当前位置:文档之家› 小波变换教程

小波变换教程

小波变换教程
小波变换教程

小波变换教程

一、序言

欢迎来到这个小波变换的入门教程。小波变换是一个相对较新的概念(大概十年的样子),但是有关于它的文章和书籍却不少。这其中大部分都是由搞数学的人写给其他搞数学的人看的,不过,仍然有大部分搞数学的家伙不知道其他同行们讨论的是什么(我的一个数学教授就承认过)。换言之,大多数介绍小波变换的文献对那些小波新手们来说用处不大(仅仅为个人观点)。

当我刚开始学习小波变换的时候,曾经为了弄明白这个神奇的领域到底说的是什么困扰了好多天,因为在这个领域的入门书籍少之又少。为此我决定为那些小波新手们写这个入门级的教程。我自己当然也是一个新手,也有很多理论性的细节没有弄清楚。不过,考虑到其工程应用性,我觉得没有必要弄清楚所有的理论细节。

在这篇教程中,我将试图给出一些小波理论的基本原理。我不会给出这些原理和相关公式的证明,因为我假定预期的读者在读这个教程时并不需要知道这些。不过,感兴趣的读者可以直接去索引(所列的书籍)中获取更为深入的信息。

在这篇文档中,我假定你没有任何相关知识背景。如果你有,请忽略以下的信息,因为都是一些很琐碎的东西。

如果你发现教程中有任何不一致或错误的信息,请联系我。我将乐于看到关于教程的任何评论。

二、变换什么

首先,我们为什么需要(对信号做)变换,到底什么是变换?

原始信号中有一些信息是很难获取的,为了获得更多的信息,我们就需要对原始信号进行数学变换。在接下来的教程中,我将时域内的信号视为原始信号,经过数学变换后的信号视为处理信号。

可用的变换有很多种,其中傅立叶变换可能是最受欢迎的一种。

实际中很多原始信号都是时域内的信号,也就是说不管信号是如何测得的,它总是一个以时间为变量的函数。换言之,当我们画信号图的时候,横轴代表时间(独立变量),纵轴代表信号幅度(非独立变量)。当我们画信号的时域图时,我们得到了信号的时幅表示。对大多数信号处理应用来说,这种表示经常不是最好的表示。在很多时候,大量特殊的信息是隐藏在信号的频率分量中的。信号的频谱图表示的一般是信号中的频率分量。频谱图展示了原始信号中存在哪些频率分量。

直觉上,我们都知道频率意味着某种事物的变化速率。如果某种东西(用正确的技术术语来说是一个数学或物理变量)变化的很快,我们说它的频率高,如果它变换的不快,我们就说它的频率低。如果这个变量一直保持不变,我们说它的频率为0,或者说没有频率。举例来说,日报的频率就比月刊高(因为它出版快)。

频率用周期/秒,或者用一个更广泛的说法,赫兹来衡量。举例来说,我们日常生活中用的电的频率是60Hz(世界上的其他国家是50Hz)。这意味着如果我们想要画一条电流曲线的话,我们将会看到的是1秒内出现的50个重复的正弦波。现在,观看以下这些图。第一幅图中正弦信号的频率是3Hz,第二幅是10Hz,第三幅则是50Hz。

那么我们怎样测量频率呢?或者我们怎样找到一个信号中所含的频率分量呢?答案是傅立叶变换(FT)。如果对时域内的信号做傅立叶变换,就会得到信号的幅频表示。也就是说,我们现在画图的话,横轴就是频率,纵轴则是信号的幅度。这种图告诉我们信号中存在哪些频率分量。

频率轴从0开始直到正无穷。每一个频率都对应着一个幅度。举例来说,如果我们对房间里正在使用的电流信号做傅立叶变换,频谱图中将会在50Hz处出现一个尖峰,其它频率对应的幅值则为0,因为电流信号中只包含了50Hz的频率分量。当然,(实际应用中)没有一个信号的傅立叶变换是这么简单的。对大多数应用来说,信号中包含的频率分量都大于一个。下图展示了50Hz信号的傅立叶变换。

这里有一点需要注意:图1.4给出了两幅图,第二幅显示的其实是第一幅图的前半部分,这是因为实数的频谱图是左右对称的(这里你不理解也没关系)。图1.4中上方的图展示了这一点。不过,因为对称部分的后一半只不过是前一半的镜像,它并没有提供更多的信息,因此,这部分经常不画在图里。下文中出现的大部分频谱图,我只画前半部分。

三、为什么我们需要频率信息(1)?

