当前位置:文档之家› 龙门式起重机外文翻译、中英文翻译、外文文献翻译

龙门式起重机外文翻译、中英文翻译、外文文献翻译

龙门式起重机外文翻译、中英文翻译、外文文献翻译
龙门式起重机外文翻译、中英文翻译、外文文献翻译

英文原文:

Fatigue life prediction of the metalwork of a travelling gantry

crane

V.A. Kopnov

Abstract

Intrinsic fatigue curves are applied to a fatigue life prediction problem of the metalwork of a traveling gantry crane. A crane, used in the forest industry, was studied in working conditions at a log yard, an strain measurements were made. For the calculations of the number of loading cycles, the rain flow cycle counting technique is used. The operations of a sample of such cranes were observed for a year for the average number of operation cycles to be obtained. The fatigue failure analysis has shown that failures some elements are systematic in nature and cannot be explained by random causes.卯1999 Elsevier Science Ltd. All rights reserved.

Key words: Cranes; Fatigue assessment; Strain gauging

1. Introduction

Fatigue failures of elements of the metalwork of traveling gantry cranes LT62B are observed frequently in operation. Failures as fatigue cracks initiate and propagate in welded joints of the crane bridge and supports in three-four years. Such cranes are used in the forest industry at log yards for transferring full-length and sawn logs to road trains, having a load-fitting capacity of 32 tons. More than 1000 cranes of this type work at the enterprises of the Russian forest industry. The problem was stated to find the weakest elements limiting the cranes' fives, predict their fatigue behavior, and give recommendations to the manufacturers for enhancing the fives of the cranes.

2. Analysis of the crane operation

For the analysis, a traveling gantry crane LT62B installed at log yard in the Yekaterinburg region was chosen. The crane serves two saw mills, creates a log store, and transfers logs to or out of road trains. A road passes along the log store. The saw mills are installed so that the reception sites are under the crane span. A schematic view of the crane is shown in Fig. 1.

1350-6307/99/$一see front matter 1999 Elsevier Science Ltd. All rights reserved.

PII: S 1 3 5 0一6307(98) 00041一7

A series of assumptions may be made after examining the work of cranes:

·if the monthly removal of logs from the forest exceeds the processing rate, i.e. there is a creation of a log store, the crane

expects work, being above the centre of a formed pile with the grab lowered on the pile stack;

·when processing exceeds the log removal from the forest, the crane expects work above an operational pile close to the saw mill with the grab lowered on the pile;

·the store of logs varies; the height of the piles is considered to be a maximum;

·the store variation takes place from the side opposite to the saw mill;

·the total volume of a processed load is on the average k=1.4 times more than the total volume of removal because of additional transfers.

2.1. Removal intensity

It is known that the removal intensity for one year is irregular and cannot be considered as a stationary process. The study of the character of non-stationary flow of road trains at 23 enterprises Sverdlesprom for five years has shown that the monthly removal intensity even for one enterprise essentially varies from year to year. This is explained by the complex of various systematic and random effects which exert an influence on removal: weather conditions, conditions of roads and lorry fleet, etc. All wood brought to the log store should, however, be processed within one year. Therefore, the less possibility of removing wood in the season between spring and autumn, the more intensively the wood removal should be performed in winter. While in winter the removal intensity exceeds the processing considerably, in summer, in most cases, the more full-length logs are processed than are taken out.

From the analysis of 118 realizations of removal values observed for one year, it is possible to evaluate the relative removal intensity g(t) as percentages of the annual load turnover. The removal data fisted in Table 1 is considered as

expected values for any crane, which can be applied to the estimation of fatigue life, and, particularly, for an inspected crane with which strain measurement was carried out (see later). It would be possible for each crane to take advantage of its load turnover per one month, but to establish these data without special statistical investigation is difficult. Besides, to solve the problem of life prediction a knowledge of future loads is required, which we take as expected values on cranes with similar operation conditions.

