当前位置:文档之家› 变频器课后习题

变频器课后习题

变频器课后习题
变频器课后习题

1.什么叫变频器?变频调速有哪些应用?

答:变频器是将固定电压、固定频率的交流电变换为可调电压、可调频率的交流电的装置。变频调速的应用主要有:①在节能方面的应用。例如风机、泵类负载采用变频调速后,节电率可以达到20%~60%;②在提高工艺水平和产品质量方面的应用。例如变频调速应用于传送、起重、挤压和机床等各种机械设备控制领域;③在自动化系统中的应用。例如,化纤工业中的卷绕、拉伸、计量、导丝;玻璃工业中的平板玻璃退火炉、玻璃窑搅拌、拉边机、制瓶机;电弧炉自动加料、配料系统以及电梯的智能控制等。

1. 异步电动机变频调速的机理论是什么?答:异步电动机转速n=60f1(1—s)/p

电源频率为f1,由上试可见,调节电源频率f1,可使异步电动机的转速n得到大范围的调节。

1.晶闸管的导通条件是什么?关断条件是什么?

答:晶闸管的导通条件:在晶闸管的阳极A和阴极K间加正向电压,同时在它的门极G和阴极K间也加正

向电压。要使导通的晶闸管的关断,必须将阳极电流IA降低到维持电流IH以下,上述正反馈无法维持,管子自然关断。维持电流IH是保持晶闸管导通的最小电流。

2. 说明GTO的开通和关断原理。与普通晶闸管相比较有何不同?

答:GTO开通过程与普通晶闸管相似,在GTO阳极A和阴极K间加正向电压,同时在它的门极G和阴极K间也加正向电压。关断过程是通过在GTO控制极施加关断脉冲(门极G和阴极K间也加负向电压)实现的。

3.GTO有哪些主要参数?其中哪些参数与普通晶闸管相同?哪些不同?

答:GTO的多数参数与普通晶闸管相同,意义不同的参数有:(1)最大可关断阳极电流ITGQM (2)关断增益Goff

4. GTO为什么要设置缓冲电路?说明缓冲电路的工作原理。答:GTO关断时,抑制阳极电流下降过程中所产生的尖峰阳极电压Up,以降低关断损耗,防止结温升高;抑制阳极电压UAk的上升率du/dt,以免关断失败;GTO开通时,缓冲电容通过电阻向GTO放电,有助于所有GTO元达到擎住电流值。因此,缓冲电路不仅对GTO具有保护作用,而且对于GTO 的可靠开通和关断也具有重要意义。

以图2-13为例说明缓冲电路的工作原理。

图中R、L为负载,VD为续流二极管, LA是GTO导通瞬间限制di/dt的电感。RsCs和VDs组成了缓冲电路。 GTO的阳极电路串联一定数值的电感LA来限制di/dt,当门极控制关断时抑制阳极电流IA的下降,di/dt 在电感LA上感应的电压尖峰Up通过VDA和RA 加以限制。当GTO开通瞬间,电容Cs要通过阻尼电阻Rs向GTO放电,若Rs小,则Cs放电电流峰值很高,可能超出GTO的承受能力。为此,增加了二极管VDs,在GTO关断时,用VDs的通态内阻及GTO关断过程中的内阻来阻尼LA和Cs谐振。Rs则用于GTO开通时,限制Cs放电电流峰值,并于GTO关断末期VDs反向恢复阻断时阻尼LA和Cs谐振。

5. GTR的应用特点和选择方法是什么?

答:GTR的热容量小,过载能力低,过载或短路产生的功耗可能在若干徽秒的时间内使结温超过最大允许值而导致器件损坏。为此GTR的驱动电路既要及时准确地测得故障状态,又要快速自动实现保护,在故障状态下迅速地自动切除基极驱动信号,避免GTR损坏。保护类型包括抗饱和、退抗饱和、过流、过压、过热及脉宽限制等多方面。此外,驱动电路还得具有能在主电路故障后自动切断与主电路联系的自保护能力。

6. P-MOSFET的应用特点和选择方法是什么?

答:P-MOSFET的栅极是绝缘的,属于电压控制器件,因而输入阻抗高,驱动功率小,电路

简单。为了正确的控制P-MOSFET的开通和关断,对栅极驱动电路提出如下要求:

1)触发脉冲的前后沿要陡峭,触发脉冲的电压幅值要高于器件的开启电压,以保证P-MOSFET的可靠触发导通。

2)开通时以低电阻对栅极电容充电,关断时为栅极电容提供低电阻放电回路,减小栅极电容的充放电时间常数,提高P-MOSFET的开关速度。

3)P-MOSFET开关时所需的驱动电流为栅极电容的充放电流。P-MOSFET的极间电容越大,所需的驱动电流也越大。为了使开关波形具有足够的上升和下降陡度,驱动电流要具有较大的数值。

7.说明IGBT的结构组成特点。

答:IGBT是一种新型复合器件。输入部分为MOSFET,输出部分为GTR,它综合了MOSFET 和GTR的优点,具有输入阻抗高、工作速度快、通态电压低、阻断电压高、承受电流大的优点。

8.IGBT的应用特点和选择方法是什么?

答:IGBT的开通和关断是由栅极电压来控制的。栅极施以正电压时,MOSFET内形成沟道,从而使IGBT导通。在栅极上施以负电压时,MOSFET内的沟道消失,IGBT即为关断。

选用IGBT的参数时应注意:

1)集电极-发射极额定电压UCES。 2)栅极-发射极额定电压UGES,使用中不能超过该值。 3)额定集电极电流IC :该参数给出了IGBT在导通时能流过管子的持续最大电流。

4)集电极-发射极饱和电压UEC(sat):此参数给出IGBT在正常饱和导通时集电极-发射极之间的电压降。5)开关频率。

9. IGCT的特点是什么?

答:(1)缓冲层提高了器件的效率,降低了通态压降和开关损耗。同时,采用缓冲层还使单片GCT与二极管的组合成为可能。

(2)透明阳极采用透明阳极来代替阳极短路,可使GCT的触发电流比传统无缓冲层的GTO降低一个数量级。

(3)逆导技术逆导GCT与二极管隔离区中因为有PNP结构,其中总有一个PN结反偏,从而阻断了GCT与二极管阳极间的电流流通。(4)门极驱动技术

10. 智能功率模块IPM的应用特点有哪些?

答:IPM 内含驱动电路,可以按最佳的IGBT驱动条件进行设定;IPM内含过流(OC)保护、短路(SC)保护,使检测功耗小、灵敏、准确;IPM内含欠电压(UV)保护,当控制电源电压小于规定值时进行保护;IPM内含过热(OH)保护,可以防止IGBT和续流二极管过热,在IGBT内部的绝缘基板上设有温度检测元件,结温过高时即输出报警(ALM)信号,该信号送给变频器的单片机,使系统显示故障信息并停止工作。IPM还内含制动电路,用户如有制动要求可另购选件,在外电路规定端子上接制动电阻,即可实现制动。

1. 交-直-交变频器的主电路包括哪些组成部分?说明各部分的作用。

答:交-直-交变频器主电路包括三个组成部分:整流电路、中间电路和逆变电路。整流电路的功能是将交流电转换为直流电;中间电路具有滤波电路或制动作用;逆变电路可将直流电转换为交流电。

2. 不可控整流电路和可控整流电路的组成和原理有什么区别?