通常,我们可以容易的从频域中看到一些在时域中看不到的信息。

让我们举一个生物信号的例子。假如我们正在观看一个心电图,心脏病专家一般都熟知一些典型的健康心电图。如果某个心电图与一般的心电图有较大的偏差,这往往是发病的征兆。

在心电图的时域信号中一般很难找到这些病情。心脏病专家们一般用记录在磁带上的时域心电图来分析心电信号。最近,新的心电记录仪/分析仪还可以提供心电图的频域信息,通过这些信息,他们就可以确定病症是否存在。对频域图进行分析能使他们更容易的诊断病情。

上面只是一个说明了为何频率幅值有用的简单例子。当前,傅立叶变换已经被用于不同的领域,这些领域包括工程学的各个分支。

虽然傅立叶变换是最流行的数学变换,但它并不是唯一的。工程师和数学家们还经常会用到很多其他的变换。如希尔伯特变换、短时傅立叶变换(后文对此有详细阐述)、魏格纳分布和雷登变换,当然还有我们要讲的特征变换——小波变换。这些变换只不过是工程师和数学家们所用到的变换中的一小部分。每一种变换都有自己的应用领域,也都各有优缺点,小波变换也不例外。

为了更好的理解小波变换的必要性,让我们更详细的探讨一下傅立叶变换。傅立叶变换是一种可逆变换,即它允许原始信号和变换过的信号之间互相转换。不过,在任意时刻只有一种信息是可用的,也就是说,在傅立叶变换后的频域中不包含时间信息,逆变换后的时域中不包含时间信息。说到这里,脑袋里很自然的就会提出这个问题,有没有一种变换可以同时提供时间和频率信息呢?

我们马上就会知道,答案是具体问题具体分析。回想一下,傅立叶变换给出了信号中包含的频率信息,即它可以告诉我们原始信号中不同频率的信号到底有多少,但是并没有告诉我们某个频率信号是在何时出现的。在处理平稳信号时,我们不需要知道这些。

让我们进一步探讨一下平稳这个概念,因为它在信号分析中具有重要意义。如果某个信号中的频率分量一直保持不变,则我们叫这类信号为平稳信号。换句话说,静态信号中的频率分量一直保持不变。这种情况下,就不需要知道频率分量是什么时候出现的,因为所有的频率分量出现在信号的每一刻!!!

以下面这个信号为例:

x(t)=cos(2*pi*10*t)+cos(2*pi*25*t)+cos(2*pi*50*t)+cos(2*pi*100*t)

这是一个平稳信号,因为频率为10,25,50和100Hz的频率分量出现在整个时域内。如下图所示:

图1.2 下图为它的傅立叶变换:

图1.3

图1.3中的上图是图1.2的频谱图,下图为上图的放大,仅仅显示了我们感兴趣部分的频率信息。四个频谱分量分别对应着10,25,50和100Hz。

与图1.3不同,下图所示的信号就是一个非平稳的信号。图1.4所示的信号,它的频率一直在改变,这种信号被称为变频信号,是一种非平稳信号。

图1.4

四、为什么我们需要频率信息(2)?

让我们再看一个例子,图1.5显示了一个包含四个频率分量的信号,它们分别在不同时刻出现,因此这是一个非平稳信号。0-300ms时是一个100Hz的正弦波,300-600ms时则是一个50Hz的正弦波,600-800ms时是一个25Hz的正弦波,最后的200ms内是一个10Hz正弦波。

图1.5 下图是它的傅立叶变换:

图1.6

不要担心图中出现那些毛刺,那是由于信号中频率的突变引起的,在这篇文章里这些没有意义。注意到那些高频分量的幅度比低频分量大,这是因为高频信号比低频信号持续时间更长一些(分别为300ms和200ms)(信号中各频率分量的确切值并不重要)。

除了那些毛刺,图中的一切看起来都是正常的,有四个尖峰,对应原始信号中的四个频率分量,应该是正确的…

错!

当然了,也不完全错,但起码不完全对。对图1.2,考虑以下问题:各个频率分量都是在什么时刻出现的?