The distribution of removal value Q(t) per month performed by the relative intensity q(t) is written as

where Q is the annual load turnover of a log store, A is the maximal designed store of logs in percent of Q. Substituting the value Q, which for the inspected crane equals 400,000 m3 per year, and A=10%, the volumes of loads transferred by the crane are obtained, which are listed in Table 2, with the total volume being 560,000 m3 for one year using K,.

2.2. Number of loading blocks

The set of operations such as clamping, hoisting, transferring, lowering, and getting rid of a load can be considered as one operation cycle (loading block) of the crane. As a result to investigations, the operation time of a cycle can be modeled by the normal variable with mean equal to 11.5 min and standard deviation to 1.5 min. unfortunately, this characteristic cannot be simply used for the definition of the number of operation cycles for any work period as the local processing is extremely irregular. Using a total operation time of the crane and evaluations of cycle durations, it is easy to make large errors and increase the number of cycles compared with the real one. Therefore, it is preferred to act as follows.

The volume of a unit load can be modeled by a random variable with a distribution function(t) having mean22 m3 and standard deviation 6;一3 m3, with the nominal volume of one pack being 25 m3. Then, knowing the total volume of a processed load for a month or year, it is possible to determine distribution parameters of the number of operation cycles

for these periods to take advantage of the methods of renewal theory [1].

According to these methods, a random renewal process as shown in Fig. 2 is considered, where the random volume of loads forms a flow of renewals:

In renewal theory, realizations of random:,,,having a distribution function F-(t), are understood

as moments of recovery of failed units or request receipts. The value of a processed load:,,after

}th operation is adopted here as the renewal moment.

<t﹜. The function F-(t) is defined recurrently,

Let F(t)=P﹛

n

Let v(t) be the number of operation cycles for a transferred volume t. In practice, the total volume of a transferred load t is essentially greater than a unit load, and it is useful therefore totake advantage of asymptotic properties of the renewal process. As follows from an appropriate

limit renewal theorem, the random number of cycles v required to transfer the large volume t has

the normal distribution asymptotically with mean and variance.

without dependence on the form of the distribution function月t) of a unit load (the restriction is

imposed only on nonlattice of the distribution).

Equation (4) using Table 2 for each averaged operation month,function of number of load cycles with parameters m,. and 6,., which normal distribution in Table 3. Figure 3 shows the average numbers of cycles with 95 % confidence intervals. The values of these parameters

for a year are accordingly 12,719 and 420 cycles.

3. Strain measurements

In order to reveal the most loaded elements of the metalwork and to determine a range of stresses, static strain measurements were carried out beforehand. Vertical loading was applied by hoisting measured loads, and skew loading was formed with a tractor winch equipped with a dynamometer. The allocation schemes of the bonded strain gauges are shown in Figs 4 and 5. As was expected, the largest tension stresses in the bridge take place in the bottom chord of the truss (gauge 11-45 MPa). The top chord of the truss is subjected to the largest compression stresses.The local bending stresses caused by the pressure of wheels of the crane trolleys are added to the stresses of the bridge and the load weights. These stresses result in the bottom chord of the I一beam

being less compressed than the top one (gauge 17-75 and 10-20 MPa). The other elements of the bridge are less loaded with stresses not exceeding the absolute value 45 MPa. The elements connecting the support with the bridge of the crane are loaded also irregularly. The largest compression stresses take place in the carrying angles of the interior panel; the maximum stresses reach h0 MPa (gauges 8 and 9). The largest tension stresses in the diaphragms and angles of the exterior panel reach 45 MPa (causes 1 and hl.

