当前位置:文档之家› UDL系列行星锥盘无级变速器

UDL系列行星锥盘无级变速器

UDL系列行星锥盘无级变速器
UDL系列行星锥盘无级变速器

UDL系列行星锥盘无级变速器

UDL系列行星锥盘无级变速器的设计,融合了国内外的先进技术。产品有以下主要特点:

1.调速精度高:达0.5-1转

2.变速范围大。输出速比可在1:1.4至1:7之间任意变化。

3.强度高,寿命长。

4.调速方便。

5.可连续工作运转,且可正反方向运转,运转平稳,性能稳定,噪音低。

6.全密封,对肪骋蟮汀?lt;/DIV>

7.结构紧凑,体积小。

8.采用优质铝合金压铸成型,外形美观,重量轻,永不生锈。

9.适应性好。UDL系列行星锥盘无级变速器可与各种减速机组合,实现低速无级变速。

UDL系列行星锥盘无级变速器可广泛应用于食品、陶瓷、包装、化工、制药、塑料、造纸、机床、交通以及各种需调速的自动生产线、输送线、装配线等是您机器上理想的伙伴。

结构与原理

型号标记

(1).基本型

(2).基本型与齿轮减速器组合

使用与保障

1.轴伸形式全部为圆柱形,按《圆柱形轴伸》GB1569-79选定,键联接按《普通平键》GB1095-79选定。

2.联轴器与电动机联接时应使轴线保持同心,安装误差不应大于所用联轴器的允许误差值。

3.输出轴装联轴器或带轮时,用轴端螺孔压入,或加热装配,严禁锤击。

4.机械无级变速器不宜用于可能超负载或堵转使用场合。

5.调速应在运转中进行,严禁停车时转动调速手轮。

6.操作盒下的两端调速限位螺钉已调整好,请勿再动。

7.本机不宜工作在高于40℃的环境中,温升不得高于45℃。关于本机的温升,请看下面介绍:

(变速器采用四极电机时,此时,部件在跑合(空车运转)开始时,温度高于正常工作的环境温度约40-50℃。跑合60-80小时后,温升逐渐下降,此后,温度高于环境温度20℃,并保持稳定的温升。跑合时高的温升影响正常允许的工作条件,但对部件的使用寿命并无有害影响。)

8.变速器采用润滑油油浴润滑。润滑油牌号位Ub-3。使用前请检查油位。

9.出厂前润滑油已加入,首次使用1000小时后应更换润滑油。

10.变速器内润滑油应保持在油标的三分之二高度,用户应经常检查油位高度,严禁在润滑不良的情况下使用。操作盒上透气螺母出厂时为防止搬运中漏油已旋紧,运转时须松开,严禁未松开使用。

基本型与齿轮减速器组合性能参数

UDL系列基本型外形及安装尺寸

UDL系列基本型与一级齿轮减速器组合地脚式外形及安装尺寸B3

UDL系列基本型与一级齿轮减速器组合法兰式外形及安装尺寸B5

履带拖拉机无级变速器设计(总体设计)

履带拖拉机无级变速器设计(总体设计) 摘要 液压传动可以保证车辆具有稳定最佳的速度,并可准确控制和随意地无级变化,包括零速和倒挡。以较小体积和重量保证大范围无级变速的条件下,其最大功率可以达纯液压功率的好几倍等比连续式初始段的输出转速 n线 b 相对平缓,也有较大的输出转矩。单行星排式是由单个行星排和一个机械自动变速器组成。本次设计采用单行星排形式的液压机械无级传动方案。液压机械无级变速器通过调节液压元件的相对排量来实现无级变速的。液压功率分流比定义为液压机械变速器中的液压路的输出功率(即经由液压路传递倒行星排的输入功率)与变速器总输出功率的比值(不计功率损失)。液压机械无级变速器在最小传动比和最大传动比范围内,传动是无级的。液压功率分流比反映了传动系统中的各种工作状态,合理设计机械传动参数和适当匹配变量泵和定量马达,可避免出现功率循环,从而提高传动效率。液压功率分流比越大,那么整个系统的效率越低。 关键词:拖拉机,液压机械传动,无级变速器,传动方案

DESIGN OF CONTINUOUSLY VARIABLE TRANSMISSION OF TRACKED TRACTOR (SYSTEM DESIGN) ABSTRACT Hydraulic drive vehicles can guarantee stability with the best speed and can accurately control and no arbitrary level changes including zero-rate and reverse gear. To the smaller size and weight to ensure that the large scope of the CVT conditions, the maximum power can achieve pure hydraulic power several times. The maiden geometric continuous line of the output is relative moderate, but it’s also a larger output torque. Single planetary-row is composed of row single planet and a mechanical automatic transmission. The single-row form of planetary hydraulic machinery stepless transmission program is used in this design. Hydraulic machinery CVT can achieve the CVT by adjusting the hydraulic components of the relative displacement. Hydraulic power split ratio is defined as hydraulic mechanical transmission of hydraulic road output power (that is, by reversing hydraulic transmission path planetary row the input power) and the total output power transmission ratio (excluding power losses). Within the transmission ratio of hydraulic machinery CVT transmission ratio in the smallest and the largest, transmission is no rank. Hydraulic power split ratio reflects the transmission of the working state, Rational design mechanical transmission parameters and appropriate matching and quantitative variables pump motors, avoiding any power cycle thereby enhancing the efficiency of transmission. Hydraulic power is greater than segregation, then the whole system less efficient. Key words: tractor,hydro-mechanical transmission,stepless transmission,transmission scheme