答案是

在所有时刻!还记得平稳信号吗?所有频率分量在信号的整个周期内一直存在,10Hz 的信号一直存在,50Hz的信号亦然,100Hz的信号亦然。

现在,让我们来考虑一下图1.4或1.5展示的非平稳信号。

各个频率分量都是在什么时刻出现的?

对于图1.6来说,我们知道,在第一个时间段内出现的是最高频率的分量,在最后一个时间段内出现的是最低频率的分量。图1.5中信号的频率分量一直在变,因此,对这些信号来说,各个频率分量并没有出现在任意时刻。

现在,比较一下图1.3和1.6,二者的相似之处是显而易见的,在图中都显示了四个几乎一样的频率分量,即10,25,50和100Hz。除了1.6中的那些毛刺和两幅图中各频率分量的幅值(这些幅值可以做归一化处理),两幅频谱图几乎是一致的,虽然相应的时域信号之间差别很大。两个信号都包含了相同的频率分量,但是前者中的各频率分量出现在信号的整个周期内,而后者的频率分量则在不同的时间段内出现。那么,是什么导致两个完全不同的原始信号经傅立叶变换后的波形这么相像呢?回想一下,傅立叶变换仅仅给出了信号的频谱分量,但是却没有给出这些频谱分量的出现时间。因此,对于非平稳信号来说,傅立叶变换是不合适的,但有一个例外:

只有当我们仅仅关心信号中是否包含某个频率分量而不关心它出现的时间的时候,傅立叶变换才可以用于处理非平稳信号。但是,如果这些信息是我们需要的(假设),如果我们想知道频率分量出现的确切时间,傅立叶变换就不是合适的选择了。

对实际应用来说,很难把两者的区分开来,因为现实中平稳的和非平稳的信号都很多。举例来说,几乎所有的生物信号都是非平稳的,这其中著名的就是心电图(ECG)、脑电图(EEG)和肌电图(EMG)。

请注意,傅立叶变换仅仅给出了信号的频率分量信息,仅此而已,无它。

当需要对频谱分量进行时间定位时,则需要一个可以得到信号的时频表示的数学变换。

五、终极解决方案:小波变换

小波变换是这样一种变换:它提供了信号的时频表示(还有一些变换可以提供这些信息,如短时傅立叶变化,魏格纳分布等等)。

在任一刻出现的特殊的频谱分量都有特殊的意义。这种情况下,如果知道了这些特殊的频谱分量出现的时间会比较有益。举例来说,在脑电图中,一个事件相关电位的潜伏期是主要关注点(事件相关电位是指大脑对某一特定刺激的反应,例如闪灯,这种反应的潜伏期是从刺激的开始到反应发生这段时间)。

小波变换可以同时提供时间和频率信息,因此给出了信号的一种时频表示。

但是小波变换到底是如何变换的仍然是一个不同的有趣故事,需要在理解了短时傅立叶变换(STFT)之后再解释。小波变换是被用来替代短时傅立叶变换(STFT)的。我们将在后面详细阐述STFT。现在可以说,一些在STFT中遇到的有关分辨率的问题,可以用小波变换解决。

为了长话短说,我们略过一些时域信号的高通和低通滤波处理,这些滤波器用来滤除信号中的低频和高频部分分量。这个过程是重复进行的,每一刻都可以从信号中滤除一些频率分量。

这里解释一下滤波过程是如何工作的:假定我们有一个信号,其中最高频分量为1000Hz。第一步,我们通过高通和低通滤波器把信号分成两部分(滤波器必须满足某些特定的条件,即允许条件),结果产生了同一信号的两个不同版本,0-500Hz的信号(低通)和500-1000Hz的信号(高通)。

然后,我们可以拿任意一部分(通常是低频部分)或者二者来做相同的处理。这个过程叫做分解。

假设我们拿低频部分做了处理,现在我们就有了3列数据,分别为0-250Hz,

250-500Hz和500-1000Hz。

然后再对低通滤波过的信号做高通和低通滤波处理,现在我们就有了4列数据,分别为0-125Hz,125-250Hz,250-500Hz和500-1000Hz。我们持续进行这个处理过程,直到将信号分解到一个预定义的级别。这样我们就有了一系列信号,这些信号实际上表示相同的信号,但是每一个序列都有不同的频带。我们知道哪些信号对应哪个频段,如果我们将这些信号放在一起画出三维图,一个轴表示时间,频率在另外一个轴上,幅度在第三个轴上。这幅图会告诉我们在某时刻出现的是什么频率的信号(这里有一个问题,叫做“不确定性原理”,即我们不能确切的知道哪个频率出现在哪个时间点上,我们仅仅知道那个频段出现在哪个时间段内,后文中将有更多关于此的介绍)。