The elements of the crane bridge are subjected, in genera maximum stresses and respond weakly to skew loads. The suhand, are subjected mainly to skew loads.1, to vertical loads pports of the crane gmmg rise to on the other

The loading of the metalwork of such a crane, transferring full-length logs, differs from that of

a crane used for general purposes. At first, it involves the load compliance of log packs because of

progressive detachment from the base. Therefore, the loading increases rather slowly and smoothly.The second characteristic property is the low probability of hoisting with picking up. This is conditioned by the presence of the grab, which means that the fall of the rope from the spreader block is not permitted; the load should always be balanced. The possibility of slack being sufficient to accelerate an electric drive to nominal revolutions is therefore minimal. Thus, the forest traveling gantry cranes are subjected to smaller dynamic stresses than in analogous cranes for general purposes with the same hoisting speed. Usually, when acceleration is smooth, the detachment of a load from the base occurs in 3.5-4.5 s after switching on an electric drive. Significant oscillations of the metalwork are not observed in this case, and stresses smoothly reach maximum values.

When a high acceleration with the greatest possible clearance in the joint between spreader andgrab takes place, the tension of the ropes happens 1 s after switching the electric drive on, the

clearance in the joint taking up. The revolutions of the electric motors reach the nominal value in

O.}r0.7 s. The detachment of a load from the base, from the moment of switching electric motors

on to the moment of full pull in the ropes takes 3-3.5 s, the tensions in ropes increasing smoothly

to maximum. The stresses in the metalwork of the bridge and supports grow up to maximum

values in 1-2 s and oscillate about an average within 3.5%.

When a rigid load is lifted, the accelerated velocity of loading in the rope hanger and metalwork

is practically the same as in case of fast hoisting of a log pack. The metalwork oscillations are characterized by two

harmonic processes with periods 0.6 and 2 s, which have been obtained from spectral analysis. The worst case of loading ensues from summation of loading amplitudes so that the maximum excess of dynamic loading above static can be 13-14%.Braking a load, when it is lowered, induces significant oscillation of stress in the metalwork, which can be }r7% of static loading. Moving over rail joints of 3} mm height misalignment induces only insignificant stresses. In operation, there are possible cases when loads originating from various types of loading combine. The greatest load is the case when the maximum loads from braking of a load when lowering coincide with braking of the trolley with poorly adjusted brakes.

4. Fatigue loading analysis

Strain measurement at test points, disposed as shown in Figs 4 and 5, was carried out during the work of the crane and a representative number of stress oscillograms was obtained. Since a common operation cycle duration of the crane has a sufficient scatter with average value } 11.5min, to reduce these oscillograms uniformly a filtration was implemented to these signals, and all repeated values, i.e. while the construction was not subjected to dynamic loading and only static loading occurred, were rejected. Three characteristic stress oscillograms (gauge 11) are shown in

Fig. 6 where the interior sequence of loading for an operation cycle is visible. At first, stresses

increase to maximum values when a load is hoisted. After that a load is transferred to the necessary location and stresses oscillate due to the irregular crane movement on rails and over rail joints resulting mostly in skew loads. The lowering of the load causes the decrease of loading and forms half of a basic loading cycle.

4.1. Analysis of loading process amplitudes

Two terms now should be separated: loading cycle and loading block. The first denotes one distinct oscillation of stresses (closed loop), and the second is for the set of loading cycles during an operation cycle. The rain flow cycle counting method given in Ref. [2] was taken advantage of to carry out the fatigue hysteretic loop analysis for the three weakest elements: (1) angle of the bottom chord(gauge 11), (2) I-beam of the top chord (gauge 17), (3) angle of the support (gauge 8). Statistical evaluation of sample cycle amplitudes by means of the Waybill distribution for these elements has given estimated parameters fisted in Table 4. It should be noted that the histograms of cycle amplitude with nonzero averages were reduced afterwards to equivalent histograms with zero averages.

4.2. Numbers of loading cycles

During the rain flow cycle counting procedure, the calculation of number of loading cycles for the loading block was also carried out. While processing the oscillograms of one type, a sample number of loading cycles for one block is obtained consisting of integers with minimum and maximum observed values: 24 and 46. The random number of loading cycles vibe can be described

by the Poisson distribution with parameter =34.

