当前位置:文档之家› 直流磁控溅射ITO薄膜特性研究

直流磁控溅射ITO薄膜特性研究

直流磁控溅射ITO薄膜特性研究
直流磁控溅射ITO薄膜特性研究

直流磁控溅射ITO薄膜特性研究

张继凯*,张思凯,黄常刚,吴洪江,袁剑峰

(1.北京京东方显示技术有限公司,北京,100176,E-mail:zhangjikai@https://www.doczj.com/doc/a010009595.html,)

摘要:ITO薄膜由于具有良好的光电特性而广泛应用于液晶显示器中,尤其在扭曲向列(TN)型显示模式中更为重要。本文利用直流磁控溅射技术在不同成膜温度,氧氩比和热处理条件下进行了ITO膜的沉积,并使用多功能检查仪和薄膜应力计分别对ITO的面电阻,透过率以及表面应力进行了测量。通过比较实验结果,得到ITO薄膜沉积的最优工艺条件:工作气压为0.5Pa,沉积温度为120℃/120℃,氧氩比为0.55%,Oven温度为230℃,时间为20Min。

关键词:液晶显示器;直流磁控溅射;氧化铟锡薄膜;方块电阻;透过率;薄膜应力

中图分类号:TN141.9

Study on Properties of ITO Films Deposited by DC

Magnetron Sputtering

Zhang Ji-kai, Zhang Si-kai, Huang Chang-gang, Wu Hong-jiang, Yuan Jian-feng (1.Beijing BOE Display Technology Co.Ltd,Beijing,100176,China,E-mail:zhangjikai@https://www.doczj.com/doc/a010009595.html,)

Abstract

ITO thin films are widely used as transparent electrodes in a large variety of LCD,especially in TN mode, for its excellent optical and electrical properties. In this paper, ITO films were deposited by DC magnetron sputtering at different temperature,O2/Ar ratio and annealing conditions ,Sheet resistance, transmittance and stress were measured with multiple function instrument and thin film stress meter, respectively The experimental results show that, working pressure,the optimal deposited temperature, O2/Ar ratio, annealing temperature and duration are 0.5Pa,120℃/120℃, 0.55%, 230℃and 20Min。

Key words: LCD(Liquid Crystal Display);DC Magnetron Sputtering;

ITO(Indium-Tin-Oxide);Sheet Resistance; Transmittance; Stress

1

1引言

ITO薄膜因其具有高透过率、低电阻、化学性能稳定、耐碱性等特点,而被广泛应用于液晶显示器(LCD)中。但随着液晶显示器的不断发展,其要求产品的品质不断提高,而ITO 薄膜应力的存在直接影响薄膜元器件的成品率、稳定性和可靠性。尤其在TN型液晶显示器中影响更为突出[1],因此ITO薄膜的特性研究将变得更加重要。

1作者简介:张继凯(1982),男,山西省长治市人,硕士,工程师,从事TFT-LC液晶行业工艺的开发。 通讯联系人,E-mail:zhangjikai@https://www.doczj.com/doc/a010009595.html,

目前制备ITO 薄膜的方法很多,优选的制备工艺是磁控溅射。其中磁控溅射也有两种方法:铟锡合金靶材反应溅射成膜;直接采用氧化铟锡靶材溅射成膜。然而溅射工艺参数的选取以及沉积薄膜的性能是人们主要关注的课题。

2 实验

2.1 制备方案

本文使用直流磁控溅射方法,利用直线式连续镀膜机(In-Line System )如图1所示,真空腔体内采用反转基板,根据去路和回路的条件需要在接触面分别进行两段加热,如去路E 面基板温度为75℃,回路F 面基板温度为120℃,即:75/120℃.

图1 直线式连续镀膜机 Fig.1 In-Line System

本实验中,使用氧化铟锡的靶材,纯度为99.99%,本底真空为3.0×10-3Pa ,工作气体为99.99%的氩气,反应气体为99.99%的氧气。基片采用Ф150×0.6mm 的单抛Si 片和2200×2500×0.7mm 、10000lux 的无碱玻璃。

2.2 工艺流程和样品条件

直流磁控溅射制备ITO 薄膜工艺过程如图2所示:

Fig.2 Chart of process flow

测试样品分为玻璃基板(A)用于测试方块电阻、透过率,和

Si 基板(B)用于测试薄膜应

力,其制作内容如表1所示:

表1 不同沉积温度、Oven条件、O2/Ar下薄膜制备

Table 1 films in different deposition temperature、Oven condition and O2/Ar rate

3工艺参数对ITO薄膜光电特性的影响分析

3.1工艺参数对ITO薄膜方块电阻的影响分析

在2200×2500×0.7mm、10000lux的无碱玻璃上以不同的工艺参数沉积ITO膜,利用多功能检查仪的分光光度法和四探针法分别测试方块电阻、透过率,其结果如表2、表3:

表2薄膜方块电阻测量结果

Table 2 Results of Sheet resistance

样品

编号

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

Rs(Ave)/ (Ω/□)43.