不过,我仍然想用一个简明扼要的方式解释它:

最初是由海森堡发现并阐述了不确定性原理(测不准原理),这个原理是这样的,移动粒子的动量和位置不能同时确定,对我们这个课题则是这样的:

在时频平面内的一个确切的点上,信号的频率和发生时间不能同时确定。换句话说:在任意一个时间点,我们不能确定哪个频谱分量存在。我们能做到的是在一个给定的时间段内确定哪个频谱分量存在。这是一个设计到分辨率的问题,正是因为这个原因,才使得研究者们从快速傅立叶变换(STFT)转到了小波变换(WT)上。快速傅立叶变换的分辨率是固定的,而小波变换则能给出不同的分辨率:

高频信号在时域内可以得到很好的解决,低频信号则可以在频域内得到很好的解决,这意味着,相对于低频分量,高频分量更容易在时域内定位(因为有更小的相对误差)。反而言之,低频分量更容易在频域内定位。看下面这张图:

f ^

|******************************************* continuous

|* * * * * * * * * * * * * * * wavelet transform

|* * * * * * *

|* * * *

|* *

-------------------------------------------->time

对上图的解释是:最上面一行是对高频信号的多个采样,其采样间隔时间也较短。就是说高频信号更容易在时域内处理。最下面的一行是对低频信号的采样,特征点较少,因此,低频信号在时域内并不容易处理。

^frequency

|

|

|

| *******************************************************

|

|

|

| * * * * * * * * * * * * * * * * * * * discrete time

| wavelet transform

| * * * * * * * * * *

|

| * * * * *

| * * *

|----------------------------------------------------------> time

在离散时间域内,信号的时间分辨率如上图所示,但是现在,频率信息的分辨率在每一个阶段都不相同。注意,低频信号更容易在频域内处理,高频则正好相反。注意到图中后续频率分量的间隔是如何随频率增高(这里应为降低)而增大的。

下图是一些连续小波变换的例子。让我们以一个正弦波为例,这个正弦波包含了出现在不同时刻的两个频率分量。前半部分是低频信号,后面是高频信号。

图1.7 对上图的连续小波变换如下:

图1.8

注意到上图中,以“尺度”为标签的轴代表频率。“尺度”这个概念将会在后续章节进行阐述,但是这时需要注意的是尺度正好与频率成反比,即:尺度越大频率越低,尺度越小频率越高。因此,图中的小尖峰反映了信号中的高频分量,大的尖峰则反映了信号中的低频分量(在时域内低频信号是先出现的)。

你可能被图中的频率分辨率搞迷惑了,因为高频信号也得到了很好的频率分辨率。但是需要注意的是,高频信号的尺度分辨率很高,高尺度分辨率意味着低频率分辨率,反之则反。更多关于此的介绍在文章的后续部分。

六、小波变换基础:傅立叶变换(一)

让我们对前面的内容做个简要回顾。

基本上,我们要用小波变换来处理非平稳信号,即那些频率分量随时间变换而变换的信号。上文我已经说过傅立叶变换不适合处理这些非平稳信号,并且举了例子来来佐证。再做一个快速的回顾吧,看下面这个例子:假定我们有两个不同的信号,再假设他们都有相

同的频谱分量,只有一点不同,其中一个信号含有的四个频率分量在整个信号周期内都存在,另外一个也有相同的四个频率分量,但出现的时间各不相同。两个信号的傅立叶变换将会是一样的,如同在文章的第一部分中所讲到的那个例子。虽然这两个信号是完全不同的,但他们的傅立叶变换却是相同的!这一点很明显告诉我们不能用傅立叶变换来处理非平稳信号。但是这是为什么呢?换句话说,为什么完全不同的两个信号却有同样的傅立叶变换呢?傅立叶变换到底是怎么变换的?

信号处理中的一个重要里程碑:傅立叶变换!!