Average numbers of loading blocks via months were obtained earlier, so it is possible to find the appropriate characteristics not only for loading blocks per month, but also for the total number of loading cycles per month or year if the central limit theorem is taken advantage of. Firstly, it is known from probability theory that the addition of k independent Poisson variables gives also a random variable with the Poisson distribution with parameter k},. On the other hand, the Poisson distribution can be well approximated by the normal distribution with average}, and variation },. Secondly, the central limit theorem, roughly speaking, states that the distribution of a large number of terms, independent of the initial distribution asymptotically tends to normal. If the initial distribution of each independent term has a normal distribution, then the average and standard deviation of the total number of loading cycles for one year are equal to 423,096 and 650 accordingly. The values of k are taken as constant averages from Table 3.

5. Stress concentration factors and element endurance

The elements of the crane are jointed by semi-automatic gas welding without preliminary edge preparation and consequent machining. For the inspected elements 1 and 3 having circumferential and edge welds of angles with gusset plates, the effective stress concentration factor for fatigue is given by calculation methods [3], kf=2.}r2.9, coinciding with estimates given in the current Russian norm for fatigue of welded elements [4], kf=2.9.

The elements of the crane metalwork are made of alloyed steel 09G2S having an endurance limit of 120 MPa and a yield strength of 350 MPa. Then the average values of the endurance limits of the inspected elements 1 and 3 are ES 一l=41 MPa. The variation coefficient is taken as 0.1, and the corresponding standard deviation is 6S-、一4.1 MPa.

The inspected element 2 is an I-beam pierced by holes for attaching rails to the top flange. The rather large local stresses caused by local bending also promote fatigue damage accumulation. According to tables from [4], the effective stress concentration factor is accepted as kf=1.8, which gives an average value of the endurance limit as ES 一l=h7 Map. Using the same variation coiffing dent th e stand arid d emit ion is

1s σ-=6.7 MPa.

An average S-N curve, recommended in [4], has the form:

with the inflexion point No=5·106 and the slope m=4.5 for elements 1 and 3 and m=5.5 for element 2.

The possible values of the element endurance limits presented above overlap the ranges of load amplitude with nonzero probability, which means that these elements are subjected to fatigue damage accumulation. Then it is possible to conclude that fatigue calculations for the elements are necessary as well as fatigue fife prediction.

6. Life prediction

The study has that some elements of the metalwork are subject to fatigue damage accumulation.To predict fives we shall take advantage of intrinsic fatigue curves, which are detailed in [5]and [6].

Following the theory of intrinsic fatigue curves, we get lognormal life distribution densities for the inspected elements. The fife averages and standard deviations are fisted in Table 5. The lognormal fife distribution densities are shown in Fig.

7. It is seen from this table that the least fife is for element 3. Recollecting that an average number of load blocks for a year is equal to 12,719, it is clear that the average service fife of the crane before fatigue cracks appear in the welded elements is sufficient: the fife is 8.5 years for element 1, 11.5 years for element 2, and h years for element 3. However, the probability of failure of these elements within three-four years is not small and is in the range 0.09-0.22. These probabilities cannot be neglected, and services of design and maintenance should make efforts to extend the fife of the metalwork without permitting crack initiation and propagation.

7. Conclusions

The analysis of the crane loading has shown that some elements of the metalwork are subjectedto large dynamic loads, which causes fatigue damage accumulation followed by fatigue failures.The procedure of fatigue hfe prediction proposed in this paper involves tour parts:

(1) Analysis of the operation in practice and determination of the loading blocks for some period.

(2) Rainflow cycle counting techniques for the calculation of loading cycles for a period of standard operation.

(3) Selection of appropriate fatigue data for material.

(4) Fatigue fife calculations using the intrinsic fatigue curves approach.

The results of this investigation have been confirmed by the cases observed in practice, and the manufacturers have taken a decision about strengthening the fixed elements to extend their fatigue lives.

References

[1] Feller W. An introduction to probabilistic theory and its applications, vol. 2. 3rd ed. Wiley, 1970.

[2] Rychlik I. International Journal of Fatigue 1987;9:119.