64

39.

96

38.

06

35.

54

32.

87

14.

52

13.

89

13.

93

14.

41

15.

14

15.

74

14.

33

14.

15

14.

21

15.

07

图3不同O2/Ar气体流量比下方块电阻变化曲线

Fig.3 Curve of sheet resistance with different O2/Ar flow ratios

Si基板样品编号玻璃基板

样品编号

工作气压

/(Pa)

时间

/(S)

沉积温度

/(℃)

Oven时间

/(Min)

Oven温度

/(℃)

O2/Ar

/%

B1 A1 0.50 30 75/120 Skip 0.10 B2 A2 0.50 3075/120Skip 0.25 B3 A3 0.50 3075/120Skip 0.40 A4 0.50 3075/120Skip 0.55 B4 A5 0.50 3075/120Skip 0.70 B5 A6 0.50 3075/12040 230 0.10 A7 0.50 3075/12040230 0.25 B6 A8 0.50 3075/120402300.40 B7 A9 0.50 3075/120402300.55 B8 A10 0.50 3075/120402300.70 B9 A11 0.50 30120/120 20 2300.10 A12 0.50 30 120/120 20 230 0.25 B10 A13 0.50 30 120/120 20 230 0.40 B11 A14 0.50 30 120/120 20 230 0.55 A15 0.50 30 120/120 20 230 0.70

从图3中可以看出:薄膜方块电阻(Rs)随氧气含量的增加而减少,这是因为ITO膜中的金属离子随氧气的增加反应进行的相对完全,薄膜中的载流子浓度升高,方块电阻下降。

热处理(Oven)对ITO薄膜的方块电阻值影响很大,Oven后薄膜的方块电阻降低明显;

这是因为经过Oven之后,薄膜的结晶度提高,结晶缺陷减少,膜的电导率上升,方块电阻

下降[2-3]。

Oven情况下无论成膜温度为75℃/120℃或120℃/120℃,Oven时间为40min或20min,Rs均相差很小,并且在随着氧气流量的继续增加Rs缓慢升高,根据S.Chaudhuri等人[4]

发现ITO薄膜微观结构时得出:ITO膜中晶粒的显著生长发生在热处理初期很短的时间内,

所以20min和40min的观察不明显,热处理时间不需要时间过长。但随着氧含量的逐步上升,氧缺位减少,造成载流子浓度下降,所以薄膜的方块电阻在达到最低点后,又开始逐步上升。

3.2工艺参数对ITO薄膜透过率的影响分析

表3薄膜透过率测量结果

Table 3 Results of transmittance

样品

编号

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

Tr(550nm) Ave/% 86.

82

88.

24

88.

75

89.

81

91.

62

95.

00

95.

60

96.

22

96.

59

97.

38

94.

09

94.

86

95.

55

96.

12

96.

59

图4不同O2/Ar气体流量比下透过率变化曲线

Fig.4 Curve of transmittance with different O2/Ar flow ratios

从图4中可以看出:不Oven情况下透过率(Tr)偏低; Tr在一定范围内随O2/Ar的增加而增大.,说明膜中氧含量增加,膜的氧化更加充分,吸收逐渐减少;而Oven 20min或40min 变化不大,说明薄膜中已经含有较多的氧,透过率已经很高[5].增加一定的氧含量,可以提高ITO膜的结晶度,减少ITO膜的晶格缺陷,降低光的吸收和散射,从而提高了ITO膜的透过率。

4 ITO薄膜应力分析

薄膜应力是一种宏观现象,然而它却反映出沉积薄膜的内部状态,是决定薄膜完整性的重要因素。薄膜应力严重时会直接导致薄膜色裂、脱落、使薄膜损伤,甚至使整个元件失去功能,直接影响液晶显示器的成品率、稳定性和可靠性。内应力原因复杂,但与成膜的工艺参数密切相关[6-7]。因此为了减少薄膜应力,提高品质,寻找最佳工艺参数,特制作不同工艺条件下将Ф150×0.6mm的单抛Si片贴附在Glass表面沉积ITO膜,并采用薄膜应力计

进行应力测试,分析。达到工艺改善来控制薄膜应力。

表4薄膜应力测量结果

Table 4 Results of stress

样品

编号

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Stress /(Mpa) -229.

42

-241.

54

-244.

88

-260.

50

239

.91

203

.96

199

.26

194

.14

183

.09

178.

71

178.