菱锥式无级变速器结构设计

菱锥式无级变速器结构设计 摘要 菱锥式无级变速器是摩擦式无级变速器的一种,其运动的传递主要是依靠摩擦力来实现的。 在本设计中,中间传动元件是菱形的锥轮。在传递运动时,菱锥式无级变速器是通过改变两锥轮的瞬时接触半径以改变传动比,从而实现输出轴的输出扭矩和转速可以任意变化。在本设计中详细的分析了在传动运动过程中变速器的输入轴、输出轴、主动轮、加压装置、菱锥、从动轮和从动外环的工作原理以及在传动过程中各零部件的受力关系;对于菱锥锥轮式无级变速器设计时所需要用的计算公式,在本文中进行了详细的推导与证明;并对给定参数进行计算,校核设计参数;最后将菱锥锥轮式无级变速器的装配图和变速器上的主要传动元件(例如菱锥,输入轴和输出轴等)的零件图按照计算校核所得数值进行绘制,从而将此菱锥式无级变速器的工艺和结构等方面的要求表现的更为清楚。由于菱锥式无级变速器绝在传递运动和扭矩时是依靠菱锥与主动轮和从动外环之间的摩擦力,所以,只要摩擦力足够大既可以避免打滑现象的产生。从而可以满足的传动比要求。但是,如果传动的过程中存在震动、冲击和过载情况,则会导致传动比的不准确性。因此在使用菱锥式无级变速器的场合应该尽量避免上述情况的发生。 虽然,菱锥式无级变速器在传动过程中可能存在传动比不准确的缺点。但是,菱锥式无级变速器具有良好的结构和优越的性能。由于可实现大范围的无级变速。因此,菱锥式无级变速器在实际生产中具有很强的实用价值。完全可以在对传动比要求不是非常准确,却又需要能进行无级变速的场合起到重要作用。 关键词无级变速器;摩擦式;菱锥式 - I -

Kopp-K mechanical structure design Abstract Kopp-K is a kind of frictional stepless transmission, the movement of the transmission is mainly rely on the friction. In this design, transmission element is diamond cone wheel in the middle. When passing movement, Kopp-K is by changing the two cone wheel radius of instantaneous contact to change the transmission ratio, so as to realize the output torque and rotational speed of the output shaft can be arbitrarily change. In this design, the detailed analysis in the process of transmission movement transmission input shaft and output shaft, driving wheel, pressure device, ling cone, driven wheel and the driven work principle of the outer ring and in the process of driving force of parts of relationship; For ling cone wheel to stepless transmission design calculation formula, in this article has carried on the detailed derivation and proof; And for a given parameter to calculate, check the design parameters; Finally to ling cone wheel type stepless transmission on the assembly drawing and the transmission of the main transmission components (such as ling cone, the input shaft and output shaft, etc.) of the part drawing shall be carried out in accordance with the calculated from numerical mapping, thus the Kopp-K process and structure performance requirements more clearly. Because Kopp-K off when transfer movement and torque is rely on ling cone with the driving wheel and driven friction between the outer ring, so as long as the friction force is big enough can avoid skid phenomenon. Thus can satisfy the transmission ratio requirements. If, however, exist in the process of transmission - II -

KRG锥环无级变速器全解读

KRG锥环式无级变速箱,对于大多数人而言可能是个陌生的名词。不过,这种变速箱可能会成为未来国内小排量车型上的主流变速箱,低成本、高效率、简单的结构和在功能和平顺性上的多重优势值得我们关注,在其正式量产之前,让我们一同来认识一下这台结构新颖的变速箱。 GIF吉孚推出的创新锥环式无级变速箱(KRG)

◆无级变速的基础,滚锥+锥环代替钢带和棘轮 --悠久历史和创新:源于1902年的结构+创新控制机构 KRG变速箱展示模型 我们都知道,传统的CVT无级变速箱的核心变速机构是由可变槽宽的主、从动棘轮和钢带组成的,通过主、从动棘轮V 型槽槽宽的改变来改变钢带的在两个棘轮上转动的周长,进而实现速比的连续变化。

传统的CVT变速箱是通过V型槽宽度可变的主、从动棘轮和钢带来连续调节速比的 而KRG锥环式无级变速箱实现无级变速的主要执行机构则是输入滚锥、输出滚锥和他们之间传递动力的锥环,锥环的平面在两个滚锥上得到的截面圆的周长决定了输入轴和输出轴的速比(当然还有锥环本身的尺寸引起的差异),所以锥环在滚锥上的位置直接决定变速箱的速比,由于锥环可以在滚锥上的左右止点之间任意移动,所以能够提供在一定范围内连续可变的速比。