答:不可控整流电路整流元件为二极管,不可控整流电路输出的直流电压不可调节;可控整流电路的整流元件为晶闸管,利用晶闸管的可控导电性可使输出的直流电压大小可以调节。

3.中间电路有哪几种形式?说明各形式的功能。

答:中间电路有滤波电路和制动电路两种形式。滤波电路是利用电容或电感的储能特性,将整流电路输出的直流电压或电流减少谐波分量趋于稳定;而制动电路一般由制动单元和制动电阻组成,可将电动机的再生能量返送电网或消耗掉,并产生制动作用,使电动机快速停车。

4. 对电压型逆变器和电流型逆变器的特点进行比较。

答:电压型逆变器是将整流电路产生的直流电压,通过电容进行滤波后供给逆变电路。由于采用大电容滤波,故输出电压波形比较平直,在理想情况下可以看成一个内阻为零的电压源,逆变电路输出的电压为矩形波或阶梯波。

电流型逆变器是将整流输出的直流电压采用大电感滤波,因此,直流电流波形比较平直,因而电源内阻很大,对负载来说基本上是一个电流源,逆变电路输出的交流电流是矩形波。

7. SPWM控制的原理是什么?为什么变频器多采用SPWM控制?

4. 三相交-交变频有哪些连接方法?答:公共交流母线进线方式;输出星形联结方式。

5. 交-交变频有什么优点和缺点?答:交-交变频电路的优点是:只用一次变流,效率较高;可方便地使电动机实现四象限工作;低频输出波形接近正弦波。缺点是:接线复杂。

1.高(中)压变频器通常指电压等级为多少的变频器?答:高(中)压变频器通常指电压等级在1kV以上的大容量变频器。

2. 高(中)压交-交方式的变频器多用在什么场合?该方式的变频器有什么优缺点?答:交-交变频的高/中压变频器一般容量都在数千kW以上,多用在冶金、钢铁企业。交-交变频器过载能力强、效率高、输出波形好,但输出频率低,且需要无功补偿和滤波装置,使其造价高,限制了它的应用。

3. 高(中)压变频调速系统的基本形式有哪几种?画出其结构图答:⑴直接高-高型(也有的称为直接中-中型)如下图所示。

4. 简述高(中)压变频器的应用及重要意义。

答:在冶金、钢铁、石油、化工、水处理等工矿企业中,大容量的电动机基本上都是中压和

高压电动机。这类企业的风机、泵类、压缩机及各种其他大型机械的拖动电动机消耗的能源占电机总能耗的70%以上,而且绝大部分都有调速的要求,采用高(中)压变频器调速,达到节能、高效、提高产品质量的目的。

5. 高(中)压变频器的技术要求主要有哪些方面?

答:(1) 可靠性要求高;(2) 对电网的电压波动容忍度大;(3) 降低谐波对电网的影响;(4) 改善功率因数;(5) 抑制输出谐波成分;(6) 抑制共模电压和du/dt的影响。

6. 说明图5-7所示并联多重化PWM电压型变频器电路的工作原理。

答:图5-7所示为并联多重化PWM电压型变频器电路图。采用二极管构成二组三相桥式整流电路,按12脉波组态,输出为二重式,每组由六个IGBT构成一个桥式逆变单元。输出滤波器用来去除PWM的调制波中的高频成分并减少du/dt、di/dt的影响,由于频率高,滤波器的体积很小。

变频器的驱动(逆变)单元设计成模块化独立单元的形式,直流母线(DC-BUS)上可任意连接1~6个驱动单元,驱动单元可驱动同一个电机,也可以驱动不同的电机(驱动同一个电机的逆变单元一般不超过2个)。

这种设计使工厂中不同地方的设备可采用公共的直流母线供电,从而减少设备总投资,并使多电机调速系统的总功率平衡达到最优化。

7. 说明图5-8所示电路为什么称为三电平式变频器?该电路结构有什么优点?

答:由图5-8可见,变频器的整流部分由两个三相整流桥电路串联,输出12脉波的直流电压,大大减少了电网侧的谐波成分。同时,直流侧采用两个相同的电解电容串联滤波,在中间的连接处引出一条线与逆变电路中的钳位二极管相接,若将该节点视为参考点(电压为零),则加到逆变器的电平有三个:Ud、0、-Ud。所以逆变器部分是由IGBT和箝位二极管组成的三电平电压型逆变器。

三电平变频器的输出谐波比低压通用变频器低;因为省去升、降压变压器,因而结构紧凑,损耗减少,占地面积小,节省土建费用;当功率较大时,电源输入端仍设置隔离用三绕组变压器,变压器副边采用Δ和Y接法,可输出12脉冲整流电压,使得电源输入端谐波大为降低。

8. 高压变频器为什么不采用双电平控制方式? 简述三电平逆变器的工作原理。

答:三电平或多电平变频器的输出谐波比低压通用变频器低;因为省去升、降压变压器,因而结构紧凑,损耗减少,占地面积小,节省土建费用。

电压型逆变器的工作原理为:当工作电压较高时,为了避免器件串联引起的动态均压问题和降低输出谐波,逆变器可采用三电平方式,也称为中心点钳位方式(NPC),下图所示为三电平逆变器一相的结构图。

电路中的逆变器的功率开关器件VT1~VT4为IGBT,VD1~VD4为反并联的续流二极管,VD5和VD6为钳位二极管,所有的二极管均要求选用与功率开关相同的耐压等级。Ud为滤波电容C1上端的电压,0为C1、C2连接中心点的电位,-Ud为滤波电容C2下端的电压。当改变VT1~VT4的通断状态时,在输出端将获得三种不同的电压。9. 说明功率单元多级串联电压型变频器电路结构原理?若每相由5个功率单元串联得到6,000V的线电压,每个功率单元的电压大致为多少?答:依据功率单元多级串联电压叠加的原理,例如,对于额定输出电压为6kV的变频器,每相由6个低压为580V的IGBT功率单元串联而成,则叠加后输出

相电压最高可达3,480V,线电压为3*3,480V = 6,000V左右。若每相由5个功率单元串联得到6,000V的线电压,每个功率单元的电压大致为696V。

1. 变频器的主电路端子有哪些?分别与什么相连接?

答:变频器的主电路端子R、S、T连接三相交流电源;U、V、W连接三相电动机;P1、P+连接直流电抗器;P+、DB连

接外部制动电阻器;P+、N-连接制动单元;PE接地。

2.变频器的控制端子大致分为哪几类?

答:多功能数字输入、多功能数字输出、模拟输入、模拟输出、多功能继断器输出、脉冲频率输入、脉冲频率输出、RS485接口等。

3. 说明变频器的基本频率参数,如何预置?

答:1)给定频率。其设置方法常有两种:一种是用变频器的操作面板来输入频率的数字量50;另一种是从控制接线端上以外部给定(电压或电流)信号进行调节,最常见的形式就是通过外接电位器来完成。

2)输出频率。输出频率是在给定频率附近经常变化的。从另一个角度来说,变频器的输出频率就是整个拖动系统的运行频率。

3)基本频率。基本频率,用fb表示。一般以电动机的额定频率fN作为基频fb的给定值。4)上限频率和下限频率。上限频率和下限频率是指变频器输出的最高、最低频率,常用fH 和fL来表示。 5)跳跃频率。跳跃频率也叫回避频率,变频器在预置跳跃频率时通常采用预置一个跳跃区间,区间的下限是fJ1、上限是fJ2。

4. 变频器有哪些运行功能需要进行设置?如何设置?

答:变频器的运行功能参数主要有:加速时间、加速模式、减速时间、减速模式、多功能端子、程序控制等。依据变频器说明书给定的功能参数进行设置。

5. 变频器有哪些保护功能需要进行设置?

答:变频器的保护功能参数有:过电流、电动机过载、过电压、欠电压保护和瞬间停电的处理等。依据变频器说明书给定的功能参数进行设置。

6. 变频器的节能控制功能有什么意义?

答:对于风机、水泵等二次方律负载在稳定运行时,其负载转矩及转速都基本不变。如果能使其工作在最佳的节能点,就可以达到最佳的节能效果。

7. 说明设置变频器的PID功能的意义。

答:PID控制是闭环控制中的一种常见形式。反馈信号取自调速系统的输出端,当输出量偏离所要求的给定值时,反馈信号成比例的变化。在输入端,给定信号与反馈信号相比较,存在一个偏差值。对该偏差值,经过PID调节,变频器通过改变输出频率,迅速、准确地消除拖动系统的偏差,回复到给定值,振荡和误差都比较小。

1. 什么是V/f控制?变频器在变频时为什么还要变压?

答:V/f控制是使变频器的输出在改变频率的同时也改变电压,通常是使V/f为常数,变频器在变频时还要变压是为了使电动机磁通保持一定,在较宽的调速范围内,电动机的转矩、效率、功率因数不下降。

5.为什么变频器总是给出多条V/f控制曲线供用户选择?

答:给出多条V/f控制曲线供选择,是由于具体的补偿量的计算非常复杂,因此在实际操作中,常用实验的办法来选择V/f曲线。

6.V/f控制曲线分为哪些种类,分别适用于何种类型的负载?

答:V/f控制曲线的种类:1) 基本V/f控制曲线,用于低起动转矩负载; 2) 转矩补偿的V /f曲线,适用于低速时需要较大转矩的负载;3) 负补偿的V/f曲线,主要适用于风机、泵类的平方率负载;4)V/f比分段的补偿线,这种补偿线主要适合负载转矩与转速大致成比例的负载。

7.选择V/f控制曲线常用的操作方法分为哪几步?答:选择V/f控制曲线常用的操作有下面几个步骤: 1) 将拖动系统连接好,带上最重的负载。

2) 根据所带负载的性质,选择一个较小的V/f曲线,在低速时观察电动机的运行情况,如果此时电动机的带负载能力达不到要求,需将V/f曲线提高一档。依此类推,直到电动机在低速时的带负载能力达到拖动系统的要求。

3) 如果负载经常变化,在2)中选择的V/f曲线,还需要在轻载和空载状态下进行检验。方法是:将拖动系统带以最轻的负载或空载,在低速下运行,观察定子电流I1的大小,如果I1过大,或者变频器跳闸,说明原来选择的V/f曲线过大,补偿过分,需要适当调低V/f 曲线。

9.转差频率控制与V/f控制相比,有什么优点?

