当前位置:文档之家› 燃气管道应力计算方法与应用

燃气管道应力计算方法与应用

燃气管道应力计算方法与应用
燃气管道应力计算方法与应用

燃气管道应力计算方法与应用

【摘要】随着时代的进步,社会的发展,人们的生活水平越来越高,我国社会经济的发展也越来越迅猛,而值得注意的是,我国人民的生活起居以及经济发展都离不开燃气事业的发展,改革开放以来,我国政府一直非常重视燃气事业的发展,并且投资了大量的人力物力来支持和推动我国燃气管道事业的发展,出台了一系列有效政策推动燃气管道事业的发展,当然,我国燃气事业也一直在突飞猛进的发展着,但是燃气事业的发展会遇到很多难题,其中最大的一个难题之一就是燃气管道应力计算的方法与应用,燃气管道应力计算方法与应用对于燃气管道的发展有着非常重要的作用,但是其中的这个难题一直以来都让我国各界相关人士头疼,他们一直潜心研究能够有效进行燃气管道应力计算的方法和应用。本文就燃气管道应力计算的方法与应用中存在的问题进行了简要分析,并且具体分析了燃气管道应力计算方法与应用过程,希望对我国加强燃气管道应力计算与应用,加强燃气管道事业的发展能够有所帮助。

【关键词】燃气管道应力计算方法与应用

近几年,我国燃气事业的发展蒸蒸日上,燃气管道应力计算方法与应用成了燃气事业发展的关键,在燃气管道设计过程中,需要根据具体情况对燃气管道进行应力分析和计算,进而采取行之有效的补偿措施,以确保输配系统经济、安全、可靠运行。我们可以根据燃气管道应力计算采用应力分类法:分别是管道由内压、持续外载引起的一次应力验算采用弹性分析和极限分析;还有就是管道由于热胀冷缩,及其他位移受约束产生的二次应力和管件上峰值应力采用满足必要疲劳次数的许用应力范围进行验算。

1燃气管道应力计算与应用中存在的问题

1.1没有周密的前期准备工作

燃气管道应力计算和应用之前需要非常严密的准备工作,首先,应力计算和应用的材料用具都要经过严格的审查,其次计算和应用计划也要经过严格的审核,因为计算方案贯穿整个计算和应用工程。最后,在计算和应用之前,各项项目都要经过严格精密的测量,以加强工程计划的实施。但是有些施工单位在燃气管道穿越的施工过程中,却不重视对计算方案的审核,我们都清楚的知道,一个计算方案对燃气管道应力计算和应用的重要性,应力计算和应用的过程都得严格按照计算方案的要求来进行,一旦燃气管道应力计算和应用脱离计算应用方案,应力计算和应用肯定会有所误差,而且有时由于应力计算和应用误差过大,还有可能造成返工的情况,这样就得不偿失了,而且严重的损失不是谁能够弥补的。当然,也有很多单位在计算应用之前不能够做到严格审查应用材料和设备质量,导致应力计算应用的质量与预期有非常大的差异,而且由于测量仪器的问题,也导致测量工作出现误差,进而造成工程计算应用的失误。

1.2违反操作规程现象严重

城市燃气管道的主要附件

城市燃气管道的主要附件 为了保证燃气管网的安全运行,并考虑到检修、接线的需要,在管道的适当地点设置必要的附属设备。这些设备包括阀门、补偿器、排水器、放散管等。 阀门 阀门是用于启闭管道通路或调节管道介质流量的设备。因此要求阀门的机械强度高,转动部件灵活,密闭部件严密耐用,对输送介质的抗腐蚀性强,同时零部件的通用性好,安装前应做严密性试验,不渗漏为合格,不合格者不得安装。安装阀门时应注意的问题:1.方向性:一般阀门的阀体上有标志,箭头指向即介质的流向,必须特别注意,不得装反。因为有多种阀门要求介质单向流通,如安全阀、减压阀、止回阀等。截止阀为了便于开启和检修,也要求介质由上而下通过阀座。2.安装位置要从长期操作和维修着眼,尽可能方便操作维修,同时还要考虑到组装外形美观,阀门手轮不得向下,避免仰脸操作;落地阀门手轮向上,不得歪斜;在工艺允许的情况下,阀门手轮易位于齐胸高,以便于启阀;明杆闸阀不要安装在地下,以防腐蚀。有些阀门的安装位置有特殊要求,如减压阀要求直立地安装在水平管道上,不得倾斜。总之,要根据阀门工作原理确定其安装位置,否则阀门就不能有效的工作,或不起作用。3.其他应注意的问题:在施工中,对各种阀门还应核对规格型号、鉴定有无损坏,消除通口覆盖和阀内杂物,检验密封程度;脆性材料(如铸铁)制作的阀门,不得受重物的撞击,大型阀门起吊,绳子不能栓吊在手轮和阀杆上;安装螺纹阀门时,不要把用作填料的麻丝挤到阀门里面;安装旋塞时注意清除阀门包装物和污物;安装法兰阀门时,法兰之间端面要平行,不得使用双垫,紧固螺栓时要对称进行,用力均匀。 补偿器 补偿器作为消除管段胀所应力的设备,常用于架空管道和需要进行蒸汽吹扫的管道上。补偿器常安装在阀门的下侧(按气流方向),利用其伸缩性能,方便阀门的拆卸和检修。在埋地燃气管道上,多用钢制波形补偿器,其补偿量约10mm左右。为防止其中存水锈蚀,由套