上面的输入滚锥、下面的输出滚锥加上在两者间传递动力的锥环,构成了锥环变速器的主要机构 变速箱中的滚锥和锥环实体

锥环所在平面对于两个滚锥的截面圆的周长差异决定了输入输出的速比 只要输入滚锥转动,动力便会通过输入滚锥传递到锥环,进而带动输出滚锥做反向转动。据介绍,这套机构早在1902年时已经面世,GIF则将它成功的运用到了汽车变速箱上,并已具备了量产水平。这套机构同样适合在混合动力车型和电动车作为变速机构。 KRG变速箱整体的结构并不复杂,目前的KRG变速箱主要是针对横置发动机设计,动力从发动机出来之后直接连接离合器(KRG可以配置液力变矩器和干式离合器),输入轴与行星齿轮相连,然后便是输入滚锥-锥环-输出滚锥,然后动力就输出至差速器--半轴。

专利-环布锥轮无级变速装置

说明书摘要 本发明公开了一种环布锥轮无级变速装置,包括一从动轴和布置在从动轴周围的主动轴,从动轴上设有一个可以轴向移动的柱形摩擦轮,所述柱形摩擦轮还与一位置控制装置相连接;每根主动轴上设有一个锥形摩擦轮,所述锥形摩擦轮内侧的锥面与柱形摩擦轮的柱面平行接触,形成摩擦传动面。本发明利用锥形摩擦轮与柱形摩擦轮之间的摩擦传动面进行传动,可以在使用转速范围内传递较高的扭矩。当无级地改变柱形摩擦轮的位置时,锥形摩擦轮与柱形摩擦轮之间的传动比也会相应地无级变化,从而实现无级变速。本发明具有结构简单、紧凑,性能可靠,成本低等优势。

摘要附图

权利要求书 1.一种环布锥轮无级变速装置,其特征是:包括一从动轴(6)和布置在从动轴周围的主动 轴(10),从动轴(6)上设有一个可以轴向移动的柱形摩擦轮(5),所述柱形摩擦轮(5)还与一位置控制装置相连接;每根主动轴(10)上设有一个锥形摩擦轮(9),所述锥形摩擦轮(9)内侧的锥面与柱形摩擦轮(5)的柱面平行接触,形成摩擦传动面。 2.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述主动轴(10)沿环形均布 在从动轴(6)的周围。 3.根据权利要求1或2所述的环布锥轮无级变速装置,其特征是:所述主动轴(10)和从动 轴(6)的轴心线全部相交于一点。 4.根据权利要求3所述的环布锥轮无级变速装置,其特征是:各主动轴(10)与从动轴(6) 成相同的夹角,该夹角等于锥形摩擦轮(9)锥顶角的一半。 5.根据权利要求1所述的环布锥轮无级变速装置,其特征是:还包括有基座(1,11),所述 从动轴(6)、主动轴(10)的两端均通过轴承支撑在基座(1,11)上。 6.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述从动轴(6)的一端设有 输出齿轮(12)。 7.根据权利要求6所述的环布锥轮无级变速装置,其特征是:所述各主动轴(10)都与一输 入轴(4)通过锥齿轮传动连接。 8.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述柱形摩擦轮(5)与从动 轴(6)之间通过花键相配合,所述位置控制装置是一个可以沿从动轴轴向滑动的拨叉(13),所述柱形摩擦轮(5)位于拨叉(13)内。 9.根据权利要求1所述的环布锥轮无级变速装置,其特征是:所述锥形摩擦轮(9)还与压 力调节机构相连接。 10.根据权利要求9所述的环布锥轮无级变速装置,其特征是:所述锥形摩擦轮(9)与主动 轴(10)之间通过花键相配合,锥形摩擦轮(9)与主动轴(10)之间可以轴向滑动,所述压力调节机构包括一个套在主动轴(10)上的调节螺母(7)和一个弹簧(8),弹簧(8)位于调节螺母(7)和锥形摩擦轮(9)的大端之间。

汽车无级变速器设计毕业论文

汽车无级变速器设计毕业论文 目录 摘要 1.绪论 1.1汽车变速器的类型? (1) 1.2汽车变速器的类型和特点 (1) 1.3采用无极变速器——CVT的汽车可以节油的原理 (2) 1.4实现汽车无级变速器——CVT大变速比、大转矩的关键——无偏 斜金属带式无极变速传动 (3) 2.CVT的总体设计 2.1原车的相关参数 (5) 2.2带传动的分析 (5) 2.3压紧装置的设计 (8) 2.4齿轮设计计算 (15) 2.5轴的设计计算 (22) 2.6轴承的设计计算 (30) 2.7锥轮处的键的设计计算 (31) 3.变速器的调控分析 3.1 CVT的一般调控理论分析 (32)

