表笔依次接触R、S、T,记录万用表上的显示值;然后再把

红色表笔接触N(-),黑色表笔依次接触R、S、T,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器二极管整流或软启电阻无问题,反之相应位臵的整流模块或软启电阻损坏,现象:无显示。 2、红色表笔接触直流母线的负极P(+),黑色表笔依次接触U、V、W,记录万用表上的显示值;然后再把黑色表笔接触N(-),红色表笔依次接触U、V、W,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器IGBT逆变模块无问题,反之相应位臵的IGBT逆变模块损坏,现象:无输出或报故障。 故障经验 一。变频器老是跳硬件保护?OCU1?故障,赶到现场后我静态测试机器无问题,主线路、控制线路也完好。我用万用表量零线和地线是通的,问电工才知道他们工厂的零地是共用的。一般变频器接地时,如果该工厂零线与地线是共用的话,最好另处取地线,把地线取下后故障解除。故障分析:因为该厂的零线与地线是共用的,变频器接地线也等于接了零线,零线一般会传播干扰信号。而我们的变频器报?OCU1?故障有如下几种情况:1。变频器三相输出侧有短路现象;2。逆变模块损坏;3。外部干扰信号进入变频器。由于第一与第二种原因正常排除,就只有第三种外部干扰信号,干扰信号是从地线进入的,所以把地线拆除,就切断了干扰源。这时运行变频器恢复正常。 二。调试一台锅炉引风机55KW的是?OCU1?,通常我们这种?OCU1?故障是:外部干扰,三相输出有短路现象,机器内部故障问题。原因是机器一启动到运行到10HZ左右就报,(变频器是用的自由停车,风机惯性也比较大)用户要经常启停变频器。这说明机器问题不太,是干扰问题,(因为电机线放了几十M长,而且控制线和主电源线是混合在一起的)停下变频器半个小时后,观查引风机还在自转。我就把变频器参数变为?先制动,再启动?(F0-011=1 当然还有一些参数要改,大家可以进我们网站下载技术手册。)然后再启动变频器,故障还有是没有解除,用了几种方案后,最后我们把启动频率提高到3HZ(F0-012=3)问题就解决了。真是什么问题都有呀!三,上位机控制,上位机给启动指令时能启动,但给停止指令时就不能停机。具体如下,40台11-22KW的风机节能改造,每台变频器都用一个上位机DDC模块控制(加拿大生产)。上位机主要是监测变频器的故障报警、过滤网报警、频率、启停、温度等。其它都正常,就是启停时有麻烦。后来到现场检测,故障真是这样,然后查看上位机DDC模块的说明书,最后发现是DDC 模块的干接点不接受直流24V,只接受交流24V或者是无源信号都行,所以才会出现上面这种现象。后来加一个继电器就解决了。 四。也是一台变频器与上位机联机控制的变频器,故障是上位机给运行信号,变频器不接收,其它都正常,而变频器本身就能运行起来,只要一联上位机就不行。我要用户技术员,把控制线路再好好的检查一下,那技术员硬说很好,检查了好几篇都发现什么问题。要求我们公司派技术支持. 后来我们技术员赶到现场处理,检查控制线路,就发现一条控制线与另外一条控制线调换了。难怪不接收指令.其实只有有耐心,什么问题都能查出来. 干扰问题: 1、PLC给信号到变频器时,经常出不必要的故障,比如给假信息,或者变频器不接收信息. 由于客户比较急,也找不到好的处理方法.也没有专业的技术员.只好要求我们技术员赶到现场处理,我们检测了变频器,PLC,电源,设备均正常.初步认定是干扰引起.在PLC的电源模块及输入/输出的电源线上接入滤波器,问题还是得不到明显的改善,后来把变频器和PLC的电源线,控制线分开走线,这时故障才解除.. 2、,由三台变频器组成的调速系统(装在同一个变频柜里),出现如下情况:用外接的电位器调频率时,发现异常,变频器转速产生波动.频率波动也比较大.然后就会报故障. 我们到现场后检查了也是查外围电源,负载,电位器,控制线路都正常.后上电运行变频器,在调试变频器时,当一台单独运行时,工作正常不报故障,当三台同时运行时就会出现异常.这就是干扰引起啊! 对策:将三台变频器移出变频柜,分别装在一个单独的变频柜里,电位器也分开,然后改用屏蔽线。最后干扰清除,三台都能同时运行. 3、多段速运行。(3。7KW)变频器单独运行印刷机很正常,当与印刷机的送纸机同步运行时,报软件过流故障。代理商技术员调了一天,没有调好,就认定是我们的机器有问题,不能用要退货。后来到现场维护处理,检测了线路,变频器都无问题。看了一下设备,印刷机里有两台电机,一台主电机,(就是改造的3。7KW的),还有一台是给送纸机用的,起上下降作用。变频器单独运行印刷机正常,就是与送纸机同