应力-应变曲线

应力-应变曲线(stress-strain curves) 根据圆柱试件静力拉伸试验所得拉伸图(图a),对曲线上各对应点用试件原始尺寸除拉伸力与绝对伸长所得出的应力与延伸率的关系曲线(图6)。应力一应变曲线是金属塑性加工工作中最重要的参考资料之一。 应力及应变值按下式计算:

式中σ i 表示拉伸图上任意点的应力值,δ i 为i点的延伸率,P i 及Δl i 为该 点的拉力与绝对伸长值,F 0及l 为试件的断面积和计算长度。 试件受拉伸时,先产生弹性变形,这时应力应变成比例,当出现二者不能保 持线性关系的点时,表示材料已屈服而将发生塑性变形,这时的应力定义为屈服应力或流变应力,用σ s 表示,其求法见屈服点。 拉伸时当试件计算长度上的均匀变形阶段结束而产生细颈时,变形将集中在 细颈部分。出现细颈前材料所能承受的应力名为强度极限或抗拉强度,用σ b 表示 σ b =P max /F 式中P max 为拉伸图上所记录的最大载荷值。 试件出现细颈后很快即断裂,断裂应力σ f σ f =P f /T f 式中P f 是断裂时的拉力,F f 是断口面积。 试件拉断时的延伸率δ f (%)或断面收缩率ψ(%)是表示材料可承受最大塑性变形能力的指标: 矾一牮×100(4)£fPf=盐≯×100(5)』’0式中厶和Ff是将断开的试件对合后测定的试件长度和断口处的面积。 抗拉强度靠及延伸率d或断面收缩率妒是材料性能的两个基本指标,在工程上有着广泛的应用。屈服应力民(或乱:)是金属塑性加工时变形体开始产生塑性变形所必需的最小应力,它是计算变形力的一个重要参数。 应力-应变曲线表征材料受外力作用时的行为。材料受力后即发生弹性变形,这时应力应变呈简单的线性关系,继续增加作用力至一定大小后材料将出现塑性变形,以后变形与应力的关系复杂,当塑性变形至一定程度以后,试件破断则变

应力应变计算方法

钢筋砼梁应力应变计算方法的探讨 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。 关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应力计算。 1.2.1受压区边缘砼应力

城市燃气管道事故预防详细版

文件编号:GD/FS-2878 (解决方案范本系列) 城市燃气管道事故预防详 细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

城市燃气管道事故预防详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 当前存在的主要问题 1 大量事故隐患未消除 目前存在的事故隐患,一是不符合设计要求或质量低劣的管子、管件、阀门等混入管道工程,埋下的先天隐患。二是安装质量监控不严,偷工减料等行为造成的管道泄露等问题严重。三是普遍存在在违章建筑和农贸市场等占压管道问题极易损坏燃气管道,引发泄漏、燃爆事故。四是市内违章施工、野蛮施工,挖断、压裂燃气管道现象时有发生,危害很大。五是管道设施不完善,安全保护装置不完备,有的压力容器未办理使用登记注册手续,使用不进行定期检验;有的安全阀、压力表等未按规定进行定期校验;有的

未安装自动报警等。六是热力、污水、自来水管道及电力、通讯电缆沟等与燃气管道争位置,从而影响了燃气管道的规定安全距离。七是对私接、偷用燃气的违法行为打击不力,严重影响着燃气管道的安全。 2 燃气企业安全管理松弛 燃气企业安全管理松弛的主要表现,一是思想认识不到位,摆不正生产与安全、安全与效益的关系,片面追求生产进度、规模、效益,安全投入严重不足。二是安全管理规章制度落实不好,违章指挥、违章作业现象不时发生,特别是巡回检查人员配备不足,巡检手段落后,安全管理责任制不落实,导致巡检质量不高,运行中的许多事故苗头得不到及时发现和消除。三是在工程建设中,对设计、施工质量检查、把关不严,留下了先天隐患。 3 设计环节的工作不够规范

最佳城市燃气管道安全距离

城市燃气管道安装的要求 1)高压和中压A燃气管道,应采用钢管;中压B和低压燃气管道,宜采用钢管或机械接口铸铁管。中、低压地下燃气管道采用聚乙稀管材时,应符合有关标准的规定。 2)地下燃气管道不得从建筑物和大型构筑物的下面穿越。地下燃气管道与建筑物,构筑物基础或相邻管道之间的水平和垂直净距,不应小于有关规定。 3)地下燃气管道埋设的最小覆土厚度(路面至管顶)应符合下列要求: 埋设在车行道下时,不得小于0.9m;埋设在非车行道下时,不得小于0.6m;埋设在庭院时,不得小于0.3m;埋设在水田下时,不得小于0.8m(当采取行之有效的防护措施后,上述规定均可适当降低)。 4)地下燃气管道不得在堆积易燃、易爆材料和具有腐蚀性液体的场地下面穿越,并不宜与其他管道或电缆同沟敷设。当需要同沟敷设时,必须采取防护措施。 5)地下燃气管道穿过排水管、热力管沟、联合地沟、隧道及其他各种用途沟槽时,应将燃气管道敷设于套管内。套管伸出构筑物外壁不应小于表1K417011—1中燃气管道与该构筑物的水平距离。套管两端的密封材料应采用柔性的防腐、防水材料密封。 6)燃气管道穿越铁路、高速公路、电车轨道和城镇主要干道时应符合下列要求: ①穿越铁路和高速公路的燃气管道,其外应加套管,并提高绝缘防腐等级。 ②穿越铁路的燃气管道的套管,应符合下列要求: 1.套管埋设的深度:铁路轨道至套管顶不应小于1.20m,并应符合铁路管理部门的要求; 2. 套管宜采用钢管或钢筋混凝土管; 3.套管内径应比燃气管道外径大100mm以上; 4. 套管两端与燃气管的间隙应采用柔性的防腐、防水材料密封,其一端应装设检漏管; 5.套管端部距路堤坡角外距离不应小于2.0m ③燃气管道穿越电车轨道和城镇主要干道时宜敷设在套管或按照《城镇燃气设计规范》(GB50028-93)的规定,高压燃气管道距建筑物的基础的距离分别为不小于4米(介质压力0.4至0.8Mpa)和不小于6米(介质压力0.8至1.6Mpa);