3.2 CVT最佳调控逻辑 (34) 4.总结 (38) 5.致谢 (39) 6.参考文献 (40) 1. 绪论 1.1 汽车变速器的类型 目前汽车变速器按变速特点来分,可分为两大类:一是有级变速器;二是无级变速器。按执行变速的方式来分,可以分为自动和手动两类。 1. 2 汽车变速器的类型和特点 1.2.1 液力变矩器 液力变矩器是较早用于汽车传动的无级变速器,成功地用于高档汽车的传动中。由于传动效率低,且变速比大于2时效率急剧下降,经常仅在有级(2~3档)变速器的两档中间实现无极变速,因此未能推广开来。目前经常作为起步离合器在汽车中使用。 1.2.2 宽V形胶带式无级变速器 宽V形胶带式无极变速器是荷兰DAF公司在1965年以前的产品,主要用在微型轿车上,一共生产了约80万辆。由于胶带的寿命和传动效率低,进而研究和开发了汽车金属带式无级变速器。 1.2.3 金属带式无级变速器

金属带式无级变速器是荷兰VDT公司的工程师Van Dooren 发明的,用金属带代替胶带,大幅度提高了传动效率、可靠性、功率和寿命,经过30~40年的研究,开发已经成熟,并在汽车传动领域占有重要的地位。目前金属带式无级变速器的全球总产量已经达到250万辆/年,在今后三年将达到400万辆,发展速度很快。 金属带式无级变速器的核心元件是金属带组件。金属带组件由两组9~12层的钢环组和350~400片左右的摩擦片组成,其中钢环组的材料,尤其 >2000MP),各层环之间“无间隙”是制造工艺是最难的,要实现强度高( b 配合。以前只有荷兰VDT公司掌握这种工艺,现在我国越士达无级变速器也已近掌握了这种技术,并在工学院建成了一条示性生产线。 金属带式无级变速器的传动原理,主、从两对锥盘夹持金属带,靠摩擦力传递动力和转矩。主、从动边的动锥盘的轴向移动,使金属带径向工作半径发生无级变化,从而实现传动的无级变化,即无级变速。 1.2.4 摆销链式无极变速器 摆销链式无级变速器是由德国LUK公司将摆销链用于Audi汽车传动的成功例。与金属带式CVT不同的是,它将无级变速部分放在低速级,即最后一级。其原因是链传动的多边形效应在高速级是会产生更大的噪音和动态应力。所以其最新的结构中,假装了导链板以减少震动和噪声。但是由于在低速级传动中,要求传递的转矩大,轴向的压力较大,液压系统的油

环型锥盘滚轮牵引式无级变速器

目前生产的无级变速器CVT(Continuously Variable Transmission)大多数采用金属带形式。例如奥迪A6的multitronic无级/手动一体式变速器,核心组件是两组带轮,通过改变驱动轮与从动轮金属带的接触半径进行变速。无级变速器的传动效率高且稳定,传动效率可高达95%,变速范围可达5~6。 还有一种已经投入使用的无级变速器IVT(Infinitely Variable Transmission),核心部分由输入传动盘、输出传动盘和Variator传动盘组成。两个输入传动盘分别位于两端,输出传动盘只有1个位于中间位置,Variato传动盘则夹于输入传动盘和输出传动盘中间,它们之间的接触点以润滑油做介质,金属之间不接触,通过改变Variato装置的角度变化而实现传动比的连续而无限的变化。 环型锥盘滚轮牵引式无级变速器与金属带式无级变速器相比可以传递更大的功率,适合较大排量的车辆。由变速传动机构、调速机构及加压装置三个主要部分组成,核心部分是变速传动机构。 如示意图所示,变速传动机构 包含三个主要零件(已经拆开): 输入锥盘、输出锥盘和动力滚子。 输入输出锥盘与动力滚子接触的 工作面是回转曲面,母线是一段圆 弧。动力滚子是一个截球台,可以 绕自身轴线转动。 变速传动机构的工作原理如 右下图(只画出上半部分),动力 滚子球台(黑色)两侧球面部分分 别与输入、输出锥盘的环面接触, 运动和动力通过锥盘和滚子间润 滑油膜中的牵引力进行传递。输入 输出锥盘的轴线在同一直线上,从 左往右看,如果输入锥盘顺时针转 动(如图箭头所示),动力滚子受 驱动绕自身轴线逆时针转动(从上 往下看),动力滚子带动输出锥盘

菱锥式无级变速器设计

目录 第一章概论 (1) 1.1无级变速器的特征和应用 (1) 1.2无级变速器类型 (1) 1.3机械无级变速器的性能参数 (4) 1.4机械无级变速器的研究现状 (5) 1.5课题的研究内容和要求 (8) 第二章菱锥式无级变速器工作原理 (10) 2.1无级变速器的工作原理 (10) 2.2菱锥无级变速器的结构特点 (12) 2.3菱锥无级变速器的变速原理 (13) 第三章菱锥无级变速器部分零件的设计与计算 (17) 3.1电动机的选择 (17) 3.2变速器基本型号的确定 (17) 3.3菱锥与主动轮结构尺寸的计算 (17) 3.4输入侧加压装置 (18) 3.5输出侧加压装置 (18) 3.6强度校核计算 (19) 3.7输入、输出轴的结构设计 (19) 3.8输入、输出轴上轴承的选用 (20) 第四章主要零件的校核 (21) 4.1输出、输入轴的校核 (21) 4.2轴承的校核 (22) 总结 (23) 致谢 (24) 参考文献 (25) 附录1:英文文献翻译及原文.............. 错误!未定义书签。附录2:英文文献原文 ................... 错误!未定义书签。