答:由于通过控制转差频率来控制转矩和电流,与V/f控制相比其加减速特性和限制过电流的能力得到提高。另外,它有速度调节器,利用速度反馈进行速度闭环控制,速度的静态误差小,适用于自动控制系统。

11.矢量控制有什么优越性?使用矢量控制时有哪些具体要求?

答:矢量控制系统的优点:1)动态的高速响应;2)低频转矩增大;3)控制灵活。使用矢量控制对变频器和电动机有如下要求: 1) 一台变频器只能带一台电动机。

2) 电动机的极数要按说明书的要求,一般以4极电动机为最佳。

3) 电动机容量与变频器的容量相当,最多差一个等级。如:根据变频器的容量应选配1lkW 的电动机,使用矢量控制时,电动机的容量可是1lkW或7.5kW,再小就不行了。

4) 变频器与电动机间的连接线不能过长,一般应在30m以内。如果超过30m,需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。

1.若变频器拖动的负载为笼型电动机,选择变频器时应考虑哪些问题?

答:对于笼型电动机选择变频器拖动时,主要依据以下几项要求:1)依据负载电流选择变频器;2)考虑低速转矩特性;3)考虑短时最大转矩;4)考虑容许最高频率范围;5)考虑噪声;6)考虑振动。

2. 变频器专用电机分为哪些种类?答:变频器专用电机的分类有以下几种: 1)在运转频率区域内低噪声、低振动。

2)在低频区内提高连续容许转矩(恒转矩式电机)。 3)高速用电机。

4)用于闭环控制(抑制转速变动)的带测速发电机的电机。 5)矢量控制用电机。

3.变频器的主电路端子R、S、T和U、V、W接反了会出现什么情况?电源端子R、S、T连接时有相序要求吗?

答:变频器的主电路端子R、S、T和U、V、W接反了会出现烧坏变频器的严重后果。电源端子R、S、T连接时一般没有相序要求。

4.主电路电源输入侧连接断路器有什么作用?断路器如何选择?

答:连接断路器的作用:1)接通和分断负载电路;2)隔离作用;3)保护作用。

通常情况下低压断路器的额定电流IQN应选:IQN ≥(1.3 ~1.4)IN

在电动机要求实现工频和变频的切换控制的电路中,断路器应按电动机在工频下的起动电流来进行选择IQN ≥ 2.5 IMN

5.主电路中接入交流电抗器有什么作用?答:主电路中接入交流电抗器,可起到以下作用:1) 减少变频器的输入电流谐波含量;2) 改善三相输入电流的不平衡;3) 抑制电源系统的瞬变干扰;4) 提高功率因数。

6.制动电阻与制动单元有什么不同?答:制动电阻与制动单元的功能是当电动机因频率下降或重物下降(如起重机械)而处于再生制动状态时,避免在直流回路中产生过高的泵生电压。制动电阻是把泵生电压变为热能消耗掉,而制动单元一般具有将泵生电压回馈电网的作用。制动电阻的选择:1)制动电阻RB的大小;2) 制动电阻的功率PB;3)常用制动电阻的阻值与容量的选择可参考变频器说明书。制动单元的配置可参考变频器说明书。

1. 变频器储存时应注意哪些事项?

答:①必须放置于无尘垢、干燥的位置。

②储存位置的环境温度必须在-20℃~+65℃范围内。③储存位置的相对湿度必须在0%~95%范围内,且无结露。④避免储存于含有腐蚀性气体、液体的环境中。⑤最好适当包装存放在架子或台面上。

⑥长时间存放会导致电解电容的劣化,必须保证在6个月之内通一次电,通电时间至少5小时,输入电压必须用调压器缓缓升高至额定值。

2. 变频器的安装场须满足什么条件?

答:变频器装设的电气室应湿气少、无水浸入;无爆炸性、可燃性或腐蚀性气体和液体,粉尘少;装置容易搬入安装;有足够的空间,便于维修检查;备有通风口或换气装置以排出变频器产生的热量;与易受变频器产生的高次谐波和无线电干扰影响的装置分离。若安装在室外,必须单独按照户外配电装置设置。

3. 变频器安装时周围的空间最少为多少?

答:变频器在运行中会发热,为了保证散热良好,必须将变频器安装在垂直方向,切勿倒装、倾斜安装或水平安装。其上下左右与相邻的物品和挡板(墙)必须保持足够的空间,左右5cm 以上,上下15cm以上。

4.变频器传动笼型电动机,电动机铭牌数据为,额定电压220V、功率11kW,4极、额定电流22.5A,电缆铺设距离50m,线路电压损失允许在额定电压2%以内,试选择所用电缆的截面大小?

解:(1)求额定电压下的容许电压降。

(3)根据计算出的电阻选用导线。

由计算出的RC值,从厂家提供的相关表格中选用电缆,如表10-1列出的常用电缆选用表,从中看到,应选电缆电阻2.54Ω/km以下的电缆,截面积为9mm2。

5.变频器系统的主回路电缆与控制回路电缆安装时有什么要求?

答:选择主回路电缆时,须考虑电流容量、短路保护、电缆压降等因素。一般情况下,变频器输入电流的有效值比电机电流大。安装时变频器与电机之间的连接电缆尽量短,接地回路须按电气设备技术标准所规定的方式施工。

变频器控制回路的控制信号均为微弱的电压、电流信号,控制电缆的截面选择必须考虑机械强度、线路压降、费用等因素。控制回路易受外界强电场或高频杂散电磁波的影响,易受主电路的高次谐波场的辐射及电源侧振动的影响,因此,必须对控制回路采取适当的屏蔽措施。主回路电缆与控制回路电缆必须分离铺设,相隔距离按电器设备技术标准执行。

6.变频器运行为什么会对电网产生干扰?如何抑制?

答:变频器的整流电路和逆变电路都是由非线性器件组成,其电路结构会导致电网的电压电流波形发生畸变,作为对低压配电线路谐波的管理标准,电压的综合畸变率应在5%以下。若电压畸变率高于5%,可以用接入交流电抗器或直流电抗器的方法抑制高次谐波电流,使受电点电压畸变率小于5%。

7.电网电压对变频器运行会产生什么影响?如何防止?

答:电网三相电压不平衡时,会使变频器输入电流的波形发生畸变。当不平衡率大于3%时,变频器输入电流的峰值就显著变大,将导致三相电流严重失衡,从而造成连接的电线过热,变频器过压、过流,并使整流二极管将因电流峰值过大而烧毁,也有可能损坏电解电容。为减少三相电压不平衡造成的负面影响,同样可在变频器的输入侧加装交流电抗器,并在直流侧加装直流电抗器。

8.说明变频器系统调试的方法步骤?答:变频器系统的调试步骤:1)通电前检查;2) 在断开电动机负载的情况下,对变频器通电检查;3) 空载试验;4) 负载试验。

9.在变频器的日常维护中应注意些什么?

答:(1)只有受过专业训练的人才能拆卸变频器并进行维修和器件更换。

(2)维修变频器后不要将金属等导电物遗漏在变频器内,否则有可能造成变频器损坏。(3)进行维修检查前,为防止触电危险,请首先确认以下几项:①变频器已切断电源;②主控制板充电指示灯熄灭;③用万用表等确认直流母线间的电压已降到安全电压(DC36V以下)。(4)对长期不使用的变频器,通电时应使用调压器慢慢升高变频器的输入电压直至额定电压,否则有触电和爆炸危险。

10.结合图10-19,说明变频器主电路的不同位置进行电量测量时,应分别使用什么仪表?答:1)电源侧电压U1和电流I1,采用电磁式仪表。 2)电源侧功率P1采用电动式仪表。 3)输出侧电压U2采用整流式仪表。 4)输出侧电流I2采用电磁式仪表。 5)输出侧功率P2采用电动式仪表。 6)整流器输出采用磁电式仪表。

11.变频器的常见故障有哪些?应如何处理?