25

图5不同O2/Ar气体流量比下薄膜应力变化曲线

Fig.5 Curve of Stress with different O2/Ar flow ratios

从图5中可以看出:不Oven时ITO膜应力为压应力,Oven后为拉应力。说明退火对薄膜的释放起到一定的作用。经过Oven退火后,薄膜中的很多空位和空隙等缺陷逐渐扩散,同时在薄膜内发生收缩现象,从而形成拉应力[7-8]。

不Oven情况下,应力值随O2/Ar增加而增加。这是因为在一定范围内,随着O2流量的增加薄膜的厚度增加,在一定范围内薄膜的塑性变形量增加,压应力增加,均值较大;当继续积累到一定值,严重时薄膜会发生开裂甚至脱落。

经过Oven的情况应力值随O2/Ar的增加而减小。这是因为随着氧气流量的增加,薄膜的气孔率增加,薄膜内吸附了更多的气体,Oven后薄膜变得疏松,并且可能导致气孔尺寸增加,表面原子之间作用力减弱,导致薄膜应力减小。

衬底温度是对薄膜应力影响最大的因素之一。发现高温衬底温度更有利于薄膜应力的释放,因为随着温度的进一步升高,晶粒状态发生变化,逐渐由非晶态向晶态发展,可能结晶使一些原子按其固有结构有序排列,造成其应力降低[9]。

5结论

对不同沉积条件下制备ITO薄膜的光电特性,应力进行了研究,得出以下结论:在本实验条件下,ITO薄膜的光电特性随着衬底温度的增加,氧气流量的增大,并且经过Oven热处理后,薄膜的方块电阻低,透过率高;而ITO薄膜的应力经过退火处理后,由压应力变为拉应力,随衬底温度的升高,薄膜应力减小,热处理后,氧气流量对薄膜应力的变化影响不大。所以以现有的条件,沉积高透过率,低电阻,应力小薄膜的最佳工艺条件:工作气压0.5Pa,沉积时间30S,衬底温度120℃/120℃,Oven为230℃、20Min,O2/Ar为0.55%。

参考文献

[1] 田民波,叶锋。TFT液晶显示原理与技术[M].北京:科学出版社,2010:95-96,153-156.

[2] 茅昕辉,陈国平,陈公乃等。直流磁控反应溅射沉积ITO透明导电膜的研究[J]。光电子技术,1995,15(1):72-76.

[3] 李竹影,刘冶,刘辉。热处理对掺杂WO3的ITO薄膜性能的影响[J]。海军工程大学学报,2011,23(4):43-47.

[4]Nishimura,E;Sasabayashi,T;Tto,N,etal. Structure and internal stress of

tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering[J]. Japanese Journal of Applied Physics,2007,46(12):124-128.

[5] 刘文婷,刘正堂。O2/Ar气体流量比对射频磁控溅射HfO2薄膜的影响[J]。真空,2011,48(3):62-66.

[6] 邵淑英,范正修,范瑞瑛等。薄膜应力研究[J]。激光与光电子学进展,2005,42(1):22-27.

[7] Knuyt, G.A model for the behaviour of tensile and compressive residual stresses developed in thin films produced by ion beam-assisted deposition techniques[J]. Thin Solid Films.2004,467(1):260-263.

[8] 吴桂芳,宋学萍,杨成浩等。退火温度对硅基溅射银膜微结构和应力的影响[J]。功能材料,2003,34(6):682-684.

[9] 卢进军,刘卫国。光学薄膜技术[M].西安:西北工业大学出版社,2005:177-181.