城镇燃气管道验收规范

城镇燃气管道验收规范 总则 1.0.1为了统一城镇燃气室内工程施工及验收标准。提高城镇燃气室内工程的施工质量,确保安全供气,制定本规范。 1.0.2本规范适用于新建、扩建、改建的城镇居民住宅、商业建筑、燃气锅炉房(不含锅炉本体)、实验室、使用城镇燃气的工业企业(不含燃气设备)等用户室内燃气管道和燃气设备的施工及验收。 本规范不适用于:燃气发电厂、燃气制气厂、燃气储备厂、燃气调压站、燃气加气站、液化石油气储存、灌瓶、气化、混气等厂站内的燃气管道的施工及验收。 1.0.3承担城镇燃气室内工程及与燃气工程配套的报警系统,防爆电匀系统,自动控制系统的施工单位必须具有国家相关行政管理部门批准或由其认可的资质和证书。从事施工的操作人员应经过培训,并持证上岗,焊接人员应持有上岗资格证。 1.0.4城镇燃气室内工程施工应按已审定的设计文件实施,当需要修改设计或材料代用时,应经原设计单位同意。 1.0.5 室内燃气管道所用的管材、管件、设备应符合国家现行标准的规定,并应有出厂合格证;燃具应采用符合国家现行标准并经国家主管部门认可的检测机构检测合格的产品。 1.0.6 室内燃气工程验收合格后,接通燃气应由燃气单位负责。 1.0.7 检验合格的燃气管道和设备超过六个月未通气使用时,应由当地燃气供应单位进行复验,复验合格后,方可通气使用。 1.0.8 城镇燃气室内工程的施工及验收除应符合本规范的规定外,尚应符合国家现行有关强制性标准的规定。 室内燃气管道安装 一般规定 2.1.1 用户室内燃气管道的最高压力和用气设备的燃气燃烧器采用的额定压力应符合现行国家标准《城镇燃气设计规范》的规定。 2.1.2 室内燃气管道采用的管道、管件、管道附件、阀门及其他材料应符合设计文件的规定,并应按国家现行标准在安装前进行检验,不合格者不得使用。 2.1.3 室内燃气管道安装前应对管道、管材、管道附件及阀门进行清扫,保证其内部清洁。 2.1.4 室内燃气管道安装前的土建工程,应能满足管道施工安装的要求。 燃气管道安装 2.2.1 燃气管道安装前应按设计施工图进行管道的预制和安装。 2.2.2 燃气管道使用的管道、管材、管道附件当设计文件无明确规定时,管径小于或等于,宜采用镀锌管或钢管;管径大于或使用压力超过,应符合本规范条的规定。钢管宜采用牌号为的管材。 2.2.3 燃气管道的切割应符合下列规定: .碳素钢管,镀锌钢管宜用钢锯或机械方法切割; .不锈钢管应采用机械或等离子方法切割;不锈钢管采用砂轮切割或修磨时应使用专用砂轮片;钢管可采用机械或手工方法切割; .管道切口质量应符合下列规定; )切口表面应平整,无裂纹、重皮、毛刺、凹凸、缩口、熔渣、氧化物、铁屑等; )切口端面倾斜偏差不应大于管道外径的,且不得超过3mm;凹凸误差不得超过1mm。2.2.4 燃气管道的弯管制作应符合国家现行标准《工业金属管道工程施工及验收规范》的规定。燃气管道的弯曲半径宜大于管道外径的倍。弯管截面最大外径与最小外径之差不得大于管道外径的。铜制弯管和不锈钢弯管制作应采用专用弯管设备。

城市燃气管道的安全管理(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 城市燃气管道的安全管理(新 版) Safety management is an important part of production management. Safety and production are in the implementation process

城市燃气管道的安全管理(新版) 近年来,因城市燃气管道管理不善造成燃气泄漏出现次生事故的情况时有发生。这些事故给人民群众的生命财产造成了巨大损失,也给社会的公共安全与稳定带来了极大的负面影响。城市燃气从业者需要对燃气的安全生产有清醒的认识,及时制定、调整安全生产管理模式,减少安全生产隐患。 一、燃气管道泄漏原因 埋地管道属隐蔽工程,随着时间的推移,管道老化及其他不可预见因素均可造成管输气体外漏情况。发生埋地管道外泄漏的原因主要有以下3个类型。 1、管道腐蚀泄漏 20世纪80年代至2000年属于管网主体工程大规模建设期,埋地管道主要采用钢管并进行管道外防腐,但埋地钢质燃气管道缺乏检测保养。经多年运行,其安全可靠性无法确定,髓年限的增加,

