当前位置:文档之家› 高三总复习解析几何专题(师)

高三总复习解析几何专题(师)

高三总复习解析几何专题(师)
高三总复习解析几何专题(师)

140920解析几何专题与讲义

一、选择填空题

1、 “3=a ”是“直线022=++a y ax 和直线07)1(3=+--+a y a x 平行”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件 D .既不充分又不必要条件

2、已知双曲线的渐近线为y =,焦点坐标为(-4,0),(4,0),则双曲线方程为( )

A .22

1824x y -=

B .221124x y -=

C .22

1248

x y -=

D .

22

1412

x y -= 3、直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A . 2 B . 2 C .22 D . 4

4、圆心在曲线()3

0y x x

=

> 上,且与直线3430x y ++=相切的面积最小的圆的方程为( )

A .()2

2

3292x y ??

-+-= ???

B .()()2

2216315x y ??-+-= ???C .()()2

2218135x y ??-+-= ??? D .((229x y +=

5.已知方程22

1()13x y k R k k

+=∈+-表示焦点在x 轴上的椭圆,则k 的取值范围是

( )

A .13k k <>或

B .13k <<

C .1k >

D .3k <

6.设12F F 、分别是椭圆2

2

2:1(01)y E x b b

+=<<的左、右焦点,过1F 的直线与

E 相交于A B 、两点,且22,A

F AB BF ,成等差数列,则AB 的长为( )A .3

2

B .1

C .

3

4 D .

3

5 7、已知12(1,0),(1,0)F F -的椭圆22

2

21x y a b

+=的两个焦点,若椭圆上一点P 满足124PF PF +=,则椭圆的离心率e =

8、设椭圆22

221(0)x y a b a b

+=>>的左、右焦点分别为1F 、2F ,A 是椭圆上的一点, 12AF ⊥,原点O 到直线1AF 的距离为112

OF ,则椭圆的离心率为( )

A 、13

B 1

C D 1

9.点A 是抛物线C 1:y 2

=2px (p >0)与双曲线C 2:12

2=-b

y a x (a >0,b >0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A .2 B .3 C .5 D .6

10、过双曲线22221(0,0)x y a b a b -=>>的左焦点(,0)(0)F c c ->,作圆222

4

a x y +=的切线,切点为E ,延长

FE 交曲线右支于点P ,若()

1

2

OE OF OP =

+,则双曲线的离心率为( )

A B C

D

解析几何解答题的基本步骤

解析几何在高考中经常是两小题一大题:两小题经常是常规求值类型,一大题中的第一小题也经常是常规求值问题,故常用方程思想先设后求即可。解决第二小题时常用韦达定理法结合以上各种题型进行处理,常按照以下七步骤:

一、设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=my+n 的区别) 二、设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 三、则联立方程组,消元得到关键方程;(提醒:一定要考虑二次项系数与△>0) 四、则韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 五、根据条件转化;常有以下类型:

①“以弦AB 为直径的圆过点0” ?OA OB ⊥ ?

121K K ?=-(提醒:需讨论K 是否存在)

?0OA OB ?=? 12120x x y y +=

②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问题” ?

1212x x y y +>0;

③“等角、角平分、角互补问题” ?斜率关系(12

0K K +=或12K K =);

④“共线问题”(如:AQ QB λ= ?数的角度:坐标表示法;形的角度:距离转化法);

(如:A 、O 、B 三点共线?直线OA 与OB 斜率相等);

⑤“点、线对称问题” ?坐标与斜率关系;

⑥“弦长、面积问题” ?转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择); 六、则化简与计算;

七、则细节问题不忽略; ①判别式是否已经考虑; ②抛物线问题中二次项系数是否会出现0.

二、解答题:

考点一、曲线(轨迹)方程的求法 常见的求轨迹方程的方法:

(1)单动点的轨迹问题——直接法(五步曲)+ 待定系数法(定义法); (2)双动点的轨迹问题——代入法;

(3)多动点的轨迹问题——参数法 + 交轨法。

例1、设)0(1),(),,(22

222211>>=+b a b

x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=?a y b x a y b x ,椭圆的离

心率,2

3

=

e 短轴长为2,0为坐标原点. (1)求椭圆的方程;

(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

解析:本例(1

)通过2

e =

,22b =,及,,a b c 之间的关系可得椭圆的方程;(2)从方程入手,通过直线方程与椭圆方程组成方程组并结合韦达定理;(3)要注意特殊与一般的关系,分直线的斜率存在与不存在讨论。

答案:(1

)2 2.1, 2.2

c b b e a e a a =====?==椭圆的方程为14

22

=+x y (2)设AB 的方程为3+=kx y

由41,4320132)4(1

4

3

2212212222+-=+-=+=-++????

??=++=k x x k k x x kx x k x y kx y 由已知

43)(43)41()3)(3(410212122121221221+

+++=+++=+=x x k x x k kx kx x x a y y b x x

±=++-?++-+=k k k k k k 解得,4

3

43243)41(44222 2

(3)当A 为顶点时,B 必为顶点.S △AOB =1

当A ,B 不为顶点时,设AB 的方程为y=kx+b

42042)4(1

4

2212

222

2+-=+=-+++??????=++=k kb x x b kbx x k x y b

kx y 得到 442221+-=k b x x

:04

)

)((0421212121代入整理得=+++?==

b kx b kx x x y y x x 422

2

=+k b 4

1644|||4)(||21||||21222212

2121++-=-+=--=k b k b x x x x b x x b S

1|

|242

==b k

所以三角形的面积为定值.