基于以下两个原因,我不想深究傅立叶变换的细节:

1、这个课题对本教程来说太广了。

2、它不是我们主要关注的对象。

不过,基于以下原因,我将会在文中涉及一些要点:

1、为了理解小波变换,你需要傅立叶变换作为背景知识。

2、它是到目前为止最重要的信号处理工具,已经被用了很多很多年了。

在十九世纪年(或许是1822年,不过你并不需要知道这么确切的时间,相信我,绝对比你能想起来的时间还早得多),法国数学家傅立叶,发现所有周期信号都可以表示为无限的周期复指数函数的和。在他发现了这个著名的周期函数性质之后,其想法被推广到第一个非周期函数,然后是周期和非周期的离散信号。在这之后,傅立叶变换就成了在计算机中非常适合的计算工具。年,出现了一个叫做快速傅立叶变换的新算法,从此傅立叶变换更加流行了。

傅立叶变换将信号分解为具有不同频率的复指数函数,可以用以下两个公式来解释它的变换过程:

图2.1

在上式中,表示时间,表示频率,表示要分析的信号。注意到表示信号的时域,表示信号的频域,这个约定用来区别对信号的两种表示。公式叫做x(t)的傅立叶变换,公式叫做X(f)的傅立叶逆变换,其结果是。用过傅立叶变换的人对这些已经很熟悉了,但不幸的是,很多人虽然用到了这些公式,却没有理解它的基本原理。现在仔细看公式:信号是一些指数项的累加和,每个项对应特定的频率,然后在整个时域内整合起来(这里的“整个时域”将在下面进行介绍)。公式中的指数项还可以被写成下面这样:

cos(2.pi.f.t)+j.Sin(2.pi.f.t) (3)

上面的表达式以一个频率为的余弦信号作为实部,一个频率为的正弦信号作为虚部。所以我们实际要做的是用一些复数表达式叠加出原始信号,这些复数表达式包含了频率为的正弦和余弦分部。然后我们对乘积积分,即我们把乘积中的所有的点叠加起来。如果积分结果(只不过某种无限求和)的值很大,那么我们可以这样说:信号x(t)在频率f处有一个大的频谱分量。信号主要是由频率为的分量组成。如果积分结果的值较小,就意味着信号中频率为的分量很少。如果积分结果为,表明信号中根本不存在频率为的分量。这里很有意思,让我们看看积分是怎么回事:信号是由一些不同频率的正弦项叠加起来的,如果信号中频率为f的分量幅值较大,那么这个分量就和正弦项重叠,他们的积就会(相对)较大,这表明信号x有一个频率为f的主要分量。

不过,如果信号中不含频率为的分量,则乘积结果为,这表明信号没有频率为的分量。如果频率为的分量不是信号的主要组成部分,则乘积会(相对)较小。这就说明频率为f的分量在信号中的幅值很小,不是信号中的主要组成分量。现在,变换公式中的积分方式已经有些过时了。公式中左边是一个对频率的函数,因此,式的积分是由每一个频率值计算出来的。

注意!!因为积分是从负无穷到正无穷,所以积分在所有时间内有效。这说明了不管频率为的分量何时出现,都将会影响积分结果。换句话说,不管频率为的分量出现在时刻还是,都将对积分结果产生相同的影响。这就是为什么傅立叶变换不适合分析随时间变化,频率改变的信号,即非平稳信号。当且仅当频率为的分量一直存在(对所有的),傅立叶变换得到的结果才有意义。傅立叶变换可以给出某个频率分量存在与否,其结果不取决于信号出现的时间。需要知道的是,一个平稳的信号才优先用傅立叶变换进行处理。第一部分中给出的例子现在已经讲得很明白了,这里我再次给出:看下式:

x(t)=cos(2*pi*5*t)+cos(2*pi*10*t)+cos(2*pi*2 0*t)+cos(2*pi*50*t)

信号中含有四个频率分量,所有分量在信号的整个周期内都存在。

图2.2

这里是它的傅立叶变换。频率轴被剪切过了,因为理论上来说它是无穷的(仅指连续傅立叶变换,实际上我们在这里做的是离散傅立叶变换,频率轴最少要达到采样频率的两倍处,变换过的信号是对称的。不过现在这些都不重要)。

图2.3

上图中出现了四个尖峰,对应四个不同的频率。

七、小波变换基础:傅立叶变换(二)