摩擦式机械无级变速器结构设计 摘要:机械无级变速器是一种能适应工艺要求多变、工艺流程机械化和自动化发展以及改善机械工作性能的一种通用传动装置。本文简要介绍了菱锥式机械无级变速器的基本结构、设计计算的方法、材质及润滑等方面的知识,并以此作为本次无级变速器设计的理论基础。 本设计采用的是以菱形锥轮作为中间传动元件,通过改变锥轮的工作半径来实现输出轴转速连续变化的菱锥锥轮式无级变速器。本文分析了在传动过程中变速器的主动轮、菱锥、和外环的工作原理和受力关系;详细推导了实用的菱锥锥轮式无级变速器设计的计算公式;并针对设计所选择的参数进行了具体的设计计算;绘制了所计算的菱锥锥轮式无级变速器的装配图和主要传动元件的零件图,将此变速器的结构和工艺等方面的要求表达得更为清楚。由于机械无级变速器绝大多数是依靠摩擦传递动力,故承受过载和冲击的能力差,且不能满足严格的传动比要求。 这种无级变速器有良好的结构和性能优势,具有很强的实用价值,完全可以作为批量生产的无级变速器。其主要特点是:1.变速范围较宽;2.恒功率特性好;3.可以升、降速,正、反转。4.运转平稳,抗冲击能力较强;5.输出功率较大;6.使用寿命长;7.调速简单,工作可靠;8.容易维修。 关键词:机械无级变速器;摩擦式;菱锥锥轮式

履带拖拉机无级变速器设计(行星机构设计)

履带拖拉机无级变速器设计(行星机构设计) 摘要 目前国际上大功率履带拖拉机以及部分工程车辆的传动系广泛采用液力变矩器与动力换档变速箱组合形式,即动力机械传动。还有部分先进机型采用了全液压传动技术,其操纵已由手动电液控制或微电脑控制技术方面发展,并取得非常好的效果,大大提高了整机行驶平顺和作业性能,虽然他们都具有无级变速的功能,操纵轻便,整机动力性好,可靠性高,但由于传动系的传动效率较低,直接影响了整机生产率和经济性。 液压机械无级变速器是综合了机械传动高效率和液压传动无级变速两方面优点的新型传动机构。液压机械无级传动是一种多流传动系统,它将功率分为液压和机械两路传递,分流机构分流后液压马达在正向和反向最大速度之间来回无级变速。其每一个行程和行星齿轮机构的一种工况相配合,最两路汇合成由若干无级调速段相衔接并组逐段升高的全程无级变化输出速度。和液力机械传动相比,装载量最大可提高30%,燃油经济性最大可提高25%。 此设计主要是针对行星齿轮机构以及控制部分离合器的设计。对于行星齿轮采用单排的结构形式,这样可以减小整个无级变速器的轴向尺寸,但是为了能够承受较大的和变化的载荷,于是在中心轮的周围均匀地分布着数个行星轮来共同分担载荷。本设计采用3个行星论均匀的布置形式就可以达到要求。其控制部分采用多片的用压力油控制的湿式离合器。离合器随着载荷的增加可以增多摩擦片的对数或增加其径向尺寸。在设计的过程中这两方面是综合考虑的,因为不可能使轴向或径向的尺寸过分的偏大。 关键词:拖拉机,液压机械传动,无级变速器,行星排

DESIGN OF CONTINUOSLY VARIABLE TRANSMISSION OF TRACKED TRACTOR (PLANETARY GEARS DESIGN) ABSTRACT At present, international large crawler tractors, as well as some works vehicles widely used transmission torque converter with variable power shift speed box combinations, which is the power mechanical drive. There are also some advanced models use a hydraulic transmission technology, which has been manually manipulated its electro-hydraulic control or microcomputer control technology development, and achieved very good results, greatly enhance the overall ride comfort and operational performance, although they have CVT function, manipulating light, whole dynamic, and high reliability, but because the transmission system drive less efficient direct impact on the overall productivity and economy. Hydraulic machinery CVT is a synthesis of highly efficient mechanical transmission and hydraulic drive CVT merits of the two new motivation - structure. Hydro-Mechanical - drive is a multi-stream transmission, power will be divided into two hydraulic and mechanical transmission path, streaming agencies triaged hydraulic motor in forward and reverse maximum speed between both CVT. Each of its itinerary and a planetary gear mechanism for a state match, most roads converge into two by a number of variable speed converge and the group has to absolutely no higher level of output speed changes. Hydraulic and mechanical transmission, the loading capacity can be increased by 30%, fuel economy can be increased 25%. This design is mainly directed against planetary gear mechanism and the control of the clutch part of the design. For single planetary gear arrangement of the structure, thus reducing the entire CVT axial dimensions, however, in order to be able to make and take greater changes in the load, So in the center of the