点评:本题考查了直线与椭圆的基本概念和性质,二次方程的根与系数的关系、解析几何的基本思想方法以及运用综合知识解决问题的能力。

练习1、如图,ADB 为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为

线段OD 的中点,已知|AB|=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|PA|+|PB|的值不变。(I)建立适当的平面直角坐标系,求曲线C 的方程;(II)过点B 的直线l 与曲线C 交于M 、N.两点,与OD 所在直线交于E 点,

1λ=,2λ=证明:21λλ+为定值.

【解析】(Ⅰ)以AB 、OD 所在直线分别为x 轴、y 轴, O 为原点, 建立平面直角坐标系,∵动点P 在曲线C 上运动 且保持|P A |+|PB |的值不变.且点Q 在曲线C 上,

∴|PA |+|PB |=|QA |+|QB |=2521222=+>|AB |=4. 3分

∴曲线C 是为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴

a =5,c =2,

b =1… 4分∴曲线C 的方程为5

2x +y 2

=15分

【法1】(Ⅱ):设,,M N E 点的坐标分别为11220(,),(,),(0,)M x y N x y E y , 易知B 点的坐标为(2,0).且点B 在椭圆C 内,故过点B 的直线l 必与椭圆C 相交. ∵1EM MB λ=,∴110111(,)(2,)x y y x y λ-=--. ∴ 11

112λλ+=

x ,1

011λ+=y y … 7分 将M 点坐标代入到椭圆方程中得:1)1()12(

5121

02

11=+++λλλy ,

去分母整理,得055102

012

1=-++y λλ………… 9分

同理,由2EN NB λ=可得:055102

022

2=-++y λλ…… 10分 ∴

1λ,2λ是方程05510202=-++y x x 的两个根11分∴ 1021-=+λλ……… 12分

【法2】(Ⅱ):设,,M N E 点的坐标分别为11220(,),(,),(0,)M x y N x y E y ,

易知B 点的坐标为(2,0).且点B 在椭圆C 内,故过点B 的直线l 必与椭圆C 相交. 显然直线 l 的斜率存在,设直线l 的斜率为 k ,则直线 l 的方程是 )2(-=x k y …6分

将直线 l 的方程代入到椭圆 C 的方程中,消去 y 并整理得052020)51(2

222=-+-+k x k x k

∴ 22215120k k x x +=+,2

221515

20k

k x x +-=…… 8分 又 ∵1EM MB λ=, 则110111(,)(2,)x y y x y λ-=--.∴1

1

12x x -=

λ,

同理,由2EN NB λ=,∴2

2

22x x -=λ………10分

∴10)(242)(2222

1212

121221121-==++--+=-+-=

+ x x x x x x x x x x x x λλ

……………………12 考点二、圆锥曲线的几何性质

圆锥曲线中的基本元素:长短轴,焦距,渐近线,离心率等,在自身多处综合就会演变成中档题,要求熟练掌握其关系,灵活运用图形帮助分析。圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心.

例2、如图,F 为双曲线C :()22

2210,0x y a b a b

-=>>的右焦点 P 为双曲线C 右支上一点,且位于x 轴上方,M

为左准线上一点,O 为坐标原点 已知四边形OFPM 为平行四边形,PF OF λ=

(Ⅰ)写出双曲线C 的离心率e 与λ的关系式;

(Ⅱ)当1λ=时,经过焦点F 且平行于OP 的直线交双曲线于A 点,

12AB =,求此时的双曲线方程

分析: 用第二定

义。

解:∵四边形OFPM 是,∴||||OF PM c ==,作双曲线的右准线交PM 于H ,则2

||||2a PM PH c =+,

又2222222

||||||2222

PF OF c c e e a a PH c a e c c c c

λλλλ=====----,2

20e e λ--= (Ⅱ)当1λ=时,2e =,2c a =,2

2

3b a =,双曲线为2

2

22143x y

a a

-=四边形OFPM 是菱形,所以直线

OP AB 的方程为2)y x a -,代入到双曲线方程得:22

948600x ax a -

+=,

又12AB =,由

AB =12=2

94a =,则2

27

4b =,所以

22127

94

x y -=为所求 点评:本题灵活的运用到圆锥曲线的第二定义解题。

考点三、 有关圆锥曲线的定义的问题 利用圆锥曲线的第一、第二定义求解.

例3、设,A B 分别为椭圆22

221(,0)x y a b a b

+=>的左、右顶点,椭圆长半轴的长等于焦距,且4x =为它的右准

线 (Ⅰ)求椭圆的方程;(Ⅱ)设P 为右准线上不同于点(4,0)的任意一点, 若直线,AP BP 分别与椭圆相

交于异于,A B 的点M N 、,证明:点B 在以MN 为直径的圆内

∵2-x 0>0,∴BM ·BP >0,则∠MBP 为锐角,从而∠MBN 为钝角,故点B 在以MN 为直径的圆内

解法2:由(Ⅰ)得A (-2,0),B (2,0) 设M (x 1,y 1),N (x 2,y 2),

则-2

2

21x x +,22

1y y +),依题意,计算点B 到圆心Q 的距离与半

径的差2

BQ -

241MN =(2

21x x +-2)2+(221y y +)2-41[(x 1-x 2)2+(y 1-y 2)2

] =(x 1-2) (x 2-2)+y 1y 1 ○3又直线AP 的方程为y =

)2(211++x x y ,直线BP 的方程为y =)2(2

22--x x y

, 而点两直线AP 与BP 的交点P 在准线x =4上,∴

26262211-=

+x y x y ,即y 2=2

)2311

2+-x y x ( ○4 又点M 在椭圆上,则13

42

121=+y x ,即)4(432

121x y -= ○5

于是将○4、○5代入○3,化简后可得2

BQ -

2

41MN =0)2)(24

521<-x x -( 从而,点B 在以MN 为直径的圆内

考点四、 直线与圆锥曲线位置关系问题

(1)求解直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法。

(2)注意韦达定理的应用。 弦长公式:斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别是A(x 1,y 1),B(x 2,y 2)则 AB x x y y =-+-()()122122=+-1212k x x ]4))[(1(212212x x x x k -++=