管道腐蚀穿孔的情况也随之增加,导致燃气泄漏。 2、管道受第三方破坏 许多城市燃气管网随着城市建设的发展,局部管道相对位置发生变化,如道路拓宽等原因使燃气管道置于车行道下面,极易造成管道受压损坏,发生燃气泄漏;管道周边施工屡有发生,施工单位不遵守燃气安全规定,违章作业经常会造成管道损坏。 3、燃气施工过程操作不当 施工过程与规范要求存在较大差距,如补偿器安装过程法兰螺栓受力不均匀,焊接过程中为加快焊口冷却采取冲水冷却方式等人为因素造成施工质量问题。 某燃气企业1990年度至2008年度发生的燃气管网事故统计分析表明,管道腐蚀泄漏因素占56%,第三方破坏因素占24%,操作不当因素占20%。因此,城市燃气供应企业应该建立相应的燃气安全事故防范体系。 二、建立腐蚀泄漏巡检体系 1、建立管道防腐层运行记录

钢筋混凝土梁的应力应变计算

钢筋砼梁应力应变计算方法的探讨 余海森 (江西省交通科研院南昌 330038) 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的 应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考 虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应

城镇燃气管道布置设计要素分析

城镇燃气管道布置设计要素 城镇燃气管道布线的依据 城镇燃气管道布线时,必须考虑到下列基本情况: ( l )城镇燃气门站、储配站的位置; ( 2 )管道中燃气的压力。高压燃气管道不宜进入城镇四级地区; ( 3 )城镇燃气各级调压站的位置; ( 4 )街道其他地下管道的密集程度与布置情况; ( 5 )街道交通量和路面结构情况,以及运输干线的分布情况; ( 6 )所输送燃气的含湿量,必要的管道坡度,街道地形变化情况; ( 7 )与该管道相连接的用户数量及用气量情况,该管道是主要管道还是次要管道; ( 8 )线路上所遇到的障碍物情况; ( 9 )土壤性质、腐蚀性能和冰冻线深度; ( 10 )该管道在施工、运行和万一发生故障时,对城镇交通和人民生活的影响。城镇燃气管道平面布置时需考虑因素 城镇燃气管道平面布置时,要考虑下列各点: ( l )要使主要燃气管道工作可靠,燃气应从管道的两个方向得到供应,为此,管道应尽可能逐步连成环形; ( 2 )次高压、中压管道最好不要沿车辆来往频繁的城镇主要交通干线敷设,否则对管道施工和检修造成困难,来往车辆也将使管道承受较大的动荷载。对于低压管道,有时在不可避免的情况下,征得有关方面同意后,可沿交通干线敷设;( 3 )燃气管道不得在堆积易燃、易爆材料和具有腐蚀性液体的场地下面通过。燃气管道不宜与给水管、热力管、雨水管、污水管、电力电缆、电信电缆等同沟敷设。在特殊情况下,当地沟内通风良好,且电缆系置于套管内时,可允许同沟敷设; ( 4 )燃气管道可以沿街道的一侧敷设,也可以双侧敷设。在有有轨电车通行的街道上,当街道宽度大于20m 或管道单位长度内所连接的用户分支管较多等情况下,经过技术经济比较,可以采用双侧敷设; ( 5 )燃气管道布线时,应与街道轴线或建筑物的前沿相平行,管道宜敷设在人行道或绿化地带内,并尽可能避免在高级路面的街道下敷设; ( 6 )燃气管道布线时应在门站、储配站、调压站进出口、分支管起点、主要河流、主要道路、铁路两侧设置阀门,次高压、中压管道上每2km 左右设分段阀门。高压燃气干管上,分段阀门最大间距为:以四级地区为主的管段不应大于8km ;以三级地区为主的管段不应大于13km ,以二级地区为主的管段不应大于24km;以一级地区为主的管段不应大于32km ( 7 )在空旷地带敷设燃气管道时,应考虑到城镇发展规划和未来的建筑物布置的情况; ( 8 )为了保证在施工和检修时互不影响,也为了避免由于漏出的燃气影响相邻管道的正常运行,甚至逸入建筑物内,地下各级压力燃气管道与建筑物、构筑构基础以及其他各种管道之间应保持的最小水平净距分别列于表 4.1-15-1 、表

城镇燃气设计规范

《城镇燃气设计规范》 10.2.14 燃气引入管敷设位置应符合下列规定: 1 燃气引入管不得敷设在卧室、卫生间、易燃或易爆品的仓库、有腐蚀性介质的房间、发电间、配电间、变电室、不使用燃气的空调机房、通风机房、计算机房、电缆沟、暖气沟、烟道和进风道、垃圾道等地方。 2 住宅燃气引入管宜设在厨房、走廊、与厨房相连的封闭阳台内(寒冷地区输送湿燃气时阳台应封闭)等便于检修的非居住房间内。当确有困难,可从楼梯间引入,但应采用金属管道和且引入管阀门宜设在室外。 3 商业和工业企业的燃气引入管宜设在使用燃气的房间或燃气表间内。 4 燃气引入管宜沿外墙地面上穿墙引入。室外露明管段的上端弯曲处应加不小于DN1 5 清扫用三通和丝堵,并做防腐处理。寒冷地区输送湿燃气时应保温。引入管可埋地穿过建筑物外墙或基础引入室内。当引入管穿过墙或基础进入建筑物后应在短距离内出室内地面,不得在室内地面下水平敷设。 10.2.15 燃气引入管穿墙与其他管道的平行净距应满足安装和维修的需要,当与地下管沟或下水道距离较近时,应采取有效的防护措施。 10.2.16 燃气引入管穿过建筑物基础、墙或管沟时,均应设置在套管中,并应考虑沉降的影响,必要时应采取补偿措施。 套管与基础、墙或管沟等之间的间隙应填实,其厚度应为被穿过结构的整个厚度。套管与燃气引入管之间的间隙应采用柔性防腐、防水材料密封。 10.2.17 建筑物设计沉降量大于50mm时,可对燃气引入管采取如下补偿措施: 1 加大引入管穿墙处的预留洞尺寸。 2 引入管穿墙前水平或垂直弯曲2 次以上。 3 引入管穿墙前设置金属柔性管或波纹补偿器。 10.2.18 燃气引入管的最小公称直径应符合下列要求: 1 输送人工煤气和矿井气不应小于25mm; 2 输送天然气不应小于20mm; 3 输送气态液化石油气不应小于15mm。 10.2.19 燃气引入管阀门宜设在建筑物内,对重要用户还应在室外另设阀门。