现在,看下图,信号是余弦信号,仍然有四个频率分量,不过这四个分量出现在不同时刻:

图2.4 下面是它的傅立叶变换:

图2.5

在上图中,与你想象的一样,图形与前一个信号的傅立叶变换几乎一样,仔细看,图中也有四个尖峰对应四个频率。我可能把这两张图弄得看起来比较像,但这不并不是有意为之。尖峰中出现的噪声所代表的频率分量在信号中是存在的但是由于它们的幅值很小,不是组成信号的主要分量,我们在图中看到的这些,是由于频率突变产生的。特别需要注意的是,信号中的频域都在是改变的(有一些合适的滤波手段可以将频域中的噪声去掉,但是这些与我们要讲的话题无关,如果你需要有更详细的信息,请给我发邮件)。

现在你应该理解了傅立叶变换的基本概念,什么地方可以用什么地方不可以用。正如你从上面的图中所看到的,傅立叶变换不能很好的区分两个信号。傅立叶变换之后的结果基本一致,因为他们都是由相同的频率分量组成的。因此,对非平稳信号来说,例如具有时变性的信号,傅立叶变换并不是一个合适的工具。

请将这个性质记在心里。不幸的是,许多用傅立叶变换的人并不思考这些。他们假定他们处理的信号都是平稳的,但在实际中却经常不是。当然,如果你对频率分量的发生时间不感兴趣,只关心哪些频率分量存在,傅立叶变换还是一个很合适的分析工具。

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

第9章小波变换基础

第9章 小波变换基础 9.1 小波变换的定义 给定一个基本函数)(t ψ,令 )(1)(,a b t a t b a -= ψψ (9.1.1) 式中b a ,均为常数,且0>a 。显然,)(,t b a ψ是基本函数)(t ψ先作移位再作伸缩以后得到的。若b a ,不断地变化,我们可得到一族函数)(,t b a ψ。给定平方可积的信号)(t x ,即 )()(2R L t x ∈,则)(t x 的小波变换(Wavelet Transform ,WT )定义为 dt a b t t x a b a WT x )()(1),(-= ? *ψ ??==? * )(),()()(,,t t x dt t t x b a b a ψψ (9.1.2) 式中b a ,和t 均是连续变量,因此该式又称为连续小波变换(CWT )。如无特别说明,式中及以后各式中的积分都是从∞-到∞+。信号)(t x 的小波变换),(b a WT x 是a 和b 的函数, b 是时移,a 是尺度因子。)(t ψ又称为基本小波,或母小波。)(,t b a ψ是母小波经移位和 伸缩所产生的一族函数,我们称之为小波基函数,或简称小波基。这样,(9.1.2)式的WT 又可解释为信号)(t x 和一族小波基的内积。 母小波可以是实函数,也可以是复函数。若)(t x 是实信号,)(t ψ也是实的,则 ),(b a WT x 也是实的,反之,),(b a WT x 为复函数。 在(9.1.1)式中,b 的作用是确定对)(t x 分析的时间位置,也即时间中心。尺度因子 a 的作用是把基本小波)(t ψ作伸缩。我们在1.1节中已指出,由)(t ψ变成)(a t ψ,当1 >a 时,若a 越大,则)(a t ψ的时域支撑范围(即时域宽度)较之)(t ψ变得越大,反之,当1

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波变换-完美通俗解读

小波变换和motion信号处理(一) 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA 这些东西了。对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一