=+12

k a

? (3)注意斜率不存在的情况的讨论和焦半径公式的使用。

(4)有关中点弦问题 <1>已知直线与圆锥曲线方程,求弦的中点及与中点有关的问题,常用韦达定理。 <2>有关弦的中点轨迹,中点弦所在直线方程,中点坐标问题,有时采用“差分法”可简化运算。

例4、已知双曲线22

22:1(0,0)x y C a b a b

-->>

的两个焦点为:(2,0),:(2,0),F F P -点 在曲线C 上. (Ⅰ)求双曲线C 的方程; (Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF

的面积为求直线l 的方程

解:(Ⅰ)依题意,由a 2

+b 2

=4,得双曲线方程为142

222=--a y a x (0<a 2

<4),将点(3,7)代入上式,得

147922=--a a .解得a 2=18(舍去)或a 2

=2,故所求双曲线方程为.12

222=-y x (Ⅱ)解:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,

得(1-k 2)x 2

-4kx -6=0.∵直线I 与双曲线C 相交于不同的两点E 、F ,

∴???-±≠???

???-?+-=?≠-,33,10)1(64)4(,

012

22

<<,>k k k k k ∴k ∈(-1,3-)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得x 1+x 2=

,16

,142

2

12k x x k k -=-于是 |EF |=2212221221))(1()()(x x k y y x x -+=

-+-

=|

1|32214)(12

2

2

212

212

k k k x x x x k

--+=-++??

而原点O 到直线l 的距离d =

2

12k

+,

∴S ΔOEF =.|

1|322|1|322112

21||212

2

222

2

k k k k k k EF d --=--++=??

?

? 若S ΔOEF =22,即,0222|

1|322242

2

=--?=--k k k k 解得k =±2, 满足②.故满足条件的直线l 有两条,其方程分别为y =22+x 和.22+-=x y

考点五、圆锥曲线综合应用

平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系问题是常考常新、经久不衰的一个考查重点,另外,圆锥曲

线中参数的取值范围问题、最值问题、定值问题、对称问题等综合性问题也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何问题的难度有所降低,但仍是一个综合性较强的问题,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.

圆锥曲线的有关最值问题:圆锥曲线中的有关最值问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线的有关范围问题:设法得到不等式,通过解不等式求出范围,即:“求范围,找不等式”。或者表示为另一个变量的函数,利用求函数的值域求出范围;

圆锥曲线中的存在性问题:存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立.

例5、已知椭圆C 的中心在原点,对称轴为坐标轴,且过)2

2

1(10,),,(N M (Ⅰ)求椭圆C 的方程,(Ⅱ)直线

0133:=--y x l 交椭圆C 与A 、B

=+

【解析】设椭圆C 的方程为122=+by ax 由椭圆C 过点)2

2

1(10,),,(N M 得:

?????=+121b b a 解得?????==1

21b a ∴椭圆C 的方程为122

2=+y x (Ⅱ)设),(),,(2211y x B y x A ,由?????=+=--12

1332

2y x y x 消去y 整理得01612272

=--x x ,由韦达定理得,则??

???

-

==+2716

9

42121x x x x

由-=+两边平方整理可得0MA MB ?= 只需证明0MA MB ?=, 1122,1,1MA MB x y x y ?=-?-()()

)1)(1(2121--+=y y x x 1)(212121++++=y y y y x x 而9

1

)(31)31)(31(21212121++-=--=x x x x x x y y

3

2

3131212121-+=-+-=+x x x x y y

∴1212121212416()12()39

MA MB x x y y y y x x x x ?=+-++=-++

=0916

2716-2732-=+ 故MA MB MA MB +=-恒成立 三、课后巩固练习:

1.已知P 是直线0843=++y x 上的动点,PA PB 、是圆01222

2

=+--+y x y x 的切线,A B 、是切点,

C 是圆心,那么四边形PACB 面积的最小值是( ). A .2 B .2 C .22

D .4

2.设F 为抛物线24y x =的焦点,A ,B ,C 为该抛物线上三点,若0FA FB FC ++=,则||||||F A F B F C ++=

( )

A .9

B .6

C .4

D .3

3.已知抛物线方程为24y x =,直线l 的方程为40x y -+=,在抛物线上有一动点P 到y 轴的距离为1d ,P

到直线l 的距离为2d ,则12d d +的最小值为( )A 2+

B .

1+

C 2-

D 1-

4、在直角坐标平面中,△ABC 的两个顶点为 A (0,-1),B (0, 1)平面内两点G 、M 同时满足①0GA GB GC ++= , ②||MA = ||MB = ||MC ③GM ∥AB

(1)求顶点C 的轨迹E 的方程

(2)设P 、Q 、R 、N 都在曲线E 上 ,定点F 的坐标为0) ,已知PF ∥FQ , RF ∥FN 且PF ·RF = 0.求四边形PRQN 面积S 的最大值和最小值.