乘用车无级变速器液压系统设计

二○○九年六月 The Graduation Thesis for Bachelor's Degree Passenger CVT hydraulic system design Candidate:Gao XinMing Specialty:Vehicle Engineering Class:B05-18 Supervisor:Associate Prof. An YongDong Heilongjiang Institute of Technology 2009-06·Harbin

摘要 液压控制系统是通过控制金属带轮的夹紧力来实现无级自动变速器速比调节的,其设计方法是开发无级变速传动系统的关键技术之一.在分析了金属带式无级变速器的结构特征和力学关系的基础上,通过对汽车典型行驶工况的仿真分析,提出了无级自动变速液压控制系统关键参数—速比变化率的设计方法,完成了液压系统的结构参数设计,并进行了仿真验证,从而为无级自动变速汽车的研制开发奠定了基础. 针对无级变速器电液控制系统的工作要求,应用数字比例控制技术设计了可用作无级变速器中夹紧力控制阀的数字调压阀。介绍了该数字调压阀的结构以及驱动器的设计方法,并对其进行了静态特性、动态特性试验。试验结果表明,该数字调压阀的控制精度及可靠性高,能满足金属带式无级变速器电液控制系统的要求。 关键词:无级变速传动;液压系统;无级变速器;电液控制系统;数字调压阀 ABSTRACT The design method on the hydraulic control system is one of the key technologies of a metal V-belt continuously variable transmission(CVT).It can change the ratio of the transmission system by adjusting thepu-Shing force of the pulley.By analyzing the structure characteristics andForce relationgs,the design method of an important parameter of the CVTHydranlic system and the rate of transmission ratio are put forward by Simulation to the emblematical driving models. The structure parametersOf hydraulic system is gotten and validated by simulation on specific Driving model. An effective design method is provided to develop the co-ntinuously variable transmission system. In terms of working requirements of the electric-hydraulic controlSystem of continuous variable transmissions,the ditital pressure regulator valve,which can be used as the clamping force valve of CVT,is designed with the digital proportional control technology .The st-Ructure of the digital pressure regulator valve and design method forDrivers is introduced. Tests of static characteristics and dynamic cha-racteristics of digital pressure regulator valve is high, it can meetrequirements of the electric-hydraulic control system of system of metalv-belt type continuous variable transmission. Key words:Continuously variable transmission;Hydraulic system;Electric-hydraulic

无级变速器开题报告

本科生毕业设计(论文)开题报告论文题目:无级变速器 学院:机械工程学院 专业班级:车辆工程1103班 学生姓名:孙燕燕 指导教师: 开题时间:2015 年 3 月日

1.本课题研究的目的、意义 无级变速器是汽车理想的传动系统, 自汽车诞生以来, 它一直是人们追求的目标。无级变速传动(Constant Variable Transmission , 简称CV T)具有普通有级变速传动无法相比的优点, 它可以控制汽车发动机始终运行在最佳目标运行区, 显著提高汽车的经济性, 改善汽车的动力性, 既可减少汽车的换挡冲击, 也可减轻驾驶员的劳动强度。 2.无级变速器的基本原理 目前, 广泛应用于轿车的自动变速器是将液力变矩器和行星齿轮系统组合使用, 这种组合方式的传动比不连续, 自动变速器只能在若干段范围内实现无级变速;其次, 为增加变速器挡数, 扩大传动比的变化范围, 必须采用多个执行元件(离合器或制动器)控制行星齿轮系统的动力传递路线, 造成自动变速器零件数量过多及结构复杂, 发生故障的可能性增加, 并给保养和维修带来不便。除此之外, 由于液力传动效率较低, 不能使自动变速器百分之百发挥效率, 影响汽车的总体工作性能。为此, 许多汽车制造厂开始研究新的自动变速技术,CV T 就是其中最有发展前景的一种。CVT 的突出特点是不使用液力变矩器, 而采用传动带和工作直径可变的带轮与普通齿轮式变速器配合传递动力。由于它一般不采用行星齿轮系统,因此也称为非行星齿轮自动变速器。CVT 变速动力系统输出的动力传到金属带式无级变速传动装置的主动锥轮, 通过V 形金属带将动力传输到从动锥轮, 之后经减速器与差速器传递到车轮。带传动装置是其核心部分, 主要由主动锥轮、从动锥轮以及V 形金属带组成。其主、从动轮均为组合结构, 由活动锥轮和固定锥轮组成。主动锥轮的活动锥轮和固定锥轮形成的V 形槽与V 形金属带啮合, 实现动力传递。在工作中,当主、从动锥轮的活动锥轮沿轴向移动时, 可改变金属带在主、从动锥轮上的工作半径, 从而改变无级变速器的传动比。活动锥轮的移动量是根据汽车变速的要求, 通过调节作用在主、从动锥轮油缸内的液压压力来实现的。由于液压压力的调节是连续变化的, 所以可实现无级变速传动。