城镇燃气管道安装验收规范

城镇燃气管道安装验收规范 城镇燃气管道验收规范 1 总则 1.0.1 为了统一城镇燃气室内工程施工及验收标准,提高城镇燃气室内工程的施工质量,确保安全供气,制定本规范。 1.0.2 本规范适用于新建、扩建、改建的城镇居民住宅、商业建筑、燃气锅炉房(不含锅炉本体)、实验室、使用城镇燃气的工业企业(不含燃气设备)等用户室内燃气管道和燃气设备的施工及验收。 本规范不适用于:燃气发电厂、燃气制气厂、燃气储配厂、燃气调压站、燃气加气站、液化石油气储存、灌瓶、气化、混气等厂站内的燃气管道的施工及验收。 1.0.3 承担城镇燃气室内工程及与燃气工程配套的报警系统、防爆电匀系统、自动控制系统的施工单位必须具有国家相关行政管理部门批准或由其认可的资质和证书。从事施工的操作人员应经过培训,并持证上岗;焊接人员应持有上岗资格证。 1.0.4 城镇燃气室内工程施工应按已审定的设计文件实施;当需要修改设计或材料代用时,应经原设计单位同意。 1.0.5 室内燃气管道所用的管材、管件、设备应符合国家现行标准的规定,并应有出厂合格证;燃具应采用符合国家现行标准并经国家主管部门认可的检测机构检测合格的产品。 1.0.6 室内燃气工程验收合格后,接通燃气应由燃气供应单位负责。 1.0.7 检验合格的燃气管道和设备超过六个月未通气使用时,应由当地燃气供应单位进行复验,复验合格后,方可通气使用。 1.0.8 城镇燃气室内工程的施工及验收除应符合本规范的规定外,尚应符合国家现行有关强制性标准的规定。

2 室内燃气管道安装 2.1 一般规定 2.1.1 用户室内燃气管道的最高压力和用气设备的燃气燃烧器采用的额定压力应符合现行国家标准《城镇燃气设计规范》GB 50028 的规定。 2.1.2 室内燃气管道采用的管道、管件、管道附件、阀门及其他材料应符合设计文件的规定,并应按国家现行标准在安装前进行检验,不合格者不得使用。2.1.3 室内燃气管道安装前应对管道、管件、管道附件及阀门等内部进行清扫,保证其内部清洁。 2.1.4 室内燃气管道安装前的上建工程,应能满足管道施工安装的要求。 2.2 燃气管道安装 2.2.1 燃气管道安装应按设计施工图进行管道的预制和安装。 2.2.2 燃气管道使用的管道、管件及管道附件当设计文件无明确规定时,管径小于或等于50,宜采用镀锌钢管或铜管;管径大于50 或使用压力超过10kPa,应符合本规范2.1.2 条的规定。铜管宜采用牌号为TP 2 的管材。 DN DN 2.2.3 燃气管道的切割应符合下列规定: 1 碳素钢管。镀锌钢管宜用钢锯或机械方法切割; 2 不锈钢管应采用机械或等离子方法切割;不锈钢管采用砂轮切割或修磨时应使用专用砂轮片;铜管可采用机械或手工方法切割; 3 管道切口质量应符合下列规定: 1)切口表面应平整,无裂纹、重皮、毛刺、凸凹、缩口、熔渣、氧化物、铁屑 等; 2) 切口端面倾斜偏差不应大于管道外径的 1%,且不得超过3mm ;凹凸误差不得超过1mm。

浅谈城镇燃气管道管材的比选

浅谈城镇燃气管道管材的比选 摘要:目前,可以作为中压和低压燃气管道有聚乙烯管、机械接口球墨铸铁管、钢管或钢骨架聚乙烯塑料复合管,城镇燃气常用的管材通常为聚乙烯管及钢管。 关键词:聚乙烯管,钢管 一.材质的比选: 聚乙烯管: 聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。聚乙烯(POLYETHYLENE,PE)是由乙烯聚合而成之聚合物,产品发展至今已有60年左右历史,全球聚乙烯产量居五大泛用树脂之首。 聚乙烯依聚合方法、分子量高低、链结构之不同,分高密度聚乙烯、低密度聚乙烯及线性低密度聚乙烯。 低密度聚乙烯(LOW DENSITY POLYETHYLENE,LDPE)俗称高压聚乙烯,因密度较低,材质最软,主要用在塑胶袋、