变频器气候类环境可靠性测试规范

变频器气候类环境可靠性 测试规范 拟制:严小欢日期:2010-10-27 审核:姜明日期:2010-10-28 批准:董瑞勇日期:2010-11-02

更改信息登记表 规范名称:变频器气候类环境可靠性测试规范 规范编码: 评审会签区:

目录 1. 目的 (3) 2. 范围 (3) 3. 定义 (3) 4. 引用标准 (4) 5. 测试设备 (5) 6.测试环境 (5) 7.测试项目 (6) 7.1.测试项目清单 (6) 7.2.低温试验 (8) 7.2.2.低温工作试验 (9) 7.3.高温试验 (10) 7.3.1高温贮存试验 (10) 7.3.2.高温工作试验 (11) 7.4.湿热试验 (13) 7.5.温变试验 (15) 7.6.低气压试验 (16) 7.7.盐雾试验 (18) 8.数据记录及报告格式 (20) 附录A. 环境可靠性测试数据记录表 (21) 附录B. 环境可靠性测试报告格式 (22)

英威腾电气股份有限公司测试技术规范 变频器气候类环境可靠性测试规范1.目的 检验变频器产品气候类环境可靠性是否满足标准和客户要求;本规范主要集中在验证变频器在常规气候类环境因素(温度、湿度、气压、腐蚀)及其组合的规定限值内的工作能力,评定产品对贮存、使用环境的适应性; 2.范围 本规范规定的气候类环境可靠性测试方法,适用于英威腾电气股份有限公司开发的所有变频器产品。 3.定义 ●可靠性(Reliability):产品在规定条件下、规定时间内完成规定功能的能力; ●环境可靠性试验(Environmental reliability test):采用自然暴露或人工模拟的 方法将产品暴露在特定环境中,为验证产品环境可靠性而开展的试验;完整的环境试验操作顺序,通常包括预处理(必要时)、初始检测(必要时)、条件试验、恢复、最后检测; ●预处理(Pre-conditioning):为消除或部分抵消试验样品以前经历的各种效应,在 条件试验前对试验样品所做的处理; ●初始检测(Initial examination and measurement):预处理后,条件试验之前对 试验样品的电性能和外观所进行的检查和测量; ●条件试验(Conditioning):把试验样品暴露到试验环境中,以确定这种环境条件对 试验样品的影响; ●恢复(Recovery):条件试验后,最后检测之前为使试验样品的性能稳定所做的处理; ●最后检测(Final examination and measurement):在恢复之后对试验样品的电