解析:本例(1)要熟悉用向量的方式表达点特征;(2)要把握好直线与椭圆的位置关系,弦长公式,灵活的运算技巧是解决好本题的关键。 答案:(1)设C ( x , y ), 2GA GB GO +=,由①知2GC GO =-,∴G 为

△ABC 的重心 ,

∴ G(3

x ,3

y ) 由②知M 是△ABC 的外心,∴M 在x 轴上

由③知M (

3

x

,0),

由|| ||MC MA = =

化简整理得:2

213x y +=(x ≠0)。

(2)F 0 )恰为2

213

x y +=的右焦点

设PQ 的斜率为k ≠0且k ≠±

2

,则直线PQ 的方程为y = k ( x

由22222

2

((31)630330

y k x k x x k x y ?=??+-+-=?+-=??

设P(x 1 , y 1) ,Q (x 2 ,y 2 ) 则x 1 + x 21·x 2 =226331k k -+

则 ·

RN ⊥PQ,把k 换成1k -得

| RN | = 22

1)

3k k ++

∴S =

1

2

| PQ | · | RN | =2222

6(1)(31)(3)k k k +++ =228

213()10k k

-++) 22183()102k k S

∴++=- 221k k +

≥2 , 8

2S

∴-≥16

3

2

∴≤ S < 2 , (当 k = ±1时取等号) 又当k 不存在或k = 0时S = 2 综上可得

3

2

≤ S ≤ 2 ∴S max = 2 , S min =

32

点评:本题考查了向量的有关知识,椭圆与直线的基本关系,二次方程的根与系数的关系及不等式,转化的基本思想方法以及运用综合知识解决问题的能力。

5、已知椭圆22

221(0,0)x y a b a b

+=>>的离心率为12,两焦点之间的距离为4。 (I )求椭圆的标准方程;(II )

过椭圆的右顶点作直线交抛物线24y x =于A 、B 两点,(1)求证:OA ⊥OB ;(2)设OA 、OB 分别与椭圆相交于点D 、E ,过原点O 作直线DE 的垂线OM ,垂足为M ,证明|OM|为定值。

【解析】(Ⅰ)由?????==,2

1,

42a c c 得42a c =??=?,故122

=b .所以,所求椭圆的标准方程为

2211612x

y +=…4分 (2)设()33,y x D 、

()44,y x E ,直线DE 的方程为λ+=ty x ,代入22

11612

x y +

=,得 (

)

04836432

22

=-+++λλy t y t .于是4

348

3,43622432

43+-=+-=+t y y t t y y λλ. 从而()()4

34842

2

24343+-=++=t t ty ty x x λλλOE OD ⊥ ,04343=+∴y y x x .代入,整理得()

148722+=t λ.∴原点到直线DE 的距离7

21

412

=

+=

t d λ

为定值……(13分) 6、已知椭圆:C 22221(0)x y a b a b +=>>

3

(Ⅰ)求椭圆C 的方程;(Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点.①若线段AB 中点的横坐标为12-

,求斜率k 的值;②已知点7

(,0)3

M -,求证:MA MB ?为定值. 【解析】(Ⅰ)因为22221(0)x y a b a b +=>>满足222

a b c =+,

c a =……2分

1223

b c ??=

。解得22

55,3a b ==,则椭圆方程为22153

x y +=……4分 (Ⅱ)(1)将(1)y k x =+代入

22

155

3

x y +=中得2222(13)6350k x k x k +++-=……6分 4

2

2

2

364(31)(35)48200k k k k ?=-+-=+>,2

122

631

k x x k +=-+……7分 因为AB 中点的横坐标为12-,所以2261312k k -=-+

,解得3

k =±…………9分

(2)由(1)知2122631k x x k +=-+,2122

35

31

k x x k -=+ 所以112212127777

(,)(,)()()3333

MA MB x y x y x x y y ?=+

+=+++ ……………11分 2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39

k x x k x x k =++++++…12分

222

2222357649(1)()()313319k k k k k k k -=+++-++++422

2

316549319

k k k k ---=+++49=…14分

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高三数学复习专题之一解析几何

高三数学复习专题之一 ----解析几何高考题目的分析 解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征: (1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位 置关系等题目,多以选择题、填空题形式出现; (2)中心对称与轴对称、充要条件多为基本题目; (3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出 现; (4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识 特别是圆的知识,便于简化运算和求解; ②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用; ③要注意圆锥曲线定义的活用. 另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系. . , ),0,1()3 ,)2 )1 , ,)0,(1:.122 222 22中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值; 的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C a e b b ax y C e C PQF F Q P l e b a b y a x C +=? ?>=-

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高三总复习解析几何专题(师

解析几何专题二 1、已知点P (3,-4)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)渐近线上的一点,E ,F 是左、右两个焦点,若EP →·FP → =0, 则双曲线方程为( ) A.x 23-y 24=1 B.x 24-y 23=1 C.x 29-y 216=1 D.x 216-y 2 9 =1 2、已知焦点在x 轴上的双曲线的渐近线方程是x y 4±=,则该双曲线的离心率为( 17 ). 【解析】因为焦点在x 轴上的双曲线的渐近线方程是x y 4±=,所以17,17,42 2===e a c a b 3、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲 线的离心率为 2 5 1+ . 【解析】因为直线FB 与该双曲线的一条渐近线垂直,所以 2 1 5,1)(+=-=-?e c b a b 4、若双曲线)0(12222>>=-b a b y a x 的左右焦点分别为1F 、2F ,线段21F F 被抛物线2 2y bx = 的焦点分成5 :7的两段,则此双曲线的离心率为( C ) A . 9 8 B . 637 C . 32 4 D . 31010 【解析】因为线段21F F 被抛物线2 2y bx = 的焦点分成5:7的两段,所以 4 23,4036,436,622222====e c a c b c b 5、 已知F 是椭圆2222:1x y C a b += (0)a b >>的右焦点,点P 在椭圆C 上,线段PF 与圆22 214 x y b +=相切 于点Q ,且→ → =QF PQ ,则椭圆C 的离心率为 3 5 . 提示:设左焦点E ,连接PE ,由圆的切线可得OQ ⊥PF ,而OQ ∥PF ,故PF PE ⊥,2 2 2 4)2(c b a b =-+∴,