农业用膜等。[2] 高密度聚乙烯(HIGH DENSITY POLYETHYLENE,HDPE)俗称低压聚乙烯,与LDPE及LLDPE相较,有较高之耐温、耐 油性、耐蒸汽渗透性及抗环境应力开裂性,此外电绝缘性和抗冲击性及耐寒性能很好,主要应用于吹塑、注塑等领域。 [2] 线型低密度聚乙烯(LINEAR LOW DENSITY POLYETHYLENE,LLDPE),则是乙烯与少量高级 -烯烃在催化剂存在下聚合而成之共聚物。LLDPE外观与LDPE相似,透明性较差些,惟表面光泽好,具有低温韧性、高模量、抗弯曲和耐应力开裂性,低温下抗冲击强度较佳等优点。 LLDPE应用领域几乎已渗透到所有LDPE市场。现阶段LLDPE和HDPE处于生命周期的成长阶段;LDPE则在1980代末逐渐进入发展成熟期,世界上已少有LDPE设备投产。聚 乙烯可用挤出、注射、模塑、吹塑和熔纺等方法成型,广泛应用于工业、农业、包装及日常工业中,在中国应用相当广泛,薄膜是其最大的用户,约消耗低密度聚乙烯77%,高密度聚乙烯的18%,另外,注塑制品、电线电缆、中空制品等都在其消费结构中占有较大的比例,在塑料工业中占有举足轻重的地位。 钢管:

城市燃气管道安装要求

城市燃气管道安装要求 一、燃气管道材料选用 高压和中压A燃气管道,应采用钢管;中压B和低压燃气管道,宜采用钢管或机械接口铸铁管。中、低压地下燃气管道采用聚乙烯管材。 三、室外燃气管道安装 (一)管道安装基本要求 1.地下燃气管道不得从建筑物和大型构筑物的下面穿越。2.地下燃气管道埋设的最小覆土厚度(路面至管顶)应符合下列要求:埋设在车行道下时,不得小于0.9m;埋设在非车行道下时,不得小于0.6m;埋设在庭院时,不得小于0.3m;埋设在水田下时,不得小于0.8m3.地下燃气管道不得在堆积易燃、易爆材料和具有腐蚀性液体的场地下面穿越,并不宜与其他管道或电缆同沟敷设。当需要同沟敷设时,必须采取防护措施。4.地下燃气管道穿过排水管、热力管沟、联合地沟、隧道及其他各种用途沟槽时,应将燃气管道敷设于套管内。5.燃气管道穿越铁路、高速公路、电车轨道和城镇主要干道时应符合下列要求:(1)穿越铁路和高速公路的燃气管道,其外应加套管,并提高绝缘防腐等级。(2)穿越铁路的燃气管道的套管,应符合下列要求:1)套管埋设的深度:铁路轨道至套管顶不应小于1.20m,并应符合铁路管理部门的要求;2)套管宜采用钢管或钢筋混凝土管;3)套管内径应比燃气管道外径大lOOmm 以上;4)套管两端与燃气管的间隙应采用柔性的防腐、防水材料密封,其一端应装设检漏管; 5)套管端部距路堤坡角外距离不应小于2.Om。(3)燃气管道穿越电车轨道和城镇主要干道时宜敷设在套管或地沟内;穿越高速公路的燃气管道的套管、穿越电车和城镇主要干道的燃气管道的套管或地沟,应符合下列要求:1)套管内径应比燃气管道外径大lOOmm以上,套管或地沟两端应密封,在重要地段的套管或地沟端部宜安装检漏管。2)套管端部距电车道边轨不应小于2.Om;距道路边缘不应小于1.Om。3)燃气管道宜垂直穿越铁路、高速公路、电车轨道和城镇主要干道。 6.燃气管道通过河流时,可采用穿越河底或采用管桥跨越的形式。当条件许可也可利用道路桥梁跨越河流,并应符合下列要求:(1)利用道路桥梁跨越河流的燃气管道,其管道的输

基于应变模态的车轴动应力仿真计算

文章编号:1673-0291(2011)04-0130-04 基于应变模态的车轴动应力仿真计算 刘志明,马跃峰 (北京交通大学机械与电子控制工程学院,北京100044) 摘 要:基于动车组的动车车轴和拖车车轴的应变模态分析结果,结合线路实测数据,运用模态叠加法对动车组车轴进行了动应力的仿真计算,得出了两种车轴上相应测点的应力时间历程,并与线路测试数据进行了比较.结果表明:经过仿真计算得到的测点应力时间历程与实测结果比较吻合, 从而验证了将应变模态与测试数据结合计算动应力的可行性,可以进一步开展疲劳强度分析.关键词:车轴;应变模态;模态叠加法;动应力;振动中图分类号:U2601111 文献标志码:A Simulation and calculation of dynamic stress to axles based on strain modal LI U Zhiming,M A Yue f eng (School o f M echanical,Electronic and Contr ol Engineer ing ,Beijing Jiaotong U niversity ,Beijing 100044,China) Abstract:Based on the strain modal analysis results of EMU .s motor -car ax le and trai-l car axle,and combined w ith actual line test data,simulation and calculation of dynam ic stress to EM U .s axles was done w ith modal superposition method.Stress -time history of the corresponding point on motor -car axle and trai-l car axle w as obtained,and comparison w ith the line test data w as also performed.The results show that:stress -time history of the measured points got by simulation and calculation was in g ood ag reement with the test results.Therefore,the feasibility of calculating dynamic stress w ith strain modal and test data w as verified,and it is doable to make further research on the fatigue strength analysis. Key words:axle;strain modal;modal superposition method;dynam ic stress;vibration 收稿日期:2009-11-27 基金项目:国家科技支撑项目资助(M 10B300140) 作者简介:刘志明(1966)),男,江西南昌人,教授,博士,博士生导师,主要从事结构疲劳可靠性研究.email:zhmliul@https://www.doczj.com/doc/9f6197560.html,. 在复杂结构的动态设计中,分析结构在动态载荷下的应力状态是进行强度设计和疲劳寿命评估的基础和关键,分析车轴疲劳强度的关键是得到车轴在实际运用状态下的动应力.对结构动态特性的研究主要有有限元方法和实验模态分析技术,根据所测物理量的不同,实验模态分析又分为位移模态分析和应变模态分析.位移模态分析是以位移响应(加速度)为基本参数,该技术已经在工程上广泛应用,但位移模态分析结果不能直接用于结构的疲劳设计,在运动机械和承受动载荷结构的设计校核中,从 强度和疲劳的观点出发,更侧重于对结构的应力、应变分布情况的研究.应变模态分析是以结构的应变响应为基本参数,从而确定结构的应变最大点和共振疲劳点[1-2] . 目前对应变模态的分析一般是基于简单的梁和板,针对应变模态运用模态叠加法对结构响应进行计算分析的文献比较少.本文作者以有限元仿真的方法对高速动车组车轴进行应变模态分析,结合线路实测数据,运用模态叠加法对车轴进行动应力仿真计算. 第35卷第4期 2011年8月 北 京 交 通 大 学 学 报 JOU RNAL OF BEIJING JIA OT ON G U N IV ERSIT Y Vol.35No.4Aug.2011