些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是

基于提升算法的二维53和97小波变换的MATLAB仿真与DSP实现

基于提升算法的二维5/3和9/7小波变换的MATLAB 仿真与DSP 实现 王靖琰,刘蒙 中国科学院上海应用物理研究所,上海 (201800) E-mail :wjycas@https://www.doczj.com/doc/9f9253321.html, 摘 要:本文讨论了基于提升算法的二维5/3和9/7小波的原理,对算法进行了MATLAB 仿真,并在浮点型DSP TMS320C6713B 上实现了图像的二维5/3、9/7小波提升变换和逆变换。实验结果证明了方法的有效性。 关键词:小波提升,二维9/7、5/3小波,MATLAB ,TMS320C6713B 1.引言 随着人们对多媒体信息需求的日益增长,数码相机、移动电话、MP4 等多媒体信息处理系统蓬勃发展。基于通用DSP 处理器的此类系统设计以灵活性强、扩展性好、可升级和易维护的优点成为系统开发的首选方案 [1]。 由于良好的时频局部特性和多分辨分析特性,小波已广泛应用于图像处理领域,并且被吸收进新的一些国际标准中成为了标准算法。文中在MATLAB 平台上对基于小波提升的二维离散5/3和9/7小波变换算法进行了仿真,并在浮点型DSP TMS320C6713B 上实现了算法,该程序运算速度快,可充分利用硬件资源,特别适用于嵌入式系统的需求。 2.小波变换提升算法基本原理 1994年Sweldens 提出了小波的提升算法,有效地解决传统的基于Mallat 的塔式分解小波变换算法计算量大、对存储空间的要求高的问题,从算法方面提高了小波变换的实现效率 [2]。 2.1 5/3小波提升格式 小波提升算法的基本思想是通过由基本小波(lazy wavelet)逐步构建出一个具有更加良好性质的新小波,其实现步骤有3个:分解(split)、预测(predict)和更新(update)。分解是将数据分为偶数序列和奇数序列2个部分,预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量,更新是由预测误差来更新偶数序列,得到变换的低频分量。在J PEG2000中,5/3提升小波变换的算法为[3]: (2)(22)(21)(21)(1)2(21)(21)2(2)(2)(2) 4x n x n c n x n c n c n d n x n ++??+=+????? ?+++??=+???? 由其正变换的反置即可得到逆变换的算法为 c(2n-1) + c(2n+1)+2x (2n) = d (2n) - (3)4x(2n)+x(2n+2)x(2n+1)=c(2n)+(4) 2?????? ?????? 从算式可以得出,提升算法是原位计算,即进行小波变换时在原位计算各个系数,计算

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

小波变换 matlab 总结

小波变换matlab总结

目录 一、预置工具 (4) 1.预置信号 (4) 2.预置小波 (4) 3.滤波器函数 (6) wfilters函数 (6) 4.量化编码 (6) wcodemat函数 (6) 5.阈值获取 (6) ddencmp函数 (6) thselect函数 (7) wbmpen函数 (7) wdcbm函数 (7) 6.阈值去噪 (8) wden函数 (8) wdencmp函数 (8) wthresh函数 (9) wthcoef函数 (9) wpdencmp函数 (9) 二、小波变换函数 (12) 单尺度一维小波变换 (12) cwt一维连续小波变换 (12) dwt一维离散小波变换 (12) idwt一维离散小波逆变换 (13) upcoef 一维小波系数重构 (13) 多尺度一维小波变换 (14) wavedec多尺度一维分解 (14) waverec多尺度一维重构 (15) appcoef低频系数提取 (16) detcoef高频系数提取 (16) wrcoef多尺度小波系数重构 (17) 一维静态(平稳)小波变换 (18) swt一维平稳小波变换 (18) iswt一维平稳小波逆变换 (18) 实例 (19) 单尺度二维小波变换 (19) dwt2二维离散小波变换 (19) idwt2二维离散小波逆变换 (20) upcoef2二维系数重构 (20) 多尺度二维小波变换 (21) wavedec2多尺度二维分解 (21) waverec2多尺度二维重构 (22) appcoef2低频系数提取 (23) detcoef2高频系数提取 (23)

最新小波变换基础

小波变换基础

第9章小波变换基础 9.1 小波变换的定义 给定一个基本函数?Skip Record If...?,令 ?Skip Record If...?(9.1.1) 式中?Skip Record If...?均为常数,且?Skip Record If...?。显然,?Skip Record If...?是基本函数?Skip Record If...?先作移位再作伸缩以后得到的。若?Skip Record If...?不断地变化,我们可得到一族函数?Skip Record If...?。给定平方可积的信号?Skip Record If...?,即?Skip Record If...?,则?Skip Record If...?的小波变换(Wavelet Transform,WT)定义为 ?Skip Record If...? ?Skip Record If...?(9.1.2) 式中?Skip Record If...?和?Skip Record If...?均是连续变量,因此该式又称为连续小波变换(CWT)。如无特别说明,式中及以后各式中的积分都是从?Skip Record If...?到?Skip Record If...?。信号?Skip Record If...?的小波变换?Skip Record If...?是?Skip Record If...?和?Skip Record If...?的函数,?Skip Record If...?是时移,?Skip Record If...?是尺度因子。?Skip Record If...?又称为基本小波,或母小波。?Skip Record If...?是母小波经移位和伸缩所产生的一族函数,我们称之为小波基函数,或简称小波基。这样,(9.1.2)式的?Skip Record If...?又可解释为信号?Skip Record If...?和一族小波基的内积。 母小波可以是实函数,也可以是复函数。若?Skip Record If...?是实信号,?Skip Record If...?也是实的,则?Skip Record If...?也是实的,反之,?Skip Record If...?为复函数。 在(9.1.1)式中,?Skip Record If...?的作用是确定对?Skip Record If...?分 析的时间位置,也即时间中心。尺度因子?Skip Record If...?的作用是把基本小波?Skip Record If...?作伸缩。我们在1.1节中已指出,由?Skip Record If...?变成?Skip Record If...?,当?Skip Record If...?时,若?Skip Record If...?越大,则 仅供学习与交流,如有侵权请联系网站删除谢谢283