2020高考专题复习解析几何的万能套路

高考解析几何的万能解题套路 一个套路,几乎解决所有高考解析几何问题! 在教学中,一直有一个难以解决的悖论:“题海战术”广遭诟病,但似乎要取得好成绩,除了“题海战术”又别无良策。这是因为,我们每次考试面对的题目都不可能一样,大家心照不宣的想法是——通过平时的“题海战术”,也许可以穷尽问题的各种可能。 显然如果我们要穷尽问题的各种可能,是不现实的。为了让学生能真正从题海战术中走出来,事实上,我们可以将以往大量的、零碎的、彼此之间也看似没有多少联系性的某些数学问题,却能通过高度一致的方法获得解决,本文以解析几何为例的一套与高考解析几何演绎体系相对应的“万能解题套路”,几乎把近几年贵州省高考解析几何问题基本上统一了起来!希望对同学有所启发。 一、解析几何万能解题套路 解析几何是法国数学家笛卡儿(1596年~1650年)创立的。笛卡儿在总结前人经验的基础上,创造性地提出了一个划时代的设想——把代数的演绎方法引入几何学,用代数方法来解决几何问题。正是在这一设想的指引下,笛卡儿创建了解析几何的演绎体系。 以高考解析几何为例: 1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题; 2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。 有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作: 1、几何问题代数化。 2、用代数规则对代数化后的问题进行处理。 至此,整理了近几年来贵州省高考解析几何试题后总结出一套统一的解题套路: 二、高考解析几何解题套路及各步骤操作规则 步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来; 口诀:见点化点、见直线化直线、见曲线化曲线。 1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化; 2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化; 3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化; 步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。 口诀:点代入直线、点代入曲线。 1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

高三数学一轮复习解析几何(解析版)

数 学 H 单元 解析几何 H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 6.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D. 20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-1 3, 故l 的方程为y =-13x +8 3 . 又|OM |=|OP |=2 2,O 到直线l 的距离为410 5 , 故|PM |=4105,所以△POM 的面积为16 5 . 21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1, F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为2 2 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2 =a 2-b 2.

高三高考文科数学复习专题五解析几何

平面解析几何 用代数方法研究几何图形的几何性质,体现着数形结合的重要数学思想.直线与圆的方程、圆锥曲线与方程是历年高考的必考内容,题量一般为一道解答题和两道填空题.江苏高考对双曲线的定义、几何图形、标准方程及简单几何性质由原来的理解降为了解,圆锥曲线突出了直线与椭圆(理科有与抛物线)的位置关系,淡化了直线与双曲线的位置关系.直线与圆锥曲线的有关问题始终是命题的热点内容之一,必考一道解答题.直线与圆锥曲线所涉及的知识点较多,对解题能力的考查层次要求较高,所研究的问题是直线与圆锥曲线的位置关系、定点(定值)、最值以及参数的取值范围等. 第一课时 直线与圆 教学目标:在2013年的备考中,需要关注: (1)直线的基本概念,直线的方程,两直线的位置关系及点到直线的距离等基础知识; (2)活用圆的两类方程、直线与圆的位置关系及圆与圆的位置关系; (3)对数形结合的思想、转化与化归的思想熟练掌握。 一、基础回顾: 1、若直线(a 2+2a )x -y +1=0的倾斜角为钝角,则实数a 的取值范围是________. 2、经过2 2 2410x y x y +--+=的圆心,且倾斜角为 6 π 的直线方程为. 3、直线ax +2y +6=0与直线x +(a -1)y +(a 2-1)=0平行,则a =________. 4、直线20x -=与圆2 2 4x y +=相交于,A B 两点,则弦AB 的长度等于. 5、已知圆:C ()()22 212x y -++=,过原点的直线l 与圆C 相切,则所有切线的斜率之和为. 6、过点()0,6A 且与圆2 2:10100C x y x y +++=切于原点的圆的方程为. 二、典型问题 基本题型一:直线的概念、方程及位置问题 例1 过点P (3,2)作直线l ,交直线y =2x 于点Q ,交x 轴正半轴于点R ,当△QOR 面积最小时,求直线l 的方程. 解析: 方法一:设点Q 的坐标为(a,2a ),点R 的坐标为(x,0),其中x >0. 当a =3时,△QOR 的面积S =9;

高三数学 平面解析几何

平面解析几何(附高考预测) 一、本章知识结构: 二、重点知识回顾 1.直线 (1).直线的倾斜角和斜率 直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α; 若A(x 1,y 1),B(x 2,y 2),则1 212x x y y K AB --= 。 (2) .直线的方程

a.点斜式:)(11x x k y y -=-; b.斜截式:b kx y +=; c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b y a x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系 两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有 且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。 若直线1l 、2l 的斜率分别为1k 、2k ,则 1l ∥2l ?1k =2k ,1l ⊥2l ?1k ·2k =-1。 (4)点、直线之间的距离 点A (x 0,y 0)到直线0=++C By Ax 的距离为:d= 2200||B A C By Ax +++。 两点之间的距离:|AB|=212212)()y y x x -+-( 2. 圆 (1)圆方程的三种形式 标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中?? ? ??--22E D ,为圆心F E D 42 122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一 个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程. 参数式:以原点为圆心、 r 为半径的圆的参数方程是???==θθsin ,cos r y r x (其中θ为参数).