答:1)电源故障处理。如电源瞬时断电或电压低落出现“欠电压”显示;瞬时过电压出现“过电压”显示,都会引起变频器跳闸停机。待电源恢复正常后即可重新起动。

2)外部故障处理。如输入信号断路,输出线路开路、断相、短路、接地或绝缘电阻很低,电动机故障或过载等,变频器即显示“外部”故障而跳闸停机,经排除故障后,即可重新启用。

3)内部故障处理。如内部风扇断路或过热,熔断器断路,器件过热,存储器错误,CPU故障等,可切换至工频运行,不致影响生产;待内部故障排除后,即可恢复变频运行。

4)功能参数设置不当的处理。当参数预置后,空载试验正常,加载后出现“过电流”跳闸,可能是起动转矩设置不够或加速时间不足;也有的运行一段时间后,转动惯量减小,导致减速时“过电压”跳闸,修改功能参数,适当增大加速时间便可解决

1.按照转子结构的不同,三相异步电动机分为哪两大类?从运行可靠性上看,上述哪一类电动机具有优越性?笼型和线绕型两大类。笼型电动机更具有优越性。

2.三相异步电动机有哪些调速方式?并比较其优缺点。

答:三相异步电动机有变极调速、变转差率调速和变频调速三种调速方式。

变极调速是有级调速,调速的级数很少,只适用于特制的笼型异步电动机,这种电动机结构复杂,成本高。变转差率调速时,随着s的增大,电动机的机械特性会变软,效率会降低。变频调速具有调速范围宽,调速平滑性好,调速前后不改变机械特性硬度,调速的动态特性好等特点。

3.变频调速时,改变电源频率?1 的同时须控制电源电压U1,试说明其原因。

答:在变频调速时,若?1下降,U1不变,则Φm上升。因为Φm已设计在接近饱和处,Φm 上升即进入磁化曲线的饱和区,引起工作电流大幅度增加,使电动机过热损坏;若?1上升,U1不变,则Φm下降,将使工作电流下降。由于电流的下降,电动机的输出转矩不足。为了保持电动机的Φm不变,即电动机的转矩不变,在?1变化的同时,U1必须同时变化,使U1与?1的比值保持恒定,即U1/?1 =常数。

4.脉冲宽度调制技术通过按照一定的规则和要求对一系列脉冲宽度进行调制,来得到所需要的等效波形的技术

5.PWM 逆变电路的单极性控制和双极性控制有什么区别?

答:单极性SPWM控制方式在任一半个周期中,SPWM波只能在一个方向变化。双极性SPWM 控制方式在任一半个周期中,SPWM波在正、负两个方向交替变化。

6.变频器由几部分组成?各部分都具有什么功能?

答:变频器由两大部分组成,即主电路和控制电路。主电路包括整流滤波电路、逆变电路、制动单元。控制电路包括计算机控制系统、键盘与显示、内部接口及信号检测与传递、供电电源、外接控制端子等。

7.变频器的主电路由整流、滤波和逆变三大部分组成,试述各部分的工作过程。

答:整流电路是由6只二极管组成,利用二极管的单向导电性将三相工频交流电全波整流为脉动直流电。滤波电路由2只电容构成,利用电容电压不能突变的原理,将整流后的脉动直流电波动程度减小。逆变电路是由6只IGBTVT6电进行滤波组成的三相逆变桥,三相逆变桥由计算机控制将直流电逆变为三相SPWM波,驱动电动机工作。

8.变频器是怎样分类的?

按变换环节分:交-直-交型,交-交-型按改变变频器的输出电压的方法分:PWM型,PAM 型按电压的等级分低压变频器:高压大容量变频器按滤波方式分电压型电流型

按用途分专用型变频器通用型变频器

9.变频器为什么具有加速时间和减速时间设置功能?如果变频器的加、减速时间设为0,起动时会出现什么问题?加、减速时间根据什么来设置?

答:变频器起动时,为了使起动电流不超过允许的最大电流,是从0频率开始,经过一定时间上升到工作频率。电动机在恒转矩作用下,也从0速跟随变频器的输出频率逐渐上升到工作转速。变频器从0频率上升到工作频率所用时间用加速时间来定义。变频器从正常工作频率下降到0频率,同样也需要一定时间,这个时间用减速时间来定义。如果变频器的加、减速时间设为0,起动时启动电流会很大,可能会烧坏电机。

加、减速时间的设置要根据具体的负载要求而定,设置太长造成时间浪费,设置太短又会产生很多不利因素。

10.变频器的回避频率功能有什么作用?在什么情况下要选用这些功能?

答:变频器的回避频率功能可以使变频器的输出跳过某个或某段频率,即不输出某个或某段频率。在机械传动中不可避免地要发生振动,当电动机的转速等于机械系统的固有频率时,振动加剧,甚至使机械系统不能正常工作。为了避免使机械系统发生谐振,采取回避频率的方法,即将发生谐振的频率跳过去。

11.变频器的输出频率可以分段运行,分段运行又分为“程序运行”和“外端子控制运行”,解释这两种段速运行的主要区别。

答:按程序运行时应先编制段速程序,在编制段速程序时先设置各段速的频率,再设置各段速的执行时间、各段速的频率上升与下降时间及运转方向。将执行指令设置为按程序运行,当程序运行指令到达,变频器按段速运行,并可由输出指示端子发出每段速度结束和整个程序结束的指示信号。

由外端子控制运行时先设置多段速由外控制端子控制及设置具体的控制端子,然后根据需要设置各段速频率,执行时通过外部设定的功能端子对段速进行控制,各段速的运行时间由控制端子确定

12.频率增益用途:通过调整变频器的频率增益,可以用同一控制信号进行多台变频器的比例运行控制。

13.什么是基本U∕f控制方式?为什么在基本U∕f控制基础上还要进行转矩补偿?转

矩补偿分为几种类型?各在什么情况下应用?

答:U∕f控制方式是变频器的基本控制方式。电动机在变频调速过程中,为了保持Φm 磁通恒定,必须保持 U∕f =常数,即变频器的输出频率从0上升到额定频率fN时,输出电压也从0上升到额定电压UN。

U∕f控制方式要求U∕f =常数。当频率比较低时,其输出电压也比较低,由于电动机定子绕组的电阻值是不变的,在低频时使流过绕组的电流下降。由于绕组的电流下降,电动机的转矩不足。所以在基本U∕f控制基础上还有进行转矩补偿。

常用的几种转矩补偿方法有:1.在额定电压和基准频率下线性补偿;2.在额定电压和基本频率下分段补偿;3.平方率补偿。

在额定电压和基准频率下线性补偿适用于对转矩要求不高的场合。在额定电压和基本频率下的分段补偿分为正补偿和负补偿,正补偿曲线在标准U∕f曲线的上方,适应高转矩运行的场合;负补偿曲线在标准U∕f曲线的下方,适应于低转矩运行的场合。平方率补偿多应用于风机和泵类负载的补偿。

14.变频器为什么要有瞬时停电再起动功能?若变频器瞬时停电时间很短,采取什么样的再起动方法?

答:变频器在瞬时停电时就会停止输出,此时电动机的转速也随即下降。复电后变频器具有重新起动功能,但起动时应知道此时电动机的转速,以采取与电动机转速相接近的起动频率重新起动。因此变频器都设置了瞬时停电再启动功能。若变频器的停电时间很短,

对于大惯性负载,停电时间很短时电动机的转速下降很少,可将重起频率设置为停电时的输出频率;小惯性负载,在停电期间电动机的转速已下降很多,就得将重起频率设置为较低的频率

15.既然变频器的输出频率可以从0Hz调节到额定频率以上,为什么有些场合还要采取一级齿轮降速传动?答:当调速范围和转矩不符合负载要求时,可采取一级齿轮降速传动。

16.既然矢量控制变频器性能优于基本U/f 控制变频器,为什么很多应用场合还要选择基本U/f控制变频器?

答:选择基本U/f控制变频器即能够满足符在要求,不必选择性价比更高的矢量控制变频器。

17.为什么根据工作电流选取变频器,更能使其安全工作?

答:选择变频器时,通常以电动机容量和电动机的工作状态为依据,由于变频器输出回路是逆变电路,其输出电流的过载能力很差,因此,当电动机的额定电压选定后,选择变频器容量主要是核算变频器的输出电流,输出电流满足了要求,变频器就可以安全工作了。

18.变频器垂直安装?方便散热通风是否每台变频器都必须加装电磁选件?是的。

19.为什么要把变频器与其他控制部分分区安装?抑制变频器工作时的电磁干扰。

20.变频器的信号线和输出线都采用屏蔽电缆安装,其目的有什么不同?