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 图1.6 不同分析时段下的信号小波变换系数计算 图1.7 不同尺度下的信号小波变换系数计算 C =0.2247

小波变换完美通俗解读

小波变换完美通俗解读 转自: 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA这些东西了。对小波变换的认识也就停留在神秘的"图像视频压缩算法之王"上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国内的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国内真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂;国内的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2小波分析基本理论 设Ψ(t)∈L 2(R)(L 2(R)表示平方可积的实数空间,即能量有限的信号空间),其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 ()R t dw w C ψψ=<∞?(1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到 一个小波序列: ,()()a b t b t a ψ-=,,0a b R a ∈≠(2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2(R) 的连续小波变换为: ,(,),()()f a b R t b W a b f f t dt a ψψ-=<>= (3)其逆变换为:21 1()(,)()f R R t b f t a b dadb C a a ψψ+-=??(4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3小波降噪的原理和方法 3.1小波降噪原理 从信号学的角度看,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波,但由于在去噪后,还能成功地保留信号特征,所以在这一点上又优于传统的低通滤波器。由此可见,小波去噪实际上是特征提取和低通滤波的综合,其流程框图如图所示[6]: 特征提取 低通滤波 特征信号 重建信号 小波分析的重要应用之一就是用于信号消噪,一个含噪的一维信号模型可表示为如下形式:带噪信号

小波变换在图像处理中的运用及其matlab实现 - 副本

clear % 清理工作空间 load wbarb; % 装入图像 figure; % 新建窗口 image(X); % 显示图像 colormap(map) % 设置色彩索引图 title('原始图像'); % 设置图像标题 axis square % 设置显示比例 disp('压缩前图像X的大小'); % 显示文字 whos('X') % 显示图像属性 %对图像用小波进行层小波分解 [c,s]=wavedec2(X,2,'bior3.7'); %提取小波分解结构中的一层的低频系数和高频系数cal=appcoef2(c,s,'bior3.7',1); %水平方向 ch1=detcoef2('h',c,s,1); %垂直方向 cv1=detcoef2('v',c,s,1); %斜线方向 cd1=detcoef2('d',c,s,1); %各频率成份重构 a1=wrcoef2('a',c,s,'bior3.7',1); h1=wrcoef2('h',c,s,'bior3.7',1); v1=wrcoef2('v',c,s,'bior3.7',1); d1=wrcoef2('d',c,s,'bior3.7',1); c1=[a1,h1;v1,d1]; %显示分频信息 figure; % 新建窗口 image(c1); % 显示图像 colormap(jet) % 设置色彩索引图 axis square; % 设置显示比例 title ('分解后低频和高频信息'); % 设置图像标题 ca1=appcoef2(c,s,'bior3.7',1); ca1=wcodemat(ca1,440,'mat',0); %改变图像高度并显示 ca1=0.5*ca1; figure; % 新建窗口 image(ca1); % 显示图像 colormap(map); % 设置色彩索引图 axis square; % 设置显示比例 title('第一次压缩图像'); % 设置图像标题 disp('第一次压缩图像的大小为:'); % 显示文字 whos('ca1') % 显示图像属性 %保留小波分解第二层低频信息进行压缩 ca2=appcoef2(c,s,'bior3.7',2); %首先对第二层信息进行量化编码 ca2=wcodemat(ca2,440,'mat',0);

相关主题
文本预览
相关文档 最新文档