高考数学总复习专题七解析几何7.3解析几何压轴题精选刷题练理

7.3 解析几何(压轴题) 命题角度1曲线与轨迹问题  高考真题体验·对方向 1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足. (1)求点P的轨迹方程; (2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0). 由得x0=x,y0=y. 因为M(x0,y0)在C上,所以=1. 因此点P的轨迹方程为x2+y2=2. F(-1,0).设Q(-3,t),P(m,n), 则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n), =(-3-m,t-n).

由=1得-3m-m2+tn-n2=1. 又由(1)知m2+n2=2,故3+3m-tn=0. 所以=0,即. 又过点P存在唯一直线垂直于OQ, 所以过点P且垂直于OQ的直线l过C的左焦点F. 2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C 于A,B两点,交C的准线于P,Q两点. (1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ; (2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. F. 设l1:y=a,l2:y=b,则ab≠0, 且A,B,P,Q,R. 记过A,B两点的直线为l, 则l的方程为2x-(a+b)y+ab=0. 由于F在线段AB上,故1+ab=0. 记AR的斜率为k1,FQ的斜率为k2, 则k1==-b=k2. 所以AR∥FQ. l与x轴的交点为D(x1,0), 则S△ABF=|b-a||FD|=|b-a|,S△PQF=.

高考数学专题复习解析几何

高考数学专题复习解析 几何 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

专题复习讲座(四)--------解析几何 俗话说:“知己知彼,才能百战百胜”,这一策略,同样可以用于高考复习之中。我们不仅要不断研究教学大纲、考试说明和教材,而且还必须研究历年高考试题,从中寻找规律,这样才有可能以不变应万变,才有可能在高考中取得优异成绩。纵观近几年的高考解析几何试题,可以发现有这样的规律:小题灵活,大题稳定。 一、解决解析几何问题的几条原则 1.重视“数形结合”的数学思想 2.注重平面几何的知识的应用 3.突出圆锥曲线定义的作用 二、解析几何中的一类重要问题 直线有圆锥曲线的位置关系问题是解析几何中的一类重要问题,它是我 们解决解析几何其他问题的基础。我们必须熟悉直线与三种圆锥曲线的位置关系,熟练掌握直线和圆锥曲线相交所所产生的有关弦长、弦的中点以及垂直等基本问题的基本解法。特别要重视判别式的作用,力争准确地解决问题。 弦长问题:|AB|=]4))[(k 1(212212x x x x -++。 弦的中点问题:中点坐标公式-----注意应用判别式。 三、高考解析几何解答题的类型与解决策略 Ⅰ.求曲线的方程 1.曲线的形状已知 这类问题一般可用待定系数法解决。 例1 :已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴 上。若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。 分析:曲线的形状已知,可以用待定系数法。 设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0). 设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:

高三文科数学解析几何专题(附答案)

2008届高三文科数学第二轮复习资料 ——《解析几何》专题 1.已知动圆过定点()1,0,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程; (2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ?=?若存在,求出直线l 的方程;若不存在,说明理由. 2.如图,设1F 、2F 分别为椭圆C :22 221x y a b += (0a b >>)的左、右焦点. (Ⅰ)设椭圆C 上的点3(1,)2 A 到F 1、F 2两点距离之和等于4,写出椭圆C 的方程和离心率; (Ⅱ)设点K 是(Ⅰ)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 3.已知圆C: x 2+y 2-2x+4y-4=0,是否存在斜率为1的 直线L,使以L 被圆C 截得弦AB 为直径的圆 经过原点?若存在,写出直线的方程;若不存在,说 明理由 4.已知圆C :224x y +=. (1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+, 求动点Q 的轨迹方程,并说明此轨迹是什么曲线.

5.如图,已知圆A的半径是2,圆外一定点N与圆A上的点的最短距离为6,过动点P作A的切线PM (M为切点),连结PN使得PM: ,试建立适当 的坐标系,求动点P的轨迹 6.已知三点P(5,2)、 1 F(-6,0)、2F(6,0). (Ⅰ)求以 1 F、2F为焦点且过点P的椭圆的标准方程; (Ⅱ)设点P、 1 F、2F关于直线y=x的对称点分别为P'、'1F、'2F,求以'1F、'2F为焦点且过点P'的 双曲线的标准方程. 7.某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B型卡车,有10名驾驶员,每辆卡车每天往返次数为A型卡车4次,B型卡车3次,每辆卡车每天往返的成本费用为A型卡车320元,B型卡车504元,请你给该公司调配车辆,使公司所花的成本费用最低.