工作气压对射频磁控溅射HfO2薄膜工艺影响的研究

工作气压对射频磁控溅射HfO2薄膜工艺影响的研究 发表时间:2019-03-14T15:24:43.167Z 来源:《知识-力量》2019年6月中作者:刘汉伟 [导读] 二氧化铪可以用来作为取代传统二氧化硅的一种很好的高介电常数。由于然而,在制备薄膜方法中,氧化铪层的结构和性质强烈依赖于沉积条件和后退火处理的技术。 (大连东软信息学院) 摘要:二氧化铪可以用来作为取代传统二氧化硅的一种很好的高介电常数。由于然而,在制备薄膜方法中,氧化铪层的结构和性质强烈依赖于沉积条件和后退火处理的技术。本文应用磁控溅射法来制备二氧化铪薄膜,采用扫描电子显微镜(SEM)分析其薄膜表面形貌及粗糙程度和组织组成。为射频磁控溅射制备HfO2工艺条件的研究提供了借鉴。 关键词:二氧化铪;工作气压;射频磁控溅射;退火 1 引言 在集成电路的飞速发展中,产业存着一则由Gordon Moore先生提出的摩尔定律,提出内容为每隔的摩尔定律,提出内容为每隔18至24个月集成电路芯片上所有的数目翻一番。在摩尔定律下,集成电路的度随着时间不断上升特征尺寸减小。在人们持续不断的研究中,发现一系列可以作为氧化硅替代者的高介电常数材料,其中氧化铪材料备受关注,基于热力学研究和带隙测量,氧化铪被认为是高K电介质中替代二氧化硅材料的最佳候选。氧化铪薄膜具有较高的硬度、高的化学稳定性和优良的介电性能。氧化铪具有合适的介电常数、禁带宽度较大、与硅基CMOS集成电路有着优异的兼容性,因此,氧化铪可以用来作为取代传统二氧化硅的一种很好的高介电常数。由于然而,在制备薄膜方法中,氧化铪层的结构和性质强烈依赖于沉积条件和后退火处理的技术。 本文应用磁控溅射法来制备二氧化铪薄膜,采用扫描电子显微镜(SEM)分析其薄膜表面形貌及粗糙程度和组织组成。 2 实验 实验应用射频磁控溅射法制备HfO2薄膜,通过确定基本工艺参数,控制变量参数,对制备完成的HfO2薄膜进行表征分析,分析其晶体结构、表面形貌。 实验镀膜设备是中国科学院沈阳科学仪器股份有限公司所生产的TRP-450高真空三靶磁控溅射镀膜系统和北京世纪久泰真空技术有限公司生产的高真空热蒸发薄膜沉积系统。其主要由真空溅射室、电气控制柜、循环水冷系统组成;真空溅射室采用卧式圆筒型结构,尺寸为450×400mm,前开门结构,选用不锈钢材料制造,氩弧焊接,表面进行化学抛光处理,接口采用金属垫圈密封或氟橡胶圈密封。实验制备应用的靶材为纯金属Hf(99.99%)靶材,石英玻璃作为衬底片。溅射功率400W,氩氧比列2/9,本地真空度为3×10-4Pa,工作气压分别为0.2Pa,0.25Pa,0.3Pa,0.35Pa,0.4Pa,0.45Pa和0.5Pa。 3.结果与讨论 图1 工作气压与薄膜溅射速率之间的关系 由图1中可以明显看出,在实验中选取的工作气压范围内,工作气压对沉积速率的影响趋势是明显的。随工作气压升高,沉积速度呈上升趋势,而当工作气压达到0.3Pa以后沉积速度基本上维持不变。之所以出现这样的现象是由于随着工作气压的增高,带来两方面的作用效果。一方面工作气压的升高使得真空室内粒子数量的增加,对靶材的轰击溅射作用增强,其溅射产额增加,为薄膜合成所提供的金属源产量增加,必然提高薄膜的合成速度;另一方面工作气压的升高增加了各种粒子在向基片运动过程中碰撞几率,能够减少到达基片合成薄膜的粒子数量。两方面因素的综合作用,使得在一定的工作气压范围内表现出沉积速度的增加趋势。而当工作气压升高到一定程度后,沉积速度会显示降低的趋势。在本实验中,气压在0.3~0.4Pa之间是沉积速度达到最大,在0.5Pa附近已经有下降趋势。 图2为HfO2薄膜在制备得到薄膜退火后的SEM图。从图中可以得到,退火可以使薄膜表面的增强迁移能力,容易获得致密程度高的薄膜。

磁控溅射法制备薄膜材料综述

磁控溅射法制备薄膜材料综述 摘要薄膜材料的厚度是从纳米级到微米级,具有尺寸效应,在国防、通讯、航空、航天、电子工业等领域有着广泛应用,其有多种制造方法,目前使用较多的是溅射法,其中磁控溅射的应用较为广泛。本文主要介绍了磁控溅射法的原理、特点,以及制备过程中基片温度、溅射功率、溅射气压和溅射时间等工艺条件对所制备薄膜性能的影响。 关键字磁控溅射;原理;工艺条件;影响 Brief Introduction to Thin Films by Magnetron Sputtering Abstract: The thickness of thin films is from the nano to the micron level.With its size effect, the films are widely used in the defense, telecommunication, aviation, aerospace, electronics and other fields.It can be prepared by many ways,of which the sputtering is used mostly.And magnetron sputtering is popular.The principle and characteristics of magnetron sputtering, and how substrate temperature, sputtering power, sputtering pressure and sputtering time influence the the properties of the films during the preparing process are introduced in this paper. Key Words: magnetron sputtering; principles; conditions; lnfluence 1 引言 薄膜是指尺度在某个一维方向远远小于其他二维方向,厚度可从纳米级到微 米级的材料,由于薄膜的尺度效应,它表现出与块体材料不同的物理性质,有广 泛应用。薄膜的制备大致可分为物理方法和化学方法两大类[1]。物理方法主要包 括各种不同加热方式的蒸发,溅射法等,化学方法则包括各种化学气相沉积 (CVD)、溶胶-凝胶法(sol-gel)等。 溅射沉积法由于速率快、均一性好、与基片附着力强、比较容易控制化学剂 量比及膜厚等优点,成为制备薄膜的重要手段。溅射法根据激发溅射离子和沉积 薄膜方式的不同又分直流溅射、离子溅射、射频溅射和磁控溅射,目前多用后两 种。本文主要介绍磁控溅射制备薄膜材料的原理及影响因素。 2 磁控溅射法 2.1磁控溅射基本原理