自行车用无级变速器结构设计

目录 1 绪论 (3) 1.1 机械无级变速器的概述及应用 (3) 1.2 无级变速器的分类 (3) 1.3 机械无级变速器的发展 (4) 1.4 无级变速自行车研究现状 (6) 1.5 毕业论文设计内容和要求 (7) 2 钢球行星式无级变速器的总体方案选择 (9) 2.1 采用螺旋传动实现球架的左右移动 (9) 2.2 依靠左右推动实现球架的移动 (10) 2.3 两方案的选择与比较 (10) 3 钢球行星式无级变速器部分零件的设计计算 (11) 3.1 钢球的设计计算 (11) 3.2 钢球支轴转角的设计计算 (12) 3.3 轴槽的长度及卡盘的倾斜角的设计计算 (13) 3.4 轴的设计计算 (14) 3.4.1 轴的选材及最小直径的计算 (14) 3.4.2 轴的结构设计 (15) 3.4.3 轴的校核 (16) 3.5 滚动轴承的选择 (18) 3.6 自行车无级变速器的安装 (19) 4 钢球行星式无级变速器的变速原理论证 (20) 4.1 关于本文的无级变速器 (20) 4.2 无级变速的运动结构分析 (20) 4.2.1无级变速的运动 (20) 4.2.2 变速原理分析 (22) 5 结论 (23) 参考文献 (24) 致谢 (25) 外文翻译 (26)

自行车用无级变速器结构设计 摘要 无级变速器传动是指在某种控制的作用下,使机器的输出轴转速可在两个极值范围内连续变化的传动方式。而无级变速器是这样的一种装置,它具有主动和从动两根轴,并能通过传递转矩的中间介质(固体、流体、电磁流)把两根轴直接或间接地联系起来,以传递动力。当对主、从动轴的联系关系进行控制时,即可使两轴间的传动比发生变化(在两极值范围内连续而任意地变化)。本文在分析各种无级变速器和无级变速自行车的基础上,把钢球外锥式无级变速器进行部分改装,从而形成了自行车的无级变速装置。该装置通过八个钢球利用摩擦力将动力进行输入输出,用一对斜齿轮进行分度调速,从而使自行车在0.75~1.22之间进行无级调速。研究表明:无级变速器被用于自行车方面可以大大改善自行车的使用性能,方便广大消费者使用。 关键字:无级变速自行车无级变速器调速

机械分离锥式无级变速器结构设计

毕业设计说明书 题目:机械分离锥式无级变速器结构设计 专业:机械设计制造及其自动化 学号: 姓名: 指导教师: 完成日期: 20 年5月

目录 摘要.................................................................................. I Abstract ..............................................................................II 第一章绪论 (1) 1.1 机械无级变速器的发展概况 (1) 1.2 机械无级变速器的特征和应用 (1) 1.3 无级变速研究现状 (2) 1.4 机械分离锥式无级变速器的优点 (3) 1.5 本次设计的内容和要求 (4) 第二章机械分离锥式无级变速器总体方案及原理 (4) 2.1 机械分离锥式无级变速器简图 (4) 2.2 机械分离锥式无级变速传动原理 (5) 第三章机械分离锥式无级变速器总体设计计算 (5) 3.1变速器运动学计算 (5) 3.2 变速箱内传动零件的尺寸 (7) 3.3 钢环无级变速器受力分析 (8) 3.4 零件之间初始间隙或过盈 (9) 3.5 强度验算 (10) 3.5.1 恒功率传动情况时 (11) 3.5.2 变速箱恒扭矩传动情况时 (13) 3.5.3 钢环强度校验计算 (14) 第四章机械分离锥式无级变速器各零件的计算 (15) 4.1 计算锥轮的尺寸和参数 (15) 4.2 钢环设计 (18) 4.3 轴系零件设计 (19) 4.4 调速操纵机构设计 (21) 4.4.1 确定齿轮的参数 (21)

钢环分离锥式无级变速器设计

目录 第一章绪论 (1) 1.1无级变速器的介绍 (1) 1.2摩擦式无级变速器 (1) 1.3摩擦式无级变速器运动原理 (1) 1.4钢环分离锥式无级变速器的优点 (3) 1.5本次课题设计任务 (3) 第二章钢环分离锥式无级变速器设计方案 (4) 2.1钢环分离锥式无级变速器简图 (4) 2.2传动零件尺寸 (4) 2.3钢环分离锥式无级变速器受力分析 (5) 2.4强度验算 (7) 2.4.1恒功率传动情况时 (8) 2.4.2恒扭矩传动情况时 (10) 2.4.3钢环强度效验计算 (11) 第三章钢环分离锥式无级变速器的计算 (13) 3.1计算锥轮的尺寸和参数 (13) 3.2钢环的设计 (14) 3.3轴系零件设计 (14) 3.4调速操纵机构设计 (16) 3.4.1确定齿轮的参数 (16) 3.4.2确定齿条的参数 (17) 3.4.3计算螺杆 (16) 3.5设计箱体 (18) 第四章强度校核 (19) 4.1刚换强度验算 (19) 4.2校验轴的强度 (20) 设计总结 (22) 致谢 (23) 参考文献 (24)