变频器的主电路如何上电检修共7页文档

变频器的主电路如何上电检修 变频器维修者必须树立这样的观念:逆变模块与驱动电路在故障上有极强的连带性。当模块炸裂损坏后,驱动电路势必受到冲击而损坏;模块的损坏也可能正是因驱动电路的故障而造成。因而无论表现为驱动电路或是逆变输出电路的故障,必须将逆变输出电路与驱动电路一同彻底检查。对主电路上电试机,须在确定驱动电路正常——能正常输出六路激励脉冲的前提下进行。对驱动电路的检修见本书第四章。 检查驱动电路正常后,将损坏逆变模块换新,才可以上电试机。 整机装配后的上电试机,是一个必须慎重从事的事件。必须采取相应的措施,保证异常情况出现时,新换IGBT模块不至于损坏。试机时,变频器启动瞬间是最“要命的一个时刻”,无一点防护措施下的匆忙上电,会使新换上的价值昂贵的模块损坏于刹那间。以前所付出的检修的努力不仅白废了,而且造成了更大的损失,有可能使故障范围扩大了。有的维修人员炸过几次模块,便对变频器维修望而却步了。采取相应的上电试机措施,能基本上杜绝上电试机逆变模块损坏的发生,只要细心一点的话基本没有问题。 方法一:将逆变模块的供电断开,其实电路中为连接铜排,拆去一段连接铜排,即将三相逆变电路的正供电端断开。注意:断开点必须在储能电容之后!假定在KM 之前断开,储能电容上的储存电量,会在逆变电路故障发生时,释放足够的能量将逆变模块炸毁!连接简图如下: 图1 变频器逆变回路的上电检修电路接线一图 在断开处串入两只25W交流220V灯泡,因变频器直流电压约为530V左右,一只灯泡的耐压不足(故障情况下),须两只串联以满足耐压要求。即使逆变电路有短路故障存在,因灯泡的降压限流作用,将逆变电路的供给电流限于100mA以内,逆变模块不会再有损坏的危险。 变频器空载,U、V、W端子不接任何负载。先切断驱动电路的模块OC信号输出回路,避免CPU做出停机保护动作,中断试机过程(具体操作方法见博文《驱动电路的维修》)。上电后可能出现如下种情况: 1、变频器在停机状态,灯泡亮。三只模块有一只上、下臂IGBT漏电,如Q1和Q2。此种漏电在低电压情况下不易暴露,如万用表不能测出,但引入直流高压后,出现了较大的漏电,说明模块内部有严重的绝缘缺限。购买的拆机品模块有时候出现这种情况。可用排除法检修,如拆除U相模块(Q1、Q2)后灯泡不亮了,说明该模块已损坏。

变频器电压检测电路(新)

变频器的电压检测电路(新) ——正弦变频器电压检测实际电路分析 一、电路构成和原理简析 电压检测电路,是变频器故障检测电路中的一个重要组成部分,旨在保障使IGBT 逆变电路的工作电源电压在一特定安全范围以内,若工作电源危及IGBT (包含电源本身的储通电容)器件的安全时,实施故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度上,起到对IGBT 导通管压降检测的同样作用,取代驱动电路中IGBT 的管压降检测电路。 1、电压检测电路的构成、电压采样方式及故障表现 图1 电路检测电路的构成(信号流程)框图 1、电压检测电路的电压采样形式(前级电路) 1)直接对DC530V 电压采样 78L05C 8 P N 图2 DC530V 电压检测电路之一

直接对P 、N 端DC530V 整流后电源电压进行进行采样,形成电压检测信号。如阿尔法ALPHA2000型18.5kW 变频器的电压检测电路,如图2所示。 电路中U14线性光耦合器的输入侧供电,由开关变压器的独立绕组提供的交流电压,经整流滤波、由78L05稳压处理得到5V 电源所提供,电源地端与主电路N 端同电位。输出侧供电,则由主板+5V 所提供。 直流回路P 、N 端的DC530V 电压,直接经电阻分压,取得约120mV 的分压信号,输入U14(线性光耦合器,其工作原理前文已述)进行光、电隔离与线性放大后,在输出端得到放大了的检测电压信号,再由LF353减法放大器进一步放大,形成VPN 直流电压检测信号,经CNN1端子,送入MCU 主板上的电压检测后级电路。 2)由开关变压器次级绕组取得采样电路信号 +5V -42V 图3 DC530V 电压检测电路之二 +5V N1输入电压波形示意图V T 截止 VT 饱合导通 0V 530V 5V 0V -42V N3输出电压波形示意图 压采样等效电路 图4 直流回路电压采样等效电路及波型示意图 主电路的DC550V 直流电压检测信号,并不是从主电路的P 、N 端直接取得,而是“间接”从开关电源的二次绕组取出,这是曾经令一些检修人员感到困惑、找不到电压检测信号是从何处取出的一件事情,也成为该部分电路检修的一个障碍。电压采样电路如上图4所示。 在开关管VT 截止期间,开关变压器TRAN 中储存的磁能量,由次级电路进行整流滤波得到+5V 工作电源,释放给负载电路;在VT 饱和导通期间,TC2从电源吸取能量进行储存。 N3二级绕组上产生的电磁感应电压,正向脉冲出现的时刻对应开关管的截止时间,宽度较大,幅值较低,经二极管D12正向整流后提供负载电路的供电,有电流释放回路;反向脉冲出现的时刻对应开关管的饱和导通时间,宽度极窄,但并不提供电流输出,回路的时间常数较大(不是作为供电电源应用,只是由R 、C 电路取得电压检测信号),故能在电容C17上维持较高的幅值。开关管VT 饱合导通时,相当于将