实验一 真空蒸发和磁控溅射制备薄膜

实验一 真空蒸发和磁控溅射制备薄膜 姓名:许航 学号:141190093 姓名:王颖婷 学号:141190083 系别:材料科学与工程系 专业:材料物理 组号:A9 实验时间:3月16号 本实验主要介绍真空蒸发、磁控溅射两种常用而有效的制备薄膜的工艺,以便通过实际操作对典型的薄膜工艺的原理和基本操作过程有初步的了解。 一、 实验目的 1、 通过实验掌握磁控溅射、真空蒸发制备薄膜的基本原理,了解磁控溅射、真空蒸发制备薄膜的过程 2、 独立动手,学会利用磁控溅射、真空蒸发技术制备薄膜 3、 通过本实验对真空系统、镀膜系统以及辉光放电等物理现象有更深层次的了解 二、 实验原理 薄膜作为一种特殊形状的物质,与块状物质一样,可以是非晶态的,多晶态的和单晶态的。它既可用单质元素或化合物制作,也可用无机材料和有机材料制作。近年来随着薄膜工艺的不断进步和完善,复合薄膜和功能材料薄膜也又很大的发展,因此薄膜技术和薄膜产品已在机械、电子、光学、航天、建材、轻工等工业部门得到了广泛的应用,特别是在电子工业中占有极其重要的地位。例如光电极摄像器件、各种集成电路器件、各种显示器、太阳能电池及磁带、磁头等各种转化器、传感和记录器、电阻器、电容器等都是应用薄膜。目前,薄膜工艺不仅成为一门独立的应用技术,也是改善材料表面性能和提高某些工艺水品的重要手段。 1、 真空蒸发制备薄膜原理 真空蒸发镀膜是把待镀膜的衬底或工件置于高真空室内,通过加热使成膜材料气化(或升华)而淀积到衬底上,从而形成一层薄膜的工艺过程。 因为真空蒸发镀膜的膜层质量与真空室的真空度、膜料蒸发温度和衬底的温度都有很大的关系,因而在实验过程务必严格控制各个环节。下面讨论一下影响蒸发镀膜质量的主要因素和成膜的原理。 (1)、真空度 为了同时保证膜层的质量和生产效率及成本,通常要选择合理的真空度。在镀膜过程中,抽真空后处在同一温度下的残余气体分子相对于蒸发出的膜料分子(原子)可以视作静止,可以得到膜料分子(原子)在残余分子中运动的平均自由程: '2 1()n r r λπ=+ p n k T = n 为残余气体分子的密度,r’为残余气体分子半径,r 为蒸发膜料分子的半径,p 为残余气体的压强,k 为玻尔兹曼常数。若蒸发源到衬底的距离为L (cm ),为使得膜料分子中的大部分不与残余气体分子碰撞而直接到达衬底表面,则一般可以取平均自由程10L λ≥,这样:

关于磁控溅射发展历程的综述

磁控溅射 1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。1974年,j.chapin发现了平衡磁控溅射。这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。 磁控溅射的发展历程: 溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。 溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下: (1)二级溅射: 二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。 (2)传统磁控溅射(也叫平衡磁控溅射): 平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。 (3)非平衡磁控溅射: B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。这样可以使磁控溅射技术更适合工业生产。 (4)脉冲磁控溅射: 由于在通过直流反应溅射来制得高密、无缺陷的绝缘膜(尤其是氧化物薄膜)时,经常存在不少的问题。其结果会严重的影响膜的结构和性能。但是通过脉冲磁控溅射可以与制得金属薄膜同样的效率来制得高质量的绝缘体薄膜。近年来,随着脉冲中频电源的研发成功,使镀膜工艺技术又上了一个新的台阶;利用中频电源,采用中频对靶或者孪生靶,进行中频磁控溅射,有效地解决了靶中毒严重的现象,特别是在溅射绝缘材料的靶时,克服了溅射过程中,阳极消失的现象。 (5)磁控溅射技术新型应用: 磁控溅射技术的新型应用是指在以上基础上,再根据应用的需要,对磁控溅射系统进行改进而衍生出的多种多样的设备和装置。这些改进主要是在系统内磁力线的分布上以及磁控溅射靶的设置和分布上。

直流磁控溅射功率对ITO薄膜光电学性能的影响

Advances in Material Chemistry 材料化学前沿, 2014, 2, 43-48 Published Online July 2014 in Hans. https://www.doczj.com/doc/a010009595.html,/journal/amc https://www.doczj.com/doc/a010009595.html,/10.12677/amc.2014.23007 The Effects of DC Magnetron Sputtering Power on Electrical and Optical Properties of ITO Thin Films Zhiting Geng*, Qing He School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing Email: *qhgzt@https://www.doczj.com/doc/a010009595.html, Received: Jun. 27th, 2014; revised: Jul. 18th, 2014; accepted: Jul. 22nd, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/a010009595.html,/licenses/by/4.0/ Abstract The experiment of ITO thin film samples was deposited on glass substrates by DC reactive magne-tron sputtering. The effects of sputtering power on optical properties of ITO thin films were inves-tigated. The results of several tests show that within the scope of the set of power, the increase of sputtering power leads to the increase of the thickness of the films, but the decrease of the resis-tivity and visible light transmittance of ITO thin films. Keywords ITO Thin films, DC Reactive Magnetron Sputtering, Electrical and Optical Properties 直流磁控溅射功率对ITO 薄膜光电学性能的影响 耿志挺*,何青 华北电力大学能源与动力学院,北京 Email: *qhgzt@https://www.doczj.com/doc/a010009595.html, 收稿日期:2014年6月27日;修回日期:2014年7月18日;录用日期:2014年7月22日 *通讯作者。