附录:英文文献翻译及原文 (25) 摘要 钢环分离锥锥轮无级变速器是机械摩擦式的一种变速器,它以钢环为中间原件,以改变主、从动锥轮的工作半径来实现无级变速。它能实现对称变速而且无需再设加压装,结构简单,时常将这种变速器应用在传动系统的高速级。首先查找变速器相关资料,了解其传动原理及设计要求和计算公式,选择材料。通过已知给定参数先求出变速器主要零件钢环和主从锥轮的相关尺寸,再根据已算出的数据和配合关系选定其主要配合原件轴承型号,然后确定锥轮各段长度和大小。再进行轴的设计,通过公式选取轴的最少直径,再结合与锥轮配合关系确定轴的各段长度及选取键和轴键等相关尺寸,根据设计手册选取有关尺寸的配合公差,选取设计调速操作机构,再由已知的零件尺寸和配合关系,根据设计手册确定箱体和端盖的基本尺寸,其后对轴和钢环进行强度校核,以确定尺寸是否满足要求。最后由算出的数据用CAD进行绘图。 关键词:钢环,锥轮,无级变速,齿轮,轴

液压机械无级变速器设计与试验分析

液压机械无级变速器设计与试验分析 摘要:液压机械无级变速器(HMCVT)兼具机械传动高效和液压传动无级调速的特点,适应了大功率拖拉机的传动要求。功率经分流机构分流,液压调速机构中的变量泵驱动定量马达,在正、反向最大速度间无级调速,液压调速机构与机械变速机构相配合,经汇流机构汇合,实现档位内微调,通过换挡机构实现档位间粗调,最终实现车辆的无级变速。 关键词:单行星齿轮;液压机械无级变速器;设计 对大马力拖拉机进行动力学和运动学分析,根据性能参数,设计一种单行星排汇流液压机械无级变速器(HMCVT),包括发动机、液压调速机构和离合器的选择,单行星齿轮、换挡机构齿轮传动比的设计。 一、变速器总体设计方案 1.变速器用途和选材。设计一种用于时速-10~30 km/h大马力拖拉机的单行星排汇流液压机械无级变速器。变速器由纯液压起步、后退档,液压机械4个前进档位和2个后退档位构成。液压调速机构选择SAUER90系列055型变量泵、定量马达及附件,采用电气排量控制(EDC)构成闭环回路。选择潍柴WP4.165柴油机作为变速器配套发动机,最大输出功率Pemax=120 kW,全负荷最低燃油消耗率gemin=190 g/kW·h,额定转速nemax=2 300 r/min,最大转矩Temax=600 N·m。汇流机构选用2K-H行星排,行星排特性参数k定义为行星排齿圈齿数与太阳轮齿数之比,取k=3.7。太阳轮、行星架材料选用20crmnti,齿圈材料选用40cr。模数为3,实际中心距为57 mm,太阳轮与行星架采用角度变位,行星架与齿圈采用高度变位。太阳轮轴连接液压调速机构可使系统增速减矩,并充分利用液压元件特性,以提高使用寿命。 2.变速器设计方案。液压机械无级变速器设计方案如图1。变速器输入轴、输出轴和液压动力输入轴成“品”字型布局,行星排通过离合器与机械动力输入轴和液压机械输出轴相连。 1.机械动力输入轴2.输入轴3.前进后退档接合套4.变量泵5.定量马达6.液压机械输出轴7.液压动力输入轴8.输出轴 图1 液压机械无级变速器结构图 离合器L1、L2由比例压力阀控制,结合平稳,起主离合器作用,其它离合器采用电磁换向阀控制,以降低成本;变速器起步和制动为纯液压传动,此时,离合器L8接合;L1~L4是行星排同步离合器,L5~L7是换挡机构离合器。所有离合器由补油泵供油,采用蓄能器减小离合器动作时的油压波动,采用大排量低压齿轮泵供油冷却润滑油路。 二、HMCVT试验台设计 HMCVT试验台用于HMCVT性能试验,试验内容包括空载损耗特性试验、无级调速特性试验、传动效率特性试验和自动调速特性试验。空载损耗试验用于考查HMCVT输出轴不加载状态下变速器功率消耗随变速器速比变化情况;无级调速特性试验用于考查发动机工作在最佳工作点下HMCVT的无级调速范围;传动效率特性试验用于考查HMCVT在不同速比下的传动效率,验证HMVCT传动的高效率特性;自动调速特性试验用于考查负载连续变化时HMCVT速比对发动机最

相关主题
文本预览
相关文档 最新文档