答:信号线其目的防止干扰信号串入;输出线目的避免其影响其它设备的工作。

21.变频器定期检查的主要项目及维护方法是什么?

答、一般的定期检查应一年进行一次,绝缘电阻的检查可以三年进行一次。定期检查的重点是变频器运行时无法检查的部位,重点检查冷却系统,即冷却风机和散热器,冷却风机主要是轴承磨损,散热器要定期清洁;电解电容器受周围温度及使用条件的影响,容量变小或老化;接触器触点有无磨损或接线松动;充电电阻是否过热;接线端子有无松动及控制电源是否正常。

22.变频调速时,为什么常采用恒压频比(U/f=常数)的控制方式?

答、交流电动机在变频调速时,若保持U/f=常数,可以使电动机的气隙磁通φ维持不变,而使电动机的输出转矩T保持恒定,从而获得恒转矩的调速特性。

23.三相异步电动机变频调速优点?具有优良的调速性能,能充分发挥三相笼型异步电动机的优势,实现平滑的无级调速,调速范围宽,效率高,但变频系统较复杂,成本较高。

24.选择变频器驱动电动机时,应考虑哪些问题?

答、选择异步电动机时,应根据电动机所驱动的机械负载的情况恰当的选择其容量,还要根据电动机的用途和使用环境选择适当的结构形式和防护等级等。对于通用的异步电动机,还应考虑到变频器调速应用时产生的一些新问题,如由高次谐波电流引起的损耗和温升以及低速运行时造成的散热能力变差等。

25.变频调速系统一般分为哪几类?

答、变频调速系统一般可分为交-交变频和交-直-交变频两大类,一般常用的都是交-直-交变频器。在这类变频器中,又可按输出电压调节方法的不同分为PAM和PWM两类;按中间回路对无功能量处理方式的不同分为电压型和电流型两类;按控制方式的不同分为U/f比例控制、转差频率控制及矢量控制等三类。

26.通用变频器一般分为几类?在选用通用变频器时主要按哪些方面进行考虑?

答、通用变频器分为简易型、多功能型、高性能型等三类。在选择变频器时,一般根据用途和需要进行选择,主要从变频器的类型、性能和功能、容量的大小及输出电压的大小等几方面来进行考虑。

27.什么叫逆变颠覆?逆变颠覆的原因有哪些?防止逆变颠覆的措施有哪些?

答:当变流器逆变工作时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者是整流桥的输出平均电压和直流电源变成顺向串联,由于逆变电路的内阻很小,形成很大的短电流,这种情况称为逆变颠覆、逆变颠覆的原因有、1)触发电路不可靠、触发电路不能适时地、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延迟等,致使晶闸管工作失常。2)晶闸管发生故障、在应该阻断期间,元件失去阻断能力,或在应该导通时,元件不能导通。3)交流电源发生异常现象,指在逆变工作时,交变电源突然断电、缺相或电压过低等现象。4)换相的裕量角Q太小,逆变工作时,必须满足β>βmin的关系,并且留有裕量角Q,以保证所有的脉冲都不会进入βmin范围内。防止逆变颠覆的措施有、1)选用可靠的触发器。2)正确选择晶闸管的参数。3)采取措施,限制晶闸管的电压上升率和电流上升率,以免发生误导通。4)逆变角β不能太小,限制在一个允许的角度内。5)装设快速熔断器快速开关,进行过流保护。

变频调速-习题及答案)

变频调速-习题及答案)

课后辅导题一 一、选择题 1、正弦波脉冲宽度调制英文缩写是( C )。 A:PWM B:PAM C:SPWM D:SPAM 2、三相异步电动机的转速除了与电源频率、转差率有关,还与( B ) 有关系。 A:磁极数B:磁极对数C:磁感应强度D:磁场强度 3、目前,在中小型变频器中普遍采用的电力电子器件是( B )。 A:SCR B:GTO C:MOSFET D:IGBT 4、IGBT属于( B )控制型元件。 A:电流B:电压C:电阻D:频率 5、变频器种类很多,其中按滤波方式可分为电压型和( A )型。 A:电流B:电阻C:电感D:电容 6、电力晶体管GTR属于( A )控制型元件。 A:电流B:电压C:电阻D:频率 二简单综合题 1、按照转子结构的不同,三相异步电动机分为哪两大类?从运行可靠性 上看,上述哪一类电动机具有优越性? 2、三相异步电动机的转速n与哪些因素有关? 答:三相异步电动机的转速n与电源频率?1、磁极对数P、转差率s有关。 3、三相异步电动机有哪些调速方式?并比较其优缺点。 答:三相异步电动机有变极调速、变转差率调速和变频调速三种调速方式。 变极调速是有级调速,调速的级数很少,只适用于特制的笼型异步电动机,这 种电动机结构复杂,成本高。变转差率调速时,随着s的增大,电动机的机械 特性会变软,效率会降低。变频调速具有调速范围宽,调速平滑性好,调速前 后不改变机械特性硬度,调速的动态特性好等特点。 5、 4、在三相异步电动机的机械特性曲线上,标出与下列转速对应的转矩:、、 。 速时,改变电源频率? 的同时须控制电源电压U1,试说明其原因。 1 下降,U1不变,则Φm上升。因为Φm已设计在接近饱和 答:在变频调速时,若? 1 处,Φm上升即进入磁化曲线的饱和区,引起工作电流大幅度增加,使电动机过 上升,U1不变,则Φm下降,将使工作电流下降。由于电流的下降, 热损坏;若? 1 电动机的输出转矩不足。为了保持电动机的Φm不变,即电动机的转矩不变,在 ? 变化的同时,U1必须同时变化,使U1与?1的比值保持恒定,即U1/?1 =常数。 1

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

变频器原理及应用复习题

变频器原理与应用复习题 一、填空题 1.变频器,按滤波方式不同可分为电压型和电流型两种。 2.变频器,按用途不同可分为通用型和专用型。 3.变频器的组成可分为主电路和控制电路。 4.变频器安装时,要求垂直安装,并且在其正上方和正下方避免存在阻挡进风、出风的大部件。 5.变频器是将工频交流电变为电压和频率可调的交流电的电器设备。 7.变频调速时,基本频率以下的调速属于恒转矩调速,基本频率以上的属于恒功率调速。8.变频器的显示屏可分为LED显示屏和液晶显示屏。 9.节能运行只能用于 U/f 控制方式,不能用于矢量控制方式。 10.对变频器接线时,输入电源必须接到变频器输入端子 R、S、T 上。 11.对变频器接线时,电动机必须接到变频器输出端子 U、V、W 上。 12.通过通讯接口,可以实现在变频器与变频器之间或变频器与计算机之间进行联网控制。 13.变频器的通、断电控制一般采用空气开关和接触器,这样可以方便地进行自动或手动控制,一旦变频器出现问题,可立即切断电源。 14.SPWM是正弦波脉冲宽度调制的英文缩写。 15.变频器的加速时间是指从 0 赫兹上升到基本频率所需要的时间。 16.变频器的减速时间是指从基本频率下降到 0 赫兹所需要的时间。 17.变频器的加速曲线有三种:线形上升方式、S型上升方式和半S型上升方式。18.当故障排除后,必须先复位,变频器才可重新运行。 19.为了避免机械系统发生谐振,采用设置回避频率的方法。 20.变频调速过程中,为了保持磁通恒定,必须保持 U/F=常数。 21.变频器的平方律补偿法,多应用于风机和泵类负载。 22.为了提高电动机的转速控制精度,变频器具有矢量控制功能。 23.变频器调速系统中,禁止使用反接制动。 24.变频器的PID功能中,P指比例调节,I指积分调节,D指微分调节。 25.变频器的输出侧不能接移相电容或浪涌吸收器,以免造成开关管过流损坏或变频器不能正常工作。 26.变频器运行控制端子中,FWD代表正转。 27.变频器运行控制端子中,REV代表反转。 28.变频器运行控制端子中,JOG代表点动。 29.变频器运行控制端子中,STOP代表停止。