高三数学解析几何解题技巧

高三数学解析几何解题技巧 解析几何是现在高考中区分中上层学生数学成绩的一个关键考点。能顺利解答解析几何题是数学分数跃上新台阶的重要条件。在解决此类问题时的要点主要有:用运动观点看待条件;挖掘出其中隐含的几何量之间关系;用代数语言(通常即是方程或不等式)翻译几何量之间关系;注意根据题设条件分类讨论。其中对能力的要求主要体现在如何选择变量和合理的运算路径上。三种运算:坐标、向量和运用几何性质推理,如何选择?依据的不是必然的逻辑推理,而是根据经验获得的合情推理。 解析几何的学科特征是“算”,它的第一步是把几何条件转化为代数语言,转换的桥梁大致有三类:①与线段长度有关,用距离公式;②与线段比有关的用向量、坐标之间关系转换;③与角度有关用斜率或用向量夹角公式处理。一经转化,解析几何问题就转化为方程或函数问题。如讨论一元二次方程根的情况,解方程组,求代数式的最大值或最小值等等。 常见翻译方法: 距离问题:距离公式212212)()(||y y x x AB -+-= 几个特殊转换技巧: ①若一条直线上有若干点,如D C B A ,,,等,它们之间距离存在比例关系,如满足条件,||||||2BC CD AB =?则可根据它们分别在两坐标轴之间距离关系,利用平行直线分线段成比例之关系转换为坐标关系:,)(||||2C B D C B A x x x x x x -=-?-当然也可转化为向量关系再转换为坐标关系等。 ②利用向量求距离。 ③角度问题:若条件表述为所目标角A 是钝角、直角或锐角,则用向量转化为简洁,即AC AB ?的值分别是小于零、等于零或大于零。一般角度问题转化为向量夹角公式即:| |||cos b a ?= θ④面积问题:主要是三角形面积公式:在OAB ?中(O 是原点) )2 ())()((21sin 21c b a p c p b p a p p ah C ab S O ++=---=== ||2 1A B B A y x y x -== ⑤特殊地,若三角形中有某条线段是定值,则可把三角形分解为两个三角形来分别求面积。如椭圆12 2=+b y a x 的左右焦点分别为,,21F F 过左焦点直线交椭圆于),,(11y x A ),,(22y x B 则|||)||(|||2 121212121212y y c y y F F S S S F BF F AF ABF -=+=+=??? ⑥三点共线问题:一般来说,可直接写出过其中两点的直线方程,再把另一点的坐标代入即可,但在具体问题中,用两点之间斜率相等(有时是用向量共线,可不用讨论斜率存在情况)更合适。 最后,针对广东高考命题特点,请同学们记住一句话:心中有数,不如心中有图,心中有图,不如会用图。 【例题训练】 1.(本小题满分14分)

高三解析几何专题复习

高三解析几何专题复习 瑞安中学吴直爽 平面解析几何的基本思想是用坐标方法研究几何图形性质。通过合理地建立坐标系,把点和坐标、曲线和方程等联系起来,达到了形和数的结合;同时平面向量具有代数与几何形式的双重身份,它融数、形于一体,已成为中学数学知识的一个重要交汇点,平面向量与解几交汇自然贴身,一脉相承,是新课程高考命题的必然趋势。 一、明确考试要求,把握试题特点。 1、高考要求(略) 2、试题特点: 综观近几年的新课程卷,试卷中解几分值占20%,选择题、填空题2~3题,主要考查圆锥曲线的标准方程及简单几何性质等三基内容,解答题则综合考查学生的“四大能力”,题型围绕解几的两大基本问题——求轨迹方程和研究曲线性质进行命制,或两者综合考查只是常把求轨迹隐藏于性质研究中,如全国97年、20XX年、20XX年等。近几年还融入向量刻画的背景,其实质是对直线与圆锥曲线的性质作进一步的深入探究,是代数、向量、三角、几何知识的综合应用。试题对解几内容的考查主要体现了函数与方程,等价转化、数形结合等重要数学思想。分析试题总特点“重基础、重素养、重能力”。 二、复习的想法 1、从思想方法高度重新认识基本概念、公式。 数学概念是数学知识的主体,是揭示数学规律的基本单元,在解几教学与复习中,必须透彻理解概念,把握概念、公式所反映的数学本质,这是掌握基本知识、技能、思想方法的前提。例如解几中两点间距离、点线距离、三点共钱、四点共圆、直线平行、垂直、直线的斜率、直线的夹角、线段的比、图形的轴对称性,中心对称性等等问题都会是解几中要研究的对象,对此我们首先必须深刻体会教材中是如何用代数形式来实现这些重要几何概念、几何位置关系的。在今后综合问题中遇见这些几何表述时是否能熟练转化为代数形式来处理。再如解几中还常会遇见两点A、B关于直线L对称和直线与圆锥曲线位置的判定等几何问题。这些几何问题放在坐标系中是如何通过曲线与方程概念得到转化的。用解几的基本思想高度认识问题,可以大大提高分析转化问题的能力。如: 判别式位置 直线(几何)转化直线方程消y px2求根公式交点 圆锥曲线曲线方程韦达定理弦长、弦中点等 点A、B关于直线L对称(几何)转化(代数)AB中点坐标满足直线L的方程 K AB·K L=-1 另外坐标系中的几何对象、点的坐标、线段的长、直线的斜率、三点共线、直线的平行与垂直、直线的夹角、线段的比等,转化为向量形式又各是如何刻划,也需熟悉并进行一一总结。因向量方法可以其独特的解题方式给解题提供一种新的思维视角,使相应的数学工具和教学语言更加丰富、应用形式更加灵活、多样,与解几融合将能考查学生多方面的能力与水平。 2、重视曲线与方程的复习 围绕解几两大基本问题,通过一些典型问题的剖析、逐渐形成一些方法系统,同时,能熟悉这些方法的应用情境,使学生对常见的基础问题始终“有规可循、有法可依”这是学生突破解几问题的关键,不管问题背景如何综合新颖、设问如何巧妙,用解几基本思想方法,进行联想总是,可以实现有效转化的。 (一)求曲线的方程:

高中数学解析几何专题

高中解析几何专题(精编版) 1、 (天津文)设椭圆22 221(0)x y a b a b +=>>的左、右焦点分别为F 1,F 2。点(,) P a b 满足212||||.PF F F = (Ⅰ)求椭圆的离心率e ; (Ⅱ)设直线PF 2与椭圆相交于A,B 两点,若直线PF 2与 圆 22(1)(16x y ++-=相交于M,N 两点,且5 ||||8 MN AB =,求椭圆的方 程。 【解析】本小题主要考查椭圆的标准方程与几何性质、直线的方程、两点间的距 离公式、点到直线的距离公式、直线与圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力,满分13分。 (Ⅰ)解:设12(,0),(,0)(0)F c F c c ->,因为212||||PF F F =, 2c =,整理得2 210,1c c c a a a ?? +-==- ???得(舍) 或11 ,.22 c e a ==所以 (Ⅱ)解:由(Ⅰ) 知2,a c b ==,可得椭圆方程为2223412x y c +=,直线FF 2 的方程为).y x c =- A,B 两点的坐标满足方程 组2223412, ). x y c y x c ?+=??=-??消去y 并整理,得 2580x cx -=。解得1280,5x x c ==, 得方程组的解21128,0,5,. x c x y y ?=?=??? ?? =???=?? 不妨设8,55A c c ?? ? ??? , (0,)B , 所以16||.5AB c == 于就是5 ||||2.8 MN AB c == 圆心(-到直线PF 2 的距离|||2| .22 c d += = 因为2 2 2 ||42MN d ??+= ??? ,所以223(2)16.4c c ++= 整理得2712520c c +-=,得26 7 c =-(舍),或 2.c =

高三数学专题复习之解析几何

高三数学专题复习之解析几何 浙江省龙游中学 叶秋平 程伟斌 解析几何部分是历年高考的热点与重点.从近几年各地的高考试题分析,解析几何题型一般是一道解答题,二到三道选择题或填空题,分值在26分左右.选择题和填空题考查直线、圆、圆锥曲线的基础知识,解答题重点考查圆锥曲线中的重点知识,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平面几何知识和向量方法.下面将在重点分析20XX 年上海与新课标地区高考试题以及20XX 年浙江各地市联考的基础上对20XX 年高三第二轮专题复习解析几何部分谈谈粗浅的认识与看法.限于水平与能力,若有不当之处,敬请各位专家、同行批评指正! 一、20XX 年上海及新课标地区考点分布统计表: 三、考点解析 (一)、直线与圆部分 对直线与圆这部分内容的考查有一个明显趋势:直线与圆的问题常常与其他知识综合考查,如与函数、不等式、三角、导数、概率、平面几何等知识交汇,突出知识间的交汇与融合,突出能力考查.而结合选修4-4《坐标系与参数方程》考查直线与圆的位置关系将成为一个新的亮点. 1.考查直线与圆的方程的基本概念,如斜率与倾斜角、距离公式、直线方程、对称问题、轨迹问题、直线与圆位置关系判断等等.如: 例1 (20XX 年广东卷理科第11题)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂 直的直线方程是 . 例2 (20XX 年山东卷理科第11题)已知圆的方程为22680x y x y +--=.设该圆过点(3,5) 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 (A )106 (B )206 (C )306 (D )406 例 3 (20XX 年广东卷理科第13题)已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,π4cos 002ρθρθ?? =< ??? ,≥≤,则曲线1C 与2C 交点的极坐标为 . 2.线性规划问题 随着高考对线性规划考查的深入和细化,线性规划问题越来越脱离其原貌,逐渐呈现出命题形式多样化、手法新颖化、实际背景生活化的趋势.常见类型有:

浙江省高三数学专题复习 回扣六 解析几何 理

回扣六 解析几何 陷阱盘点1 忽视倾斜角、斜率概念及其关系致误 不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错. [回扣问题1]直线x cos θ+3y -2=0的倾斜角的范围是________. 陷阱盘点2 忽视直线方程的使用条件致误 求直线方程时,易忽视方程形式的限制条件致误. (1)解决直线的截距问题时,忽视截距为“0”的情形. (2)点斜式、斜截式方程的盲目使用,忽视斜率不存在的情形. [回扣问题2]已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. 陷阱盘点3 判断两直线位置关系时,忽视特殊情况致误 讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解.如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0,另外解析几何中两条直线的位置关系,不要遗漏两条直线可能重合的情形. [回扣问题3]“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分又不必要条件 陷阱盘点4 忽视公式d =|C 1-C 2|A 2+B 2 使用条件致误

求两条平行线之间的距离时,易忽视两直线x ,y 的系数相等的条件,而直接代入公式d =|C 1-C 2|A 2+B 2 导致错误. [回扣问题4]直线3x +4y +5=0与6x +8y -7=0的距离为________. 陷阱盘点5 两圆相切,易误以为两圆外切,忽视两圆内切的情形 [回扣问题5]双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆的位置关系为________. 陷阱盘点6 混淆椭圆、双曲线中a ,b ,c 关系致误 易混淆椭圆的标准方程与双曲线的标准方程,尤其是方程中a ,b ,c 三者之间的关系,导致计算错误. [回扣问题6]若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 2 9 =1的( ) A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等 陷阱盘点7 忽视圆锥曲线定义中的条件致误 利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支. [回扣问题7]已知平面内两定点A (0,1),B (0,-1),动点M 到两定点A 、B 的距离之和为4,则动点M 的轨迹方程是________.

相关主题
文本预览
相关文档 最新文档