[3] Piskunov V(i. Finite elements analysis of cranes metalwork. Moscow: Mashinostroyenie, 1991 (in Russian).

[4] MU RD 50-694-90. Reliability engineering. Probabilistic methods of calculations for fatigue of welded metalworks.

Moscow: (iosstandard, 1990 (in Russian).

[5] Kopnov VA. Fatigue and Fracture of Engineering Materials and Structures 1993;16:1041.

[6] Kopnov VA. Theoretical and Applied Fracture Mechanics 1997;26:169.

中文翻译

龙门式起重机金属材料的疲劳强度预测

v.a.科普诺夫

摘要

内在的疲劳曲线应用到龙门式起重机金属材料的疲劳寿命预测问题。起重机,用于在森林工业中,在伐木林场对各种不同的工作条件进行研究,并且做出相应的应变测量。对载重的循环周期进行计算,下雨循环计数技术得到了使用。在一年内这些起重机运作的样本被观察为了得到运作周期的平均数。疲劳失效分析表明,一些元件的故障是自然的系统因素,并且不能被一些随意的原因所解释。1999年Elsevier公司科学有限公司。保留所有权利。

关键词:起重机;疲劳评估;应变测量

1.绪论

频繁观测龙门式起重机LT62B在运作时金属元件疲劳失效。引起疲劳裂纹的故障沿着起重机的桥梁焊接接头进行传播,并且能够支撑三到四年。这种起重机在森林工业的伐木林场被广泛使用,用来转移完整长度的原木和锯木到铁路的火车上,有一次装载30吨货物的能力。这种类型的起重机大约1000台以上工作在俄罗斯森林工业的企业中。限制起重机寿命的问题即最弱的要素被正式找到之后,预测其疲劳强度,并给制造商建议,以提高起重机的寿命。

2.起重机运行分析

为了分析,在叶卡特琳堡地区的林场码头选中了一台被安装在叶卡特琳堡地区的林场码头的龙门式起重机LT62B,这台起重机能够供应两个伐木厂建立存储仓库,并且能转运木头到铁路的火车上,这条铁路通过存储仓库。这些设备的安装就是为了这个转货地点在起重机的跨度范围之内。一个起重机示意图显示在图1中。

1350-6307/99 /元,看到前面的问题。 1999年Elsevier公司科学有限公司保留所有权利。

PH:S1350-6307(98)00041-7

V.A.Kopnov|机械故障分析6(1999)131-141

图1起重机简图

检查起重机的工作之后,一系列的假设可能会作出:

·如果每月从森林移动的原木超过加工率,即是有一个原木存储的仓库,这个起重机期待的工作,也只是在原木加工的实际堆数在所供给原木数量的中心线以下;

·当处理超过原木从森林运出的速度时,起重机的工作需要在的大量的木材之上进行操作,相当于在大量的木材上这个锯木厂赚取的很少;

·原木不同的仓库;大量的木材的高度被认为是最高的;

·仓库的变化,取替了一侧对面的锯轧机;

·装载进程中总量是平均为K=1.4倍大于移动总量由于额外的转移。

2.1 搬运强度

据了解,每年的搬运强度是不规律的,不能被视为一个平稳过程。非平稳流动的道路列车的性质在23家企业中已经研究5年的时间,结果已经表明在年复一年中,对于每个企业来说,每个月的搬运强度都是不同的。这是解释复杂的各种系统和随机效应,对搬运施加的影响:天气条件,道路条件和货车车队等,所有木材被运送到存储仓库的木材,在一年内应该被处理。因此,在春季和秋季搬运木头的可能性越来越小,冬天搬运的可能性越来越大,然而在冬天搬运强度强于预想的,在夏天的情况下,更多足够长的木材就地被处理的比运出去的要多的多。

V.A.Kopnov|机械故障分析6(1999)131-141

表1

搬运强度(%)