二氧化硅薄膜制备及检测

二氧化硅的化学性质 二氧化硅的化学性质不活泼,不与水反应,也不与酸(氢氟酸除外)反应,但能与碱性氧化物或碱反应生成盐。例如:高温 2NaOH+SiO2===Na2SiO3+H2O CaO+SiO2===CaSiO3 二氧化硅的化学性质特点:SiO2是酸性氧化物,是硅酸的酸酐。然而SiO2与其它的酸性氧化物相比却有一些特殊的性质。 (1)酸性氧化物大都能直接跟水化合生成酸,但SiO2却不能直接跟水化合。它所对应的水化物——硅酸,只能用相应的可溶性硅酸盐跟酸反应制得(硅酸不溶于水,是一种弱酸,它的酸性比碳酸还要弱(2)酸性氧化物一般不跟酸作用,但SiO2却能跟氢氟酸起反应,生成气态的四氟化硅。SiO2+4HF==SiF4↑+2H2O 普通玻璃、石英玻璃的主要成分是二氧化硅。因而可用氢氟酸来腐蚀玻璃。用氢氟酸在玻璃上雕花刻字,实验室里氢氟酸不能用含二氧化硅的玻璃、陶瓷、瓷器、陶器盛放,一般可用塑料瓶。 (3)SiO2与强碱溶液反应可生成水玻璃,它是一种矿物胶,常用作粘合剂。所以实验室盛放碱溶液的试剂瓶不用玻璃塞,而用橡胶塞。 二氧化硅在IC中的用途 二氧化硅薄膜最重要的应用是作为杂质选择扩散的掩蔽膜,因此需要一定的厚度来阻挡杂质扩散到硅中。二氧化硅还有一个作用是对器件表面保护和钝化。二氧化硅薄膜还可作为某些器件的组成部分: (1)用作器件的电绝缘和隔离。 (2)用作电容器的介质材料。 (3)用作MOS晶体管的绝缘栅介质。 1 二氧化硅(SiO2)薄膜的制备 针对不同的用途和要求,很多SiO2薄膜的制备方法得到了发展与应用,主要有化学气相淀积,物理气相淀积,热氧化法,溶胶凝胶法和液相沉积法等。 1.1化学气相淀积(CVD) 1969年,科莱特(Collett)首次利用光化学反应淀积了Si3N4薄膜,从此开辟了光化 学气相淀积法在微电子方面的应用。 化学气相淀积是利用化学反应的方式,在反应室内,将反应物(通常是气体)生成固态生成物,并淀积在硅片表面是的一种薄膜淀积技术。因为它涉及化学反应,所以又称CVD (Chemical Vapour Deposition)。 CVD法又分为常压化学气相沉积(APCVD)、低压化学气相沉积(LPCVD)、等离子增强化学气相沉积(PECVD)和光化学气相沉积等。此外CVD法制备SiO2可用以下几种反应体系:SiH4-O2、SiH4-N2O、SiH2Cl2-N2O、Si(OC2H5)4等。各种不同的制备方法和不同的反应体系生长SiO2所要求的设备和工艺条件都不相同,且各自拥有不同的用途和优缺点。目前最常用的是等离子体增强化学气相沉积法。 1.1.1等离子体增强化学气相沉积法 这种技术利用辉光放电,在高频电场下使稀薄气体电离产生等离子体,这些离子在电场中被加速而获得能量,可在较低温度下实现SiO2薄膜的沉积。这种方法的特点是沉积温度可以降低,一般可从LPCVD中的700℃下降至200℃,且生长速率快,可准确控制沉积速率(约1nm樸s),生成的薄膜结构致密;缺点是真空度低,从而使薄膜中的杂质含量(Cl、O)较高,薄膜硬度低,沉积速率过快而导致薄膜内柱状晶严重,并存在空洞等。

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄 膜材料 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉

光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流 气体放电体系,在阴阳两极之间 由电动势为的直流电源提供电压 和电流,并以电阻作为限流电 阻。在电路中,各参数之间应满 足下述关系: V=E-IR 使真空容器中Ar气的压力保持一定,并逐渐提高两个电极之间的电压。在开始时,电极之间几乎没有电流通过,因为这时气体原子大多仍处于中性状态,只有极少量的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述 1.引言 溅射技术属于PVD(物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。 2.溅射技术的发展 1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在lpa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射成为现