《变频器应用技术》复习题

《变频器应用技术》复习题 一、选择题 1、正弦波脉冲宽度调制英文缩写是(C)。 A:PWM B:PAM C:SPWM D:SPAM 2、对电动机从基本频率向上的变频调速属于(A )调速。 A:恒功率B:恒转矩 C:恒磁通D:恒转差率 3、下列哪种制动方式不适用于变频调速系统( C )。 A:直流制动B:回馈制动 C:反接制动D:能耗制动 4、对于风机类的负载宜采用(D)的转速上升方式。 A:直线型B:S型C:正半S型D:反半S型 5、FR- D740- 1.5 K-CHT系列三菱变频器的启动指令由功能码( B )设定。 A:Pr.9 B:Pr.79 C:Pr.40 D:Pr.82 6、FR- D740- 1.5 K-CHT系列三菱变频器的电源电压是( B )V。 A:200 B:220 C:400 D:440 7、三相异步电动机的转速除了与电源频率、转差率有关,还与(A)有关系。 A:磁极数B:磁极对数C:磁感应强度D:磁场强度 8、目前,在中小型变频器中普遍采用的电力电子器件是(D)。 A:SCR B:GTO C:MOSFET D:IGBT 9、IGBT属于(B)控制型元件。 A:电流B:电压C:电阻D:频率 10、变频器的调压调频过程是通过控制(B)进行的。 A:载波B:调制波C:输入电压D:输入电流 11、为了适应多台电动机的比例运行控制要求,变频器设置了( A )功能。 A:频率增益 B:转矩补偿 C:矢量控制 D:回避频率 12、为了提高电动机的转速控制精度,变频器具有(B)功能。 A:转矩补偿 B:转差补偿 C:频率增益 D:段速控制 13、变频器安装场所周围振动加速度应小于(A)g 。 A: 1 B:0.5 C:0.6 D:0.8 14、变频器种类很多,其中按滤波方式可分为电压型和(A)

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护 1、概述 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:4极电机 60Hz 1,800 [r/min],4极电机 50Hz 1,500 [r/min],电机的旋转速度同频率成比例。本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机

变频器原理经典图集

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

变频器原理及应用第7章习题解答

第7章 思考题答案 1. 异步电动机的变频调速的理论依据是什么? 答:三相交流电动机的同步转速(即定子旋转磁场转速)n 0可表示为 p f n 1060= 如果将电源频率调节为f x ,则同步转速n 0x 也随之调节成 p f n x x 600= 异步电动机变频后的转速n x 的表达式为 )1(60)1(0s p f s n n x x x -=-= 这就是异步电动机变频调速的理论依据。 2. 简述异步电动机常用的起动和制动方法。 答:在生产中,除了小容量的三相异步电动机能直接起动外,一般要采取不同的方法起动,比如自耦变压器降压起动、串电阻或电抗器降压起动、Y-Δ降压起动等。在变频调速系统中,变频器用降低频率f 1从而也降低了U 1的方法来起动电动机。 三相异步电动机的制动方式有直流制动、回馈制动和反接制动等。 3. 传统的异步电动机调速方法有哪些? 答:三相异步电动机的调速方式主要有三种,即变极调速、变转差率调速和变频率调速。 4. 实现异步电动机变频调速有哪些要求? 答:在额定频率以下,即f 1<f N 调频时,同时下调加在定子绕组上的电压,即恒V /f 控制。这时应当注意的是,电动机工作在额定频率时,其定子电压也应是额定电压,即: f 1 = f N U 1=U N 若在额定频率以上调频时,U 1就不能跟着上调了,因为电动机定子绕组上的电压不允许超过额定电压,即必须保持U 1=U N 不变。 5. 异步电动机变频调速时,在额定频率以下调节频率,必须同时调节加在定子绕组上的电压,即恒V /f 控制,为什么? 答:由于额定工作时电动机的磁通已接近饱和,ΦM 增加将会使电动机的铁心出现深度

变频器总复习题

一、填空题 1.变频器按变换环节分为(交—交变频器)和(交—直—交变频器);前者称为(直接式变频器),后者称为(间接式变频器)。 2.变频器按直流电源的性质分为(电流型变频器)和(电压型变频器)。 3.电流型变频器的中间直流环节采用(大电感器)作为储能元件,常应用于(负载电流)变化较大的场合;电压型变频器的中间直流环节采用(大电容器)作为储能元件,常应用于(负载电压)变化较大的场合。 4.变频器按电压的调制方式分为(脉宽调制[SPWM])变频器和(脉幅调制[PAM])变频器。 5.变频器的功用是将(频率固定)的交流电变换成(电压频率连续可调)的三相交流电,以供给电动机运转的电源装置。 6.变频器的额定功率指的是它适用的(4极交流异步电动机的功率)。 7.输出电抗器的主要作用是(补偿长线分布电容)的影响,并能抑制变频器输出的(谐波),起到减小(噪声)的作用。 8.把功率开关、驱动电路和故障检测电路集成在一起的智能功率模块,称为(IPM)。 9.(IEGT)是融合了IGBT与GTO优点的一种新型电力电子器件。 10.EXB系列集成驱动器是结合(IGBT)模块的特点而研制和开发的专用集成驱动器。 11.三相电源的线电压为380V,则通用变频器直流母线的平均电压是(513 )V。在过电压发生时,直流母线的储能电容将被充电,当电压上升至(760V)左右时,变频器过电压保护动作。 12.电流型变频器输出的电流波形为(矩形波),与负载性质无关;当带电动机负载时,输出的电压波形为近似(正弦波);而电压型变频器输出的交流电压波形为(矩形波)。 13.在基频以下,变频器的输出电压随输出率的变化而变化,适合变频调速系统的(恒转矩负载特性);在基频以上,变频器的输出电压维持电源额定电压不变,适合变频调速系统的(恒功率负载特性)。 14.变频器和主电源间常用的切换方式有(冷切换)和(热切换),后者又可分为(硬切换)和(软切换)。 15.变频器供电电源异常表现的形式有(缺相)、(电压波动)和(瞬间停电)。 16.变频调速系统过载的主要原因有(电动机拖动的负载太重)、(电动机三相电压不平衡)和(误动作)。 17.专用的交流变频频如果标注5~100Hz为恒转矩,100~150Hz为恒功率,则基频应该设置为(100)Hz。 18 .变频器的额定容量为在连续不变的负载中,允许配用的最大负载容量。只允许150%负载时运行(1min) 19. 变频器的控制电路由(运算电路)、(电压电流检测电路)、(驱动电路)和(I/O电路)等组成。 20. 矢量控制的实质是将(交流电动机)等交成(直流电动机),分别对(速度)、(磁场)进行独立控制。 21. 变频器的驱动电路一般有(由分立元件组成)驱动电路、(光电耦合)驱动电路、(厚膜)驱动电路和(专用集成) 驱动电路等。 22.目前,变频器的主电路和拓扑结构为:变频器的网侧交流器对于低压小容量的常采用(6脉冲)变流器;对中压量 的常采用(多重化12脉冲以上)的变流器;负载侧变流器对低小容量的常采用(两电平的桥式)逆变器;对中压大容量的采用(多电平)逆变器。 23.变频器容量选择的基本原则是(负载电流)不超过变频器的(额定电流)。 24.变频调速系统采用的输入输出电抗器分为(铁心电抗器)和(铁氧体电抗器)。 26、当电动机所带的负载小于额定值时,出现欠载现象;当电动机所带的负载超过额定值时,出现过载现象。 27、机械特性是指电动机在运行时,其转速与电磁转矩之间的关系。 30、异步电动机的制动有再生制动、直流制动、反接制动。其中直流制动和反接制动常用于使 电动机迅速停止的过程中,而再生制动在工作过程中,产生与转子实际旋转方向相反的电磁转矩,电动机此时不消耗能量,而是将拖动系统的动能再生返还给电网。 31、异步电动机的调速中负载是没有改变,而是改变拖动系统的转速或频率,转速值可以从不 同的机械特性曲线上得到;而速度改变是负载的变化引起转速的变化,转速值则是从同一 机械特性曲线上得到。 32、电动机调速性能的衡量指标:调速范围、调速的平滑性、调速的经济性、调速后工作特性。 34、电动机在运行时的发热情况是判断电动机能否正常工作的重要标志之一。 35、从发热方面来看,选择电动机的原则是:电动机在运行时的稳定温升不能超过允许温升

变频器完整电路图(清晰版)