城镇燃气管道安全现状及防范措施

城镇燃气管道安全现状 及防范措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

城镇燃气管道安全现状及防范措施摘要 目前我国很多城市的燃气管道自从上个世纪九十年代建成以来,已运行近二十年这二十年间管道不断腐蚀老化,地面交通道路也不断增长,管线周围的人口越来越密集,因此燃气管道的安全问题逐渐成为与公共安全有着密切关系的重要问题因此本文就针对燃气管道安全问题的现状、产生的原因及防范对策做出分析。 关键词:燃气管道,安全管理,防范措施 城镇燃气是城市重要的基础设施之一。城镇燃气是按一定工艺生产、制取、净化,达到国家标准要求的可燃气体,是城镇现代化的一种标志,它在保护环境、减轻污染、方便生活、促进和繁荣经济等方面发挥着重大作用。由于城镇燃气具有易燃、易爆和有毒等特点,一旦供气用燃气管道设施发生泄漏,极易发生火灾、爆炸及中毒事故,使国家和人民生命财产遭受损失。全社会对燃气安全缺乏足够的认识,燃气事故不断上升,仅北京每年发生燃气事故2000到3000起,我国城镇燃气的安全现状令人担忧,现将存在的问题及应对措施简论如下:

第2章城市燃气管道安全现状及主要问题 随着国家经济建设的高速发展和城市基础设施,人民生活水平的大幅度提高,城市燃气事业得到了飞速发展。城市燃气的消费量、城市用气人口及燃气普及率均有很大的增长,特别是近几年天然气大量进入城市利用领域,推动了城市燃气发展的历史性飞跃。2004年我国城市燃气年供气量已达980亿米以(人工煤气计),其中天然气供气量已经打破城市燃气(人工煤气、LPE、天然气)三足鼎立的局面,达到42%的供气比例用气人口2.78亿,燃气普及率达到81.5%。在全国660个设市城市中,已有600多个城市建有城市燃气设施,绝大部分城市居民都已使用燃气。同时存在的问题也是越来越突出。 2.1城市燃气管网老化、腐蚀严重,存在安全隐患。 燃气用钢管设计寿命为15年到20年,多数城市燃气中压燃气管网及早期投入运营的低压管网运行近20年左右时间,已接近或达到寿命终点,多数管网处于事故多发期。近几年,管网系统腐蚀穿孔事故频发,且呈上升趋势,某城市的中压管网一年泄漏事故多达32次,2007年到2008年10月底石家庄市发生近200起事故,城市燃气管网老化,已成为燃气输配的重要安全隐患。