表2

转移储存量

通过一年的观察,从118各搬运值的观察所了解到的数据进行分析,并且有可能评价相关的搬运强度(吨)参考年度的装载量的百分比。该搬运的数据被记录在起重机预期值表1中,它可以被应用到估计疲劳寿命,尤其是为检查起重机应变测量(见稍后)。将有可能为每个起重机,每一个月所负荷的载重量,建立这些数据,无需特别困难的统计调查。此外,为了解决这个问题的寿命预测的知识是未来的荷载要求,在类似的操作条件下,我们采取起重机预期值。

每月搬运价值的分布Q(t),被相对强度q(t)表示为

其中Q 是每年的装载量的记录存储,是设计的最大存储原木值Q以百分比计算,其中为考察起重机等于40.0万立方米每年,和容积载重搬运为10 %的起重机,得到的数据列在表2 中,总量56000立方米每年,用K表示。

2.2 .装载木块的数量

这个运行装置,如夹紧,吊装,转移,降低,和释放负载可被视为起重机的一个运行周期(加载块)。参照这个调查结果,以操作时间为一个周期,作为范本,由正常变量与平均值11.5分相等等,标准差为1.5分钟。不幸的是,这个特点不能简单地用于定义运作周期的数目,任何工作期间的载重加工是非常不规则。使用运行时间的起重机和评价周期时间,,与实际增加一个数量的周期比,很容易得出比较大的误差,因此,最好是作为如下。

测量一个单位的载荷,可以作为范本,由一个随机变量代入分布函数得出,并且比实际一包货物少然后,明知总量的加工负荷为1个月或一年可能确定分布参数的数目,运作周期为这些时期要利用这个方法的更新理论

V.A.Kopnov|机械故障分析6(1999)131-141

图2随机

重建过程中的负荷

根据这些方法,随机重建过程中所显示的图。二是考虑到, (随机变量)负荷,形成了一个流动的数据链:

在重建的理论中,随机变量:n τ,有一个分布函数f (t )的,可以被理解为在失败的连接或者

要求收据时的恢复时刻。过程的载荷值,作为下一次的动作的通过值,被看作是重建的时刻。 设{}()n n F t P t τ=?。函数f ( t )反复被定义,

假设V ( t )是在运作周期内转移货物的数量。实践中,总

转移货物的总吨数,基本上是大于机组负荷,,由于利用渐近性质的重建过程所以式有益的。根据下面适当的限制重建定理,需要转移大量吨数。已正态分布渐近与均值和方差,确定抽样数量的周期v

而不依赖于整个的形式分布函数的()F t , (只对不同的格式分配进行限制)。

利用表2的每个月平均运作用方程( 4 )表示,赋予正态分布功能的数量,负载周期与参数m 和6。在正态分布表3中 。图3显示的平均人数周期与95 %的置信区间某一年的相应的值为12719和420个周期。

表3

运作周期的正太分布

3 .应变测量

为了显示大多数金属的负载元素,并且确定一系列的压力,事前做了静态应变测量。垂直载荷用来测量悬挂负载,并且斜交加载由一个牵引力所形成,配备了一台测力计。静态应力值分布在图4和5中 。同样地预计,梁上的最大的拉应力,发生在底部的桁架上(值为11-45 MPA )。顶端的桁架受到最大的压缩应力。 此处的弯曲应力所造成的压力,车轮起重机,手推车等被添加到所说的桥梁和负荷的重量。这些压力的结果,在底部的共振的的I 梁那么压缩应力比最高的1 处要大得多(值17-75和10-20兆帕斯卡),其他要素的梁加载的值

V.A.Kopnov|机械故障分析6(1999)131-141

月份

图3 95%的置信区间运作周期的平均数

V.A.Kopnov|机械故障分析6(1999)131-141

图4梁的分配计划

不超过绝对值45兆帕斯卡。连接与支持的桥梁起重机加载的时间,也不定期。最大的压缩应力发生在变形的最大角度,在内部看来;最高压力值将达到到h0MPa和痛苦(计8日和9 )。在隔板和角度1的支板上,最大的拉应力达到45兆帕斯卡(压力表1 )。起重机梁的器件在受到最大压力和轴向载荷较弱的时候,另一方面,所遭受的主要是斜负荷。起重机的竖向载荷主要是由牵引力引起的。