变频器主电路的接线

电动机知识 变频器主电路的接线 变频器与供电电源之间应装设带有短路及过载保护的断路器、交流接触器,以免变频器发生故障时事故扩大。电控系统的急停控制应使变频器电源侧的交流接触器断开,彻底切断变频器的电源供给,保证设备及人身安全。电源电压及波动范围应与变频器低电压保护整定值相适应(出厂时一般设定为0.8 UN~0.9UN),因为在实际使用中电网电压偏低的可能性较大。主电源频率波动和谐波干扰会增加变频系统的热损耗,导致噪声增大,输出降低。在进行系统主电源供电设计时,应将变频器和电动机在工作时自身的功率消耗考虑进去。 在变频器输出端与电动机之间一般不用再加装电动机保护开关,因为变频器本身对输出线路和电动机有着非常强的保护作用,在线路短路、电动机过载、缺相这些故障出现时,变频器能自动停机,断开负荷,并给出故障指示和报警信号。只要正确地设臵变频器内电子继电器的保护值,就能很好地保护电动机及变频器本身。对于大惯性负荷,如果选择了DC制动方式对电动机进行制动,输出端不得加装接触器,因为在停机时接触器断开DC制动将不起作用。如果用一台变频器驱动多台电动机运转,变频器内的电子继电器保护值是全部电动机保护值的总和,对单台电动机不起保护,因此,必须在每个分支回路上加装保护断路器,并且将保护断路器的辅助报警触点串联起来引入变频器紧急停止端,一旦外部电动机中的一台出故障,保护开关就动作,对变频器实施保护。 变频器最适用于负荷平稳的负载,而对冲击大负载不太适应。如果变频器是应用在冲击大负载上,由于转矩冲击太大,产生的电流冲击是很大的,在启动时即使采取转矩提升补偿措

施,启动也相当困难,很容易造成变频器自身保护装臵动作。目前解决这个问题的方法只能是选择比负载容量大一级的变频器。有的负载在运转中由于其他因素的影响,如循环风机在风门调整不当的时候,由于气流的作用,叶轮带动电动机转动,再生能量会使负载带动电动机旋转,产生再生能量而反送回变频器,使变频器直流环节的电压升高达到限定值,造成过电压保护动作,影响正常运行。若过电压保护不动作,也将造成变频器温度升高,影响变频器的寿命,甚至损坏变频器。对此可以选用DC制动方式,接上外部制动电阻吸收再生能量。 〃变频器的六大调速方法 〃信号隔离器在变频器谐波干扰防治实例 〃变频器使用滤波器注意要点 〃关于电动机的4个常识 〃变频器瞬停再起动运行方式 〃应如何选择及使用西门子变频器 〃变频器按照工作原理进行分类 〃变频器频率跨跳、过负载率及电动机参数 〃变频器调速是电机调速方式中的最佳选择 〃高压变频器维修的切换 〃变频器控制系统过电流故障诊断分析 〃变频器对周边设备的影响及故障防范 〃浅析变频器的低频特性 〃变频器的过流故障及排除(二) 〃变频器额定参数如何选择 〃三相异步电动机(一) 〃不同负载时变频器的选择 〃三相异步电动机的旋转原理 Domain:https://www.doczj.com/doc/a018334823.html, dnf辅助More:d2gs2f