实,磁控溅射更加快速地发展起来。 溅射技术先后经历了二级、三级和高频溅射。二极溅射是最早采用,并且是目前最简单的基本溅射方法。二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。 然而像这种传统的溅射技术都有明显的缺点: 1).溅射压强高、污染严重、薄膜纯度差 2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低 3).灯丝寿命低,也存在灯丝对薄膜的污染问题 3.磁控溅射的原理: 磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。具有低温、高速两大特点。 电子在加速的过程中受到磁场洛仑兹力的作用,被束缚在靠近靶面的等离子体区域内: F=-q(E+v×B) 电子的运动的轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线。即磁场的存在将延长电子在等离子体中的运动轨迹,提高了它参与原子碰撞和电离过程的几率,因而在同样的电流和气压下可以显著地提高溅射的效率和沉积的速率。 具体地说来磁控溅射系统在真空室充入0.1~1OPa压力的惰性气

磁控溅射镀膜技术的发展

第46卷第2期2009年3月 真空VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积

磁控溅射原理

百科名片 磁控溅射原理:电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长, 在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。电子的归宿不仅仅是基片,真空室内壁及靶源阳极也是电子归宿。但一般基片与真空室及阳极在同一电势。磁场与电场的交互作用( E X B drift)使单个电子轨迹呈三维螺旋状,而不是仅仅在靶面圆周运动。至于靶面圆周型的溅射轮廓,那是靶源磁场磁力线呈圆周形状形状。磁力线分布方向不同会对成膜有很大关系。在E X B shift机理下工作的不光磁控溅射,多弧镀靶源,离子源,等离子源等都在次原理下工作。所不同的是电场方向,电压电流大小而已。磁控溅射的基本原理是利用 Ar一02混合气体中的等离子体在电场和交变磁场的作用下,被加速的高能粒子轰击靶材表面,能量交换后,靶材表面的原子脱离原晶格而逸出,转移到基体表面而成膜。磁控溅射的特点是成膜速率高,基片温度低,膜的粘附性好,可实现大面积镀膜。该技术可以分为直流磁控溅射法和射频磁控溅射法。磁控溅射(magnetron-sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射是在阴极靶的表面上方形成一个正交电磁场。当溅射产生的二次电子在阴极位降区内被加速为高能电子后,并不直接飞向阳极,而是在正交电磁场作用下作来回振荡的近似摆线的运动。高能电子不断与气体分子发生碰撞并向后者转移能量,使之电离而本身变成低能电子。这些低能电子最终沿磁力线漂移到阴极附近的辅助阳极而被吸收,避免高能电子对极板的强烈轰击,消除了二极溅射中极板被轰击加热和被电子辐照引起损伤的根源,体现磁控溅射中极板“低温”的特点。由于外加磁场的存在,电子的复杂运动增加了电离率,实现了高速溅射。磁控溅射的技术特点是要在阴极靶面附件产生与电场方向垂直的磁场,一般采用永久磁铁实现。如果靶材是磁性材料,磁力线被靶材屏蔽,磁力线难以穿透靶材在靶材表面上方形成磁场,磁控的作用将大大降低。因此,溅射磁性材料时,一方面要求磁控靶的磁场要强一些,另一方面靶材也要制备的薄一些,以便磁力线能穿过靶材,在靶面上方产生磁控作用。磁控溅射设备一般根据所采用的电源的不同又可分为直流溅射和射频溅射两种。直流磁控溅射的特点是在阳极基片和阴极靶之间加一个直流电压,阳离子在电场的作用下轰击靶材,它的溅射速率一般都比较大。但是直流溅射一般只能用于金属靶材,因为如果是绝缘体靶材,则由于阳粒子在靶表面积累,造成所谓的“靶中毒”,溅射率越来越低。目前国内企业很少拥有这项技术。

磁控溅射制备铝薄膜毕业论文

磁控溅射制备铝薄膜毕业论文 目录 第1章绪论 (1) 1.1 引言 (1) 1.1.2 薄膜研究的发展概况 (1) 1.1.3 薄膜的制备方法 (4) 1.1.4 薄膜的特征 (5) 1.1.5 薄膜的应用 (7) 第2章射频反应磁控溅射制备方法机理分析 (8) 2.1 射频反应磁控溅射法原理 (8) 2.1.1 直流辉光放电 (8) 2.1.2 射频辉光放电 (9) 2.1.3 射频原理 (9) 2.1.4 磁控原理 (11) 2.1.5 反应原理 (12) 2.2. 溅射机理 (13) 2.2.1 基本原理 (13) 2.2.2 基本装置 (13) 2.3 溅射的特点和应用 (15) 2.3.1 溅射的特点 (15) 2.3.2 溅射的应用 (16) 第3章实验 (17) 3.1 课题的研究线路 (17) 3.2 实验材料以及设备 (17) 3.3 实验仪器的原理 (18) 3.3.1 磁控溅射镀膜仪的原理 (18) 3.3.2 椭圆偏振测厚仪的原理 (19) 3.3.3 原子力显微镜的原理 (23) 3.3.4 表面预处理 (27) 3.3.5 薄膜制备 (28) 第4章实验结果及数据分析 (30) 4.1 薄膜测试与分析 (30) 4.1.1 衬底温度对于铝薄膜属性的影响 (30) 4.1.2 衬底温度对于铝薄膜生长的影响 (31)