这种转移完整长度的木材的起重机的金属的载重量,不同于一般用途的起重机。首先它必须遵循起重机的装载规则,由于逐步脱离基地。因此,负荷增加,并不是慢慢的顺利进行。第二个特点是物质吊装的加快导致低低效率。这是抓斗所存在的所限制,这意味着不允许绳索从吊具座下降;载重量应始终保持平衡。负载减弱加快电机运转的可能性是没有根据的,因此微乎其微。因此,以同时悬挂的速度,森林龙门式起重机受到较小的动应力与类似的一般用途的起重机相比而言。通常,当速度增加顺利,在接通电器之后,从基地进行转载3.5-4.5秒钟进行一个循环。在事实上,并没有发现金属有显著的振荡,并且压力慢慢达到了最大值。

V.A.Kopnov|机械故障分析6(1999)131-141

图5 支持分配

当可能性最明朗的时候,在伸展和抓取的结合处,在按下开关后一秒钟绳索开始绷紧,在结合处清楚的发生。这个电动机以0.6-0.7每秒的速度进行旋转。从按下开关到绳索完全拉紧这一刻,需要3-3.5 s的时间,紧张的绳索慢慢的增加倒最长。梁的最大压力增长倒最大值1-2 S并且平均振荡为3.5 %。

当一个固定的负荷解除时,加快速度,装载在钢丝绳上的吊具和金属几乎是相同的情况下快速吊起一堆捆扎的木材。该金属金工振荡的特点是有两个谐波在0.6和2秒的过程当中,这些已经在前面的分析中获得。从总结装货的振幅可以看出在最坏的情况下装载货物,使最高动态加载超过上述静态载荷可以达到13-14 %。制动一个负荷,当它逐渐降低时,在金属制品上产生显著的振动

应力,可以达到静态载荷的7%左右。

移动超过钢轨接头的3-4毫米的高度时,得到的只有微不足道的压力。在运行中,有可能的情况下,当源自不同类型的负荷加载结合起来。当最高负荷从制动负荷时降低,是最大负荷情况配合制动手推车与同的调整制动器。

4疲劳载荷分析

通过起重机的工作和压力示波图的获得,在测试点进行应变测量,在图6

和第5中排列显示,自一台起重机的常见工作周期的时间由足够的散射和平均值约为15分钟,常见的运行周期的时间起重机有足够的散射与平均价值11.5 )

V.A.Kopnov|机械故障分析6(1999)131-141

时间(0.1分钟)装货过程变化值

民,以减少这些示意图均匀过滤所产生的这些信号,和所有反复的形成的值,也就是说,当结构是不受到动态加载,只有静态加载发生时,将会被拒绝。三个特点强调示意图(表11 )显示在表6中,而装货运行周期的内部结构是可见的。首先,当负载被提升时,压力增加到最高值。当载荷被转移到合适的位置并且强烈振荡之后之后,由于不规则起重机运动对钢轨及以上的钢轨接头导致大量的轴向载荷作为大多数降低载荷的原因。减少货物的装载量导致装载量减少,并且建成一项基本负载周期的一半。

4.1 装载过程中的振幅分析

这两个名词,现在应该分开:装载周期和装载量。第一是作为一独特的振荡讲(闭环),二是为一套加载周期期间一个运行周期。

该雨流循环计数方法给出了最终裁决。 [ 2 ]是采取优势,以前面提到的疲劳的强度回线分析,为三个最弱的要素:(1)底部角度的协调(表11),(2)横梁顶端的协调(表17),(3)角度的支持(表8)。用微分的手段统计样本周期振幅的值的分布情况,由此得出估计参数列于于表4 中。应该指出的是,直线图的周期振幅与减少事后的非零平均数相等于直线图为零时的平均数。