高压变频器运行与维护的重点要求

高压变频器运行与维护的重点要求(暂行) 大唐黑龙江发电有限公司安全生产部 2016年1月8日

前言 随着节能减排工作的不断开展,各企业在风机和水泵等重要辅机上使用高压频器不断增多,在节能方面和降低厂用电率等方面取得了很大的收益;但由于高压变频器为新型技术,目前日常维护与运行方面经验还没有完善,各企业在这些方面的经验还存在着一定的差距,随着高压变频运行年限的不断增加,高压变频器的故障和异常时有发生,甚至造成了机组停运事件,为此省公司继电专业组和高压绝缘专业组经讨论后,结合现场实际工作情况,特制定本要求。 本规定主要引用以下规章制度,其它标准以最新版本为准。 1.防止电力生产事故的二十五项重点要求(国能安全[2014]161号) 2.GB 50171-2012 《电气装臵安装工程盘、柜及二次回路接线施工及 验收规范》 3.集团公司隐患排查表 4.DLT 1195-2012 《火电厂高压变频器运行与维护规范》 5. DLT994-2006《火电厂风机水泵用高压变频器》 6. Q/CDT 107 001-2005 《电力设备交接和预防性试验规程》

高压变频器运行与维护的重点要求(暂行) 一、高压变频器运行场所的要求 1、高压变频器应安装在室内(建议使用实体墙),应标明设备的名称和运行编号,在高压变频器柜门上应有明显的“高压危险”的标示牌;变频器上方采取防漏水措施;变频器附近不应有暖气、水管或液体管道;变频器附近不应有热源;变频器周围不应有腐蚀性气体或严重灰尘源。检查室内温度、通风情况,确保室内温度在0度-40度之间;变频器工作环境的相对湿度为0 —— 85%(无结露现象)。根据情况需要安装热风幕、轴流风机、空调等调节温度设备。 2、检查变频器室内卫生清洁,地面无积灰及杂物。 3、检查变频器室不得有异常声响、异味。 4、高压变频器室应安装检修电源箱,并配备消防灭火设施。 5、高压变频器室门口需要有挡鼠板,电缆沟及电缆孔洞应封堵良好,防止小动物进入。 6、检查变频器冷却风机运行正常。 7、高压变频器安装基础应固定牢固、可靠,变频器室的工作接地和保护接地与火电厂接地网可靠连接,接地电阻不大于0.5欧,接地点至少两点。高压变频器的金属机壳应与接地网可靠连接,接地点应有明显的接地标志。 8、在变频器室内应装设温度测量装臵,并将温度上传至集控盘前,以便实时监控及发出报警信号。

正弦变频器的电流检测电路

正弦SINE300型7.5kW变频器的电流检测电路 电源/驱动板与主板MCU由J2、J5排线端子连接,J2端子排之前的位于电源/驱动板的部分为电流检测的前级电路,J5端子以后的位于MCU主板的部分为后级电路。但考虑电路的衔接及电路分类、信号流程分析的方便,将正弦SINE300型7.5kW变频器电流检测与保护电路,分为前置电流检测电路、电流检测模拟信号处理电路一、电流检测模拟信号处理电路二、电流检测开关量信号形成电路等四个部分,旨在分析和说明本例机型对前置电路所输出的电流检测信号,在后续电路不同的处理方法,以生成模拟或开关量的多路电流检测信号,提供MCU内部运算控制、显示、故障报警、停机保护所需的各种信号。 UI WI VI 图1 前置电流检测电路 1、前置电流检测电路(见上图1) 前置电流检测电路,即J2/J5端子排之前、位于电源/驱动板的电流检测电路,由电流采样电阻、线性光耦合器、运放电路等组成。 本例机型的前置电路,只在U、V输出电流回路串接了R7、R60两只电流采样电阻,未采集W相电流检测信号。或者说,省去了W相的直接电流采样电路,而由采集到的U、V相电流信号,“间接合成”出W相信号。由电工-正弦交流理论可知,三相交流电具有固定的空间/电气相位关系,并相互构成电流回路,任意两意交流电中必定包含了第三相交流电的信息,在已知U、V相交流值的情况下,可由计算得出W相的交流值。