城市燃气管道设计若干问题的探讨 孟云霄

城市燃气管道设计若干问题的探讨孟云霄 发表时间:2017-07-26T15:40:43.810Z 来源:《防护工程》2017年第7期作者:孟云霄 [导读] 近年来,我国城市发展速度十分快,很多城市对城市燃气的需求都不断上升。 山东省枣庄市枣庄华润燃气有限责任公司山东省枣庄市 277100 摘要:燃气是现代城市的重要基础设施,与人们的日常生活密切相关。近年来,我国燃气事业快速发展,城市燃气规划设计工作受到了社会各界的高度关注。只有不断科学调整燃气规划设计,才能减少其中存在的问题,为城市燃气事业的发展提供保障。简要分析了城市燃气规划设计中存在的问题,以期为城市燃气的长期发展提供帮助。 关键词:城市燃气;规划设计;常见问题;具体措施 1 燃气管道设计施工中的常见问题分析 1.1天然气源不足 近年来,我国城市发展速度十分快,很多城市对城市燃气的需求都不断上升,而起气源不足的问题却一直困扰着该行业的发展。一些城市原本的输气管网无法满足当前城市的发展需求,这也在无形中给城市燃气工程建设带来了新的要求和挑战。因此,现阶段,一定要重视城市燃气规划设计中的气源问题,超前预测天然气的用户数量。 1.2燃气规划不科学 在现代社会,我国很多城市都存在燃气规划设计不合理的情况,以至其无法满足用户的实际需求。出现这样的问题,一方面,是规划中的设计理念不够先进,实际设计中缺少对安全性和突发事件的考虑;另一方面,主要是燃气管理系统的自动化程度不高,在规划的过程中缺少对燃气管理信息化的认识。因此,对于这样的问题,一定要加强对燃气管理系统的建设,为城市燃气管理提供科学保障。 1.3输配管与城市发展不适应 近年来,我国城市化进程不断加快,对城市燃气的发展水平也提出了更高的要求。在现代社会发展的过程中,要适当引入一些竞争对手,以促使资源得到合理的应用和发挥。但是,目前,我国燃气市场基本上是独家控制的,很难形成市场竞争,也难以实现统一的管理,从而给管理工作造成了一些不利的影响。在这种环境中,一旦有公司退出,地下管网规划中存在的问题就会呈现出来,难以科学配置资源,造成严重的资源浪费。 1.4燃气管道设计施工准备环节的问题 首先,重视燃气管道设计准备阶段的常见问题,实际设计工作中,应该就城市建筑物设置情况、交通情况与人口聚集情况等实施全面分析。具体来说,在天然气施工设计的时候,要根据市政道路规划标准,最大限度避开相关的大型车辆通行路段,防止管道由于长期受到压强作用出现管道破裂问题。此外,工程施工设计期间的燃气管道具体管位设置也必须要结合相关路政部门制定出来的规划要求,合理设计管道设计图,之后再交给管道规划部门实施整体规划。当城市总规划审查工作完成之后,最终实施工程勘测与工程设计,从根本上实现燃气管道设计的全面化与规范化。 其次,燃气管道施工设计阶段问题研究。在燃气管道施工工作中,相关工作人员必须要根据相关的设计图纸,总体规划建筑物分布情况与天然气管道所需铺设的位置,并将设计图纸按照一定比例进行科学缩整,从而保证管道设计能够避开水源、交通路段以及地下水设备等。所以说,在燃气管道设计期间,必须要有一个整体化的参考,尽量避免突发事件的发生,将设计施工阻力降低到最小。 1.5燃气管道设计中的道路穿越问题 随着城市建设的不断创新与发展,虽然一定程度上推动了我国城市燃气的建设发展,但与此同时带来的问题也越来越突出。城市道路建设的不断升级,交通量的逐渐增大,对于燃气管道道路穿越设计提出了更高的要求及标准,在整个穿越过程中不仅仅要掌握好穿越的距离,同时还要采取最为经济的方式来有效的完成穿越作业,设计方案要符合实际施工作业环境,以最低的成本保障其质量的顺利完成。此外,在设计过程中,当遇到相关问题时,要及时与相关部门进行协商,及时修改设计方案,避免变更后的设计难以在施工中有效的完成。或是依据以往的经验,结合实际作业情况,设计多种方案加以对比,最后研讨,选择最为合适的设计方案。通常情况下,在城市燃气管道施工作业中采用开挖的方式进行穿越,在施工中将制定好的设计方案与相关部门进行协商,然后上报至交通部门进行审批,当实际情况与设计方案完全相符时,就可以进行合理的安排施工作业活动,但需要注意的是,施工中要尽量减少对交通环境的影响,对开挖道路进行及时的回填,确保路面恢复的及时性,以便缩短对交通的影响,但整个过程中必须保障其质量。 除了采用开挖方式以外,还能够采用非开挖技术进行城市燃气管道的穿越施工建设。非开挖施工建设的方法一般有定向钻法和顶管法两种,这主要适用在粘土、亚粘土、回填土、粉砂土以及流沙层等松软的土质当中。在设计的过程中需要根据不同的图纸类型进行具体分析研究,设计出符合实际情况的切实可行的非开挖施工方案。根据不同的地质条件和施工地的环境条件,可以敷设40~2500毫米的各种燃气管道,穿越的长度可以实现数百米。当前我国的城市燃气管道使用的材料一般为钢管或者是PE管,管道的直径在15~1500毫米之间,且燃气管道穿越的道路一般是在回填土层中进行的,所以说这种非开挖穿越的方式也适用于城市燃气管道的施工建设。在这个过程中一定要注意,城市道路的地下管道较为密集,在施工之前一定要做好充足的准备,要详细的收集该地区和该路段的地下管线的资料,为设计工作打下基础,在需要的情况下还可以进行现场打孔进行试探,准确的了解该路段的底线管线实际情况。 现阶段,燃气管道设计的横穿道路现象相对来说是比较常见的。然而,若是燃气管道设计涉及到道路穿越,则会面临大量道路突发状况,再加上车辆与人流量相对来说都比较大。燃气管道设计规划不合理的话,就会难以充分考虑道路穿越问题,最终影响交通通行率。随着现代化社会建设水平的不断提升,道路等级也在逐渐上升,从而在一定程度上增加了交通运输量,在此背景之下,相关交通管理部门也难以为燃气管道设计工作提供高效化便捷服务,不能够全面实施交通阻断,制约管道设计进度的正常化。 1.6燃气管道设计中的进度问题 从燃气管道设计进度角度出发,其影响因素是多种多样的,直接关系到管道设计工作的顺利开展。具体来说,首先是气候影响因素。通常情况下,燃气管道施工都是户外作业,阴雨、暴风以及雷电等的恶劣天气都会对燃气管道施工造成严重影响。特别是遇到暴雨或者是

相关主题
文本预览
相关文档 最新文档