6&+('$ $ & 6 3&% $&2',&( '$7$ 25,*,1$/( 8/7,0$ 5(9 *8,'$ 5(9 15 )* 5(9 352*(77,67$ 9,7$/, )$%,2&200(66$ 8 '(6&5,=,21(6&+('$ &219(57,725( 6,1862,'$/( ',*,7$/( (/(1&2 '2&80(17$=,21( O DVWHULVFR LQGLFD OD GRFXPHQWD]LRQH LQWHUHVVDWD GDOO XOWLPD PRGLILFD 120( 120( 120( 120( 120( ( B ( B ( B ( B ( B ( B ( B / B 7 B 7 B 0 B 127( ', 0217$**,2 1 0217 '$ 87,/,==$5( 3(5 ,/ &20321(17( 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 5(9 '$7$ (6(*8,7$ '$'(6&5,=,21( 02',),&$ 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD ,O FRGLFH ( SURP VX ULFKLHVWD GHOO?XIILFLR 647 6LJ 3DVTXHWWL q VSRVWDWR QHOOD GLVWLQWD FRQ OD OHWWHUD ILQDOH 7 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD ,O FRGLFH 3RQWH UDGGUL]]DWRUH q VWDWR WROWR GDOOD GLVWLQWD SHUFKp XWLOL]]DWR QHOO?DVVLHPH GHOO?D]LRQDPHQWR 5XQQHU %DVH 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD 9DULDWR LO YDORUH GHOOD UHVLVWHQ]D 5 GD RKP D RKP ,QVHULWL L FRGLFL GHOOH IDVFHWWH QHOOH PLQXWHULH GHOOD VFKHGD

PLC与变频器技术应用复习题

《PLC与变频器技术应用》复习题 1.填空题 (1)PLC是通过一种周期扫描工作方式来完成控制的,每个周期包括输入采样、程序处 理、输出刷新三个阶段。 (2)定时器的线圈开始定时,定时时间到,常开触点闭合,常闭触点断开。 (3)通用定时器被复位,复位后其常开触点断开,常闭触点闭合,当前值变为0。 (4)OUT指令不能用于输入寄存器X 继电器。 (5)M8002 是初始化脉冲。当PLC处于RUN状态时,M8000一直为ON 。 (6)FX2N型PLC的输入/输出继电器采用八进制进行编号,其他所有软元件均采用十 进制进行编号。 (7)若梯形图中输出继电器的线圈“通电”,对应的输出映像寄存器为 1 状态,在输出 处理阶段后,继电器输出模块中对应的硬件继电器的线圈得电,其常开触点闭合,外部负载得电。 (8)外部输入电路断开时,对应的输入映像寄存器为状态0 ,梯形图中对应的输入继电 器的常开触点断开,常闭触点闭合。 (9)说明下列指令意义。 ORB _____块或______________;RST_________复位___________; LDI_______取反____________ _;MPP_________进栈___________; SET________置位____________;PLS______上升沿微分_________; (10)在PLC指令中,分别表示置位和复位的指令是SET、RST。 (11)计数器的当前值等于设定值时,其常开触点闭合,常闭触点断开。复位输入电 路断开时,计数器被复位,复位后其常开触点断开,常闭触点闭合,当前值为0。 (12)变频器具有多种不同的类型:按变换环节可分为交-直-交变频器和交-交变频 器;按改变变频器输出电压的方法可分为脉幅调制(PAM) 变频器和脉宽调制(PWM) 变频器。 (13)变频调速时,基频以下的调速属于恒转矩调速,基频以上的调速属于恒功率调 速。 (14)变频器是把电压、频率固定的工频交流电变为电压可调和频率可调的交流电的 变换器。 (15)在U/f控制方式下,当输出频率比较低时,会出现输出转矩不足的情况,要求变频器具 有转矩补偿功能。 (16)三相异步电动机的转速除了与电源频率、转差率有关,还与磁极对数有关。

变频器工作原理图解

变频器工作原理图解-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫 IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

变频器原理与应用习题

1.功率二极管的主要参数、选型原则。P9 主要参数:1.额定正向平均电流I F 2.反向重复峰值电压U RRM 3.正向平均电压U F 选用原则:1.选择额定正向平均电流I F的原则I F=(1.5~2)I DM/1.57 2.选择反向重复峰值电压U RRM的原则U RRM=(2~3) U DM 2.IGBT的主要参数及含义。P26 1.集电极-发射极击穿电压U CES这个电压值是厂家根据器件的雪崩击穿电压而规定的,是栅极-发射极短路时IGBT所能承受的电压值,即U CES值小于等于雪崩击穿电压。 2.栅极-发射极击穿电压U GES U GES就是栅极控制信号的额定电压值。 3.集电极额定最大直流电流I C该值给出了IGBT在到同时能流过管子的持续最大电流。 4.集电极-发射极间的饱和压降U CE该值给出了IGBT在正常饱和导通时集电极-发射极之间的电压降。 5.开关频率开关频率是以东同事间t on、下降时间t f、和关断时间t off给出的。 3.晶闸管对触发电路的要求及触发电路的分类。P13 要求:1.触发脉冲应具有足够的功率和一定的宽度。2.触发脉冲与主电路电源电压必须同步。3.触发脉冲的移相范围应满足变流装置提出的要求。 分类:依控制方式可分为相控式触发电路、斩控式触发电路;依控制信号性质可分为模拟式触发电路、数字式触发电路;依同步电压形成可分为正弦波同步触发电路、锯齿波同步触发电路。 4.IPM的主要特点是什么(主要组成部分及作用)?P30 IPM内含驱动电路,可以按最佳的IGBT驱动条件进行设定;IPM内含过电流保护、短路保护、使检测功耗小、灵敏、准确;IPM内含欠电压保护,当控制电源电压小于规定值时进行保护;IPM内含过热保护,可以防止IGBT和续流二极管过热,在IGBT内部的绝缘基板上设有温度检测元件,结温过高时即输出报警信号,该信号送给变频器的单片机,使系统显示故障信息并停止工作。IPM还内含制动电路,在外电路规定端子上接制动电阻,即可实现制动。 5.画出交-直-交变频器的主电路框图,并简要说明各部分的作用。P33 6.画出制动电路的原理图,并说明其工作原理。P37 7.变频器中PAM与PWM的含义、基本特点。P40 PAM脉幅调制型变频,是一种通过改变电压源的电压U d或电流源I d的幅值,进行输出控制的方式。他在逆变器部分只控制频率,在整流电路和中间电路部分控制输出的电压或电流。 PWM脉宽调制性变频,是靠改变脉冲宽度来控制输出电压,通过改变调制周期来控制其输出频率。以调制脉冲的极性分,可分为单极性调制和双极性调制两种;以载频信号与参考信号频率之间的关系分,可分为同步调制和异步调制两种。 8.SPWM逆变器中,什么是载波比?按载波比是否变化,PWM调制方式可以分为哪几种?P43 在SPWM逆变器中,三角波电压频率f t与调制波电压频率f r之比N=f t/f r称为载波比。 根据载波比的变化与否,PWM调制方式可分为同步式、异步式和分段同步式。 9.交-交变频器的主要特点有哪些?(主要从变频器的结构、输出波形上分析)P49 1.因为是直接变换,没有中间环节,所以比一般的变频器效率要高。 2.有与其交流输出电压是直接由交流输入电压波的某些部分包络所构成,因而其输出频率比输入交流电源的频率低很多,输出波形较好。 3.由于变频器按电网电压过零自然换相,故可采用普通晶闸管。 4.因受电网频率限制,通常输出电压的频率较低,为电网频率的1/3左右。 5.功率因数较低,特别是在低速运行时更低,需要适当补偿。 10.交-交变频器的输出上限频率为多少?试从输出电压的波形组成上简要分析其输出上限频率比较低的原因。P49 电网为50Hz时,交-交变频电路的输出上限频率约为20Hz。 输出电压是由许多段电网电压拼接而成。输出电压在一个周期内拼接的电网电压段数越多,就可使输出电压越接近正弦波,每段电网电压的平均持续时间是由交流电路的脉波数决定的,因此在输出频率增高时,

变频器原理与维修

变频器原理与维修 一、变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装臵。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。 整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型; 如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。 对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装臵时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加 二、变频器常见故障的分析与处理 1 变频器参数设臵类故障 在使用过程中变频器能否满足用户系统的要求,其参数设臵非常重要,如果参数设臵不

正确,变频器便不能正常工作。 1.1 变频器的参数设臵 生产厂在进行变频器出厂调试时,对变频器的每一个参数都设有一个默认值,这些默认参数值一般被称作工厂值。当用户使用的变频器是在这些参数值下工作时,则用户能以面板操作方式使变频器正常运行。但是,实际情况往往是面板操作并不能完全满足大多数用户传动系统的要求。所以,用户在正确使用变频器之前,必须要对变频器参数的默认值进行如下几个方面的辨识和重新设臵: 1)确认电机的功率、电流、电压、转速、最大频率等参数(这些参数可以从电机铭牌中查得)是否与默认值相符,如果不符时则要对默认值进行重新设臵; 2)确认变频器采取的控制方式(即速度控制、转矩控制、PID 控制或其他控制方式)后,一般还需要根据控制精度进行静态或动态辨识; 3)设定变频器的启动方式,一般变频器在出厂调试时设定为面板启动,用户可以根据实际情况选择自己的启动方式,可以用面板、外部端子、通讯等方式; 4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定等,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式的综和。 当正确设臵以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2 变频器参数设臵类故障的处理 一旦发生了参数设臵类故障时,变频器都不能正常运行,这时可根据产品说明书对参数设臵进行修改。如果修改后仍不行,则最好是把所有参数恢复到出厂值,然后按上述步骤重新设臵,注意每一个公司的变频器其参数恢复方式也不尽相同。 2 过电压故障及处理