U、V相输出电流信号,在电流信号采样电阻R7、R60上转化为数十毫伏级的微弱电压信号,送入由线性光耦合器U5、U7的输入侧,经光、电隔离和放大处理后,输出差分信号再送入后级U6内部两级运算放大器构成的差分放大器,形成UI、VI电流检测信号;UI、VI电流检测信号,先送入加法器电路U6(由U6的12、13、14脚内部电路和外围元件组成),经过矢量加减,得到“合成”W相电流检测信号WI,然后UI、VI、WI等3相输出电流检测信号,经J2/J5排线端子的25、26、28脚,输入MCU主板电路。 2、电流检测模拟信号处理电路一(见图2) UI 126 ADCINA0 引脚: 125 ADCINA1 WI VI 图2 电流检测模拟信号处理电路一 由前置电路来的UI、VI、WI电流检测信号,分作第一路电流检测信号,输入运放电路U40内部3组放大器和外围元件组成的电压跟随器电路,缓冲后由1、7、8脚输出,经D25、D26、D27保护二极管双向钳位(3只二极管为贴片3端器件,每只内含两只二极管),RC滤除高频干扰信号后,形成0~3V以内的电压信号,输入MCU的模拟信号输入端124、125、126脚。供内部程序运算,用于在操作显示面板显示运行电流值,起动过程中检测电流变化,进行VVV/F控制等。 图1、图2都用于对检测电流信号——表现为交流电压信号——模拟信号的处理和放大,可称为模拟信号放大电路。 3、电流检测模拟信号处理电路二(见图3) 由U6输出的UI、VI、WI电流检测信号,分作第二路电流检测信号,输入由运放电路U9内部4组放大器和外围元件组成的精密全波整流器电路,整流为六波头的脉冲动直流信号电压后,经U6反相器8、9、10脚内部放大器和外围元件构成的反相器,对信号进行倒相处理,形成IUVW综合电流信号,送入后级电路。 U9的1/2/3、8/9/10、12/13/14脚内部3组放大部与外接D4、D5、D6二极管及其它元件,组成精密半波整流器电路,UI、VI、WI电流检测信号同时送入反相求各电路(U9 5、6、7内部放大器和外围元件构成),U9内部4组放大器及外围元件组成了3相全波整流器电路,若运行频率为50Hz,则U9的7脚输出整流电压为六波头的频率值为300Hz的三相电流检测信号。

变频器机械可靠性测试规范V

变频器机械可靠性 测试规范 拟制:_____黄国华________日期:2010-08-01 审核:___________________日期:__________ 批准:___________________日期:__________

更改信息登记表 规范名称:变频器机械可靠性测试规范 规范编码: 评审会签区: 人员签名意见日期 目录 1. 目的...............................................................................................................................................

2. 范围............................................................................................................................................... 3. 定义............................................................................................................................................... 4. 引用标准....................................................................................................................................... 5. 测试设备....................................................................................................................................... 6. 试验环境....................................................................................................................................... 7. 测试项目....................................................................................................................................... 7.1.测试项目清单 ............................................................................................................ 7.2.试验样品工作状态半正弦波冲击试验 .................................................................... 7.3.试验样品非工作状态半正弦波冲击试验 ................................................................ 7.4.试验样品梯形波冲击试验 ........................................................................................ 7.5.试验样品工作状态正弦扫频试验 ............................................................................ 7.6.试验样品工作状态随机振动试验 ............................................................................ 7.7.试验样品非工作状态随机振动试验 ........................................................................ 7.8.试验中断处理 ............................................................................................................ 8. 数据记录及报告格式 ................................................................................................................... 8.1.机械可靠性测试数据记录表 .................................................................................... 8.2.机械可靠性测试报告格式 ........................................................................................ 变频器机械可靠性测试规范 1.目的 检验变频器产品机械可靠性是否满足标准和客户要求;本规范主要集中在验证变频器产品在冲击和振动环境因素规定限值内的工作能力,评定产品对贮存、运输、搬运及使用环境的适应性。 2.范围 本规范规定的机械可靠性测试方法,适用于英威腾电气股份有限公司开发的所有变频器产品。 3.定义 ●可靠性(reliability):产品在规定条件下、规定时间内完成规定功能的能力。 ●环境可靠性试验(environmental reliability test):采用自然暴露或人工模拟的方法 将产品暴露在特定环境中,为验证产品环境可靠性而开展的试验;完整的环境试验操作顺序,通常包括预处理(必要时)、初始检测(必要时)、条件试验、恢复、最后检测。 ●初始检测(initial examination and measurement):预处理后,条件试验之前对试验

相关主题
文本预览
相关文档 最新文档