4.1.3 不同的气压对于铝薄膜生长的影响 (34) 结论 (40) 致 (41) 参考文献 (42) 附录X 译文 (43) 利用CO/SiC衬底上制备单层石墨薄膜 (43) 附录Y 外文原文 (48)

第一章绪论 1.1 薄膜概述 1.1.1 引言 人工薄膜的出现是20世纪材料科学发展的重要标志。自70年代以来,薄膜材料、薄膜科学、与薄膜技术一直是高新技术研究中最活跃的研究领域之一,并已取得了突飞猛进的发展。薄膜材料与薄膜技术属于交叉学科,其发展几乎涉及所有的前沿学科,其应用与推广渗透到了各相关技术领域。正是由于薄膜材料和薄膜技术的发展才极促进了微电子技术、光电子技术、计算机技术、信息技术、传感器技术、航空航天技术和激光技术的发展,也为能源、机械、交通等工业部门和现代军事国防部门提供了一大批高新技术材料和器件。 薄膜是不同于其它物质(气态、液态、固态和等离子态)的一种新的凝聚态,有人称之为物质的第五态。顾名思义,薄膜就是薄层材料。它可以理解为气体薄膜,如吸附在固体表面的气体薄层;也可理解为液态薄膜,如附着在液体和固体表面的油膜。我们这里所指的薄膜是固体薄膜,即使是固体薄膜,也可分为薄膜单体和附着在某种基体上的另一种材料的固体薄膜,这里所指的薄膜属于后者[1]。 薄膜的基底材料有绝缘体,如玻璃、瓷等;也有半导体,如硅、锗等;也各种金属材料。薄膜材料也可以是各种各样的,如从导电性来分,可以是金属、半导体、绝缘体或超导体。从结构上来分,它可以是单晶、多晶、非晶(无定形)、微晶或超晶格的。从化学组成上来看,它可以是单质,也可以是化合物,它可阻是无机材料,也可以是有机材料。 1.1.2 薄膜研究的发展概况 薄膜科学是由多个学科交叉、综合、以系统为特色,逐步发展起来的新兴学科,以“表面”及“界面”为研究核心,在有关学科的基础上,应用表面技术及其复合表面技术为特点,逐步形成了与其他学科密切相关的薄膜科

磁控溅射镀膜技术的发展_余东海

第46卷第2期2009年3月 真 空 VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积 DOI:10.13385/https://www.doczj.com/doc/a010009595.html,ki.vacuum.2009.02.026

基片温度对磁控溅射沉积二氧化硅的影响

书山有路勤为径,学海无涯苦作舟 基片温度对磁控溅射沉积二氧化硅的影响 本文详细地研究了基片温度对磁控溅射沉积二氧化硅的影响,随着基片 温度的增加,溅射沉积速率下降明显,薄膜的折射率也出现上升趋势,薄膜也由低温时的疏松粗糙发展为致密光滑。250℃时的溅射沉积速率仅为室温时的1/3,由此, 针对间歇式在大面积玻璃上沉积二氧化硅薄膜,我们采取了沉积完 本课题组在开发一 1、实验样品由国产JGP450 型磁控溅射系统制备,溅射时采用射频电源,通过Si 靶与O2 反应溅射制备二氧化硅薄膜。基片为单面抛光的单晶硅片,在溅射之前经过乙醇超声清洗30 min。Ar 和O2 的流量一直保持为60 sccm 和20 sccm。待本底真空达到8 乘以10- 4 Pa 后,通入Ar,调节起辉压强0.3 Pa,待基片温度稳定后,起辉预溅射10 min,功率为100 W,通入O2,开始二氧化硅薄膜的溅射。薄膜的厚度和折射率n 通过Filmetrics 公司的F20- UV 测量,溅射速率则由薄膜的厚度和沉积时间的比值计算得到,并通过Hitachi S- 4800 来观察薄膜的表面情况。 2、结果与讨论如表1 所示,对于不同的基片温度,均为100 W 的溅射功率,为了适应F20- UV 的测量范围,减少测量误差,在样品的制备过程中采用不同的沉积时间,随着基片温度的增加,样品的沉积时间也相应增加。 二氧化硅薄膜的折射率随着基片温度的增加出现线性增加的趋势。室温 下沉积的薄膜的折射率为1.4628,当温度上升到250℃时,折射率达到1.669。 出现上面所述的情况,主要是因为基片温度的增加,基片表面的二氧化 硅分子的能量也增加,在基片表面的迁移能力增加,相对低温时薄膜会变得更

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜 材料 The final edition was revised on December 14th, 2020.

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关 系: V=E-IR 使真空容器中Ar气的压力保 持一定,并逐渐提高两个电极之间 的电压。在开始时,电极之间几乎 没有电流通过,因为这时气体原子 大多仍处于中性状态,只有极少量 的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过

相关主题
文本预览
相关文档 最新文档