变频器原理图图纸

变频器原理图图纸 变频器原理图 一、整流滤波电压检测开关电源部分 1. 整流滤波部分电路 三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。 2. 直流电压检测部分电路 电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电

海尔变频空调电路原理及图纸

海尔变频空调电路原理及图纸 海尔变频空调电路原理及图纸 海尔牌变频空调器早期在市场上主要有:KFR-20Gw/(BP)、KFR-28GW/A(BP)、KFR-32Gw/(BP)、KFR-36GW /(BP)、KFR-40Gw/(BP)、KFR-50Lw/(BP)和带有负离子发生器的健康型空调器KFR-25Gw/BP×2(F)、KFR-50LW/(BPF)等。他们的变频控制原理基本相同,本文主要以KFR-50LW(BP)金元帅柜机王为例,分析控制电路的工作原 理,以抛砖引玉。 图1是室内机控制电路原理图,图2是室外机控制电路原理图,两个原理图均是作者依据实物绘制,仅供参考。 一、室内机控制电路原理 室内机控制电路采用变频空调专用芯片 47C862AN-Gc5l。 该芯片内部除了写入空调器专用程序外,还包含有CPU 微处理器、程序存贮器、数据存贮器、输入输出接口和定时计数器电路等电路,可对输入的信号进行运算和比较,根据运算和比较的结果,对室外机、风机、定时、制冷制热、抽 湿等工作状态进行控制。 1.ICI(47C862AN-GC51)主要引脚功能 (1)35、64脚为供电端,典型的工作电压为+5V。

(2)芯片的32、33、34、39、48、60为接地端。 (3)31脚是蜂鸣器接口。CPU每接到一次用户指令,31脚便输出一个高电平,蜂鸣器鸣响一次,以告知用户CPU 已接到该项指令。若整机已处于关机状态,遥接器再输出关 机指令,蜂鸣器也不响。 (4)36、37、38是温度采集口,其中36、37脚为室内机热 交换器温度输入口,38脚为室内温度输入口。 (5)复位电路由20脚和ICl03、R101、D101、C103、C109构成,低电平有效。空调器每次上电后,复位电路产生一个低电压,使CPU程序复位。当机器正常工作时,复位端为高 电平。 (6)62脚为开关控制端开关控制口(多功能口),低电平有效。应急运转时,按住电源开关,使该脚连续3秒以上持续高电平,蜂鸣器连响两下,机器即可进入应急运转状态。该脚处在低电平时,56脚输出一个高电平,点亮电源指示灯LEDl,同时cPu执行上次存贮的工作状态。若为初次上电,用户没有输入任何指令时,CPu指行自动运行程序。室内温度在大于27℃时制冷,小于21℃时制热,大于21℃且小于27℃ 时,为抽湿状态。 (7)红外线接收器收到控制信号后,经46脚输入微处理器与温度采集的数据,一起控制空调器的运行状态,完成遥控 信号的接收。

变频器原理图讲解

系 列 原 理 一. 机型简介 整个30X 系列包括以下几个类型,同功率的机型在硬件上的区别就是控制板的 功能上有优化,驱动板都是相同的。不同功率段的硬件设计模式上, 15KW 以下 包括15KW 采取驱动板带整流桥+单管IGBT+DSP 板的模式,30KW~45KW 采用 可控硅+驱动板45DRV 不带整流部分+IGNT 模块+DSP 板的模式,55KW~75KW 采用可控硅+驱动板55POWER 不带整流部分+55DRV+IGNT 模块+DSP 板的模 式,90KW 以上的结构和55KW 不同之处在于55DRV 不同。 二. 系统框图 三. 4KW 驱动板 驱动板按功率段分,15KW 以下的驱动板模式和18.5KW 以上驱动板模式。这里 主要以4KW 小功率机型和45KW 大功率机型为例讲解。先以4KW 为例进行介 绍。 驱动板主要包括整流滤波+软启动+开关电源+电源指示灯+UVW 电流检测 +PWM 光耦隔离+电平转换+故障保护电路+母线电压检测,下面分别介绍: 3.1软启动+母线电压检测 iM 1 1 匚:「?斗 | f — I - 1 1 丄问f 丄 匸丄 ; 亠 £?「 | .—— i L L R 石丄^ J ——■ 左图母线电压检测是变压器副边输出经过电阻分压后 Ude 信号给DSP 标准是母 线电压为53DVWPdS=150V 右图为软启动电路,刚通电瞬间电容相当于短路,母 ,到 电容充好电后通过继电器将琴R 92短 400V 继电器动作.右图中还有电源指示灯电路通过 * 3.2开关电源 单端反激式开关电源由反激式变压器 +UC3844电源控制芯片+MOS 管,单端反 激工作原理: MOS 管导通,母线电压加在变压器原边线圈,副边线圈为上负下正,二极管反向,副 边绕组没有电流;MOS 管截止,副边线圈为上正下负,绕组中储存的能量向负载释 放.根据IN=I'N',在MOS 管导通期间储存的能量在截止期间有多少释放,取决于 截止时间. UC3844电源管理器主要是控制 MOS 管的脉冲占空比,根据IF ,VF ,+15V 三 个反馈信号调整输出脉冲占空比,IF>1v,VF>15V,+15V>15V,三种情况下都会自动 调节标准是+15V 误差为土 0.02V ; 电感的作用,滤除占波开关电流中的脉动成份。从滤波效果看,电感量越大, 效果越明显;但电感过大,会使滤波器的电磁时间常数变大, 使输出电压对占空 线电流很大-?,通过电阻■ R9 路,这里设定的是母线电压为? 电阻分压方式设计. I — -■ ] IM 川黒 92限流来消耗能量 zr I

(完整版)变频器复习题及答案

1、输出电磁滤波器安装在变频器和 电动机 之间,抑制变频器输出侧的 浪涌 电压。 变频器具有多种不同的类型:按变换环节可分为交—交型和___交-直-交________型;按改变变频器输出电压的方法可分为脉冲幅度调制(PAM )型和_脉冲宽度调制(PWM )___型;按用途可分为专用型变频器和___通用型__型变频器。 1.变频器种类很多,其中按滤波方式可分为电压型和 电流 型;按用途可分为通用型和 专用 型。 2.变频器的组成可分为主电路和 控制 电路。 4.变频器安装要求其正上方和正下方要避免可能阻挡进风、出风的大部件,四周距控制柜顶部、底部、隔板或其他部件的距离不应小于120mm 。 变频器按控制方式分类 :压频比控制变频器 ( V/f )、转差频率控制变频器 (SF )、矢量控制 (VC )、直接转矩控制。 变频器产生谐波时,由于功率较大,因此可视为一个强大的干扰源,其干扰途径与一般电磁干扰途径相似,分别为传导、辐射和二次辐射、电磁耦合、边传导边辐射等。 13.输入电源必须接到变频器输入端子R 、S 、T 上,电动机必须接到变频器输出端子U 、V 、W 上。 交-交变频根据其输出电压的波形,可以分为矩形波及正弦波型两种。 高(中)压变频调速系统的基本型式有直接高-高型、高-中型和高-低-高型等三种。 8.(:对)电压型变频器多用于不要求正反转或快速加减速的通用变频器中。 5.(错)交-交变频器的最大输出频率和市网电压频率一样,为50Hz 。 16.变频器的问世,使电气传动领域发生了一场技术革命,即 交流调速 取代直流调速。 19.SCR 是指(可控硅)。 20.GTO 是指(门极关断晶闸管)。 21.IGBT 是指(绝缘栅双极型晶体管 )。 22.IPM 是指(智能功率模块)。 53.电阻性负载的三相桥式整流电路负载电阻L R 上的平均电压O U 为( )。 A .2.342U B .2U C .2.341U D .1U 107.下述选项中,( )不是高中压变频器调速系统的基本形式。 A .直接高-高型 B .高-中型 C .高-低-高型 D .交-交变频器 116.( )变频器矢量控制模式下,一只变频器只能带一台电动机。对

相关主题
文本预览
相关文档 最新文档