V.A.Kopnov|机械故障分析6(1999)131-141

表4

装载振幅的威布尔分布参数 名字

布尔分布参数 值MPa

格式b 底部角度的协调

23.4 5 横梁顶端的协调

40.4 4 角度的支持

29.5 4

4.2 装载周期的数目 在雨流循环计数过程期间,计算有多少负荷周期进行了装载量由多少载重周

期的计算装载座也进行了。而处理这一类示波图,一个整体样本数量的加载周期得到了构成的整数与最低及最高观察值:24和26。随机装货周期数VB 可以由泊松分布参数来形容 λ = 34 。 每个月装货块平均数值很快就获得了,因此它是有可能找到适当的特点,如果采取中央极限周期,不仅为每月装载量,而且也为每月或每年的装载周期。

首先,将它从已知的概率论考虑,除了给出了独立的泊松系数,还给出了一个随机变量与泊松分布的参数K )。在另一方面, 泊松分布可以很好地近似正态分布平均k λ。其次,中心极限定理,大致来说,有着大量标准的计算,独立的初次分配渐近趋于正常。如果初次分配每个独立的任期有一个正态分布,那么载重周期为一年的平均数和标准偏差总数的都是平等的,大致为423096和650 。通过这些值从表3中取值。

5 应力集中的因素和元件的耐力

要素起重机的各个部件初步是由半自动气体焊接,没有边缘制造设备及相应的加工。为考察要件1和3周和边缘焊缝的角度与节点板,有效应力集中疲劳系数是所给予的计算方法[ 3 ] ,的KF = 2.6-2.9 ,正好等于估计值,鉴于目前在俄罗斯规范疲劳焊接要素[ 4 ] ,的KF = 2.9 。起重机金属制成的材料为合金钢09g2s ,此材料有一个持久极限120 MPa 和屈服强度350兆帕斯卡。然后在平均值可承受的范围内视察要件1和31ES -= 41兆帕斯卡。变异系数为0.1 ,和相应的标准

偏差为1s σ-=4.1兆帕斯卡.观察的基本组成部分2是一个I 形穿孔,由孔附加导轨,以顶端法兰。

那个相当大的局部应力所造成弯曲的地方也能促进疲劳损伤累积。 根据表[ 4 ] ,有效应力集中系数是接受的KF = 1.8 , 给出了一个平均的价值,可承受的极限,作为1ES -=67的强度创伤。使

用相同的变化系数的标准差是1s σ-=6.7强度创伤.平均曲线,建议在表[ 4 ] ,已形式:

V.A.Kopnov|机械故障分析6(1999)131-141

表5 对数参数的正太分布

名字

寿命分布参数 平均(块)

标准(块) 底部角度的协调

106.800 58.200 横梁顶端的协调

143.200 79.200 角度的支持

74.620 32.300

与拐点没有5.106和斜度为4.5为要件1及3斜度为5.5 组成部分2。可能的值的元素耐力极限上述重叠的范围,载荷振幅与非零的概率,这意味着这些元素受到疲劳累积损伤。然后根据上面可能作出结论,认为疲劳计算的要素是必要的,也就是疲劳强度预测。 6 寿命预测

该项研究的一些金属材料受到疲劳损伤的累积。内在的疲劳曲线是我们预测生命应采取的优势,其中详见于表[ 5 ]和表[ 6 ].通过以下内在疲劳曲线的理论,我们根据观察到寿命分布密度得到数正态分布的数据。该法所得的平均数和标准偏差分别见表5 。那个数正态分布所得出的分布密度,显示在图7中。这是从这个表中至少强度要件为3 。得出一个平均的数量,载重量1年为12719 , 很明显,平均方法所得的吊臂前,疲劳裂纹出现在焊接要素是足够的:元件的生命周期

8.5年为组成部分1 ,11.5年为要件2 ,和6年为组成部分3 。然而,这些要素失效的概率不小于3-4年和是在范围0.09-0.22 。这些概率不能被忽视,为服务的设计和维修提供帮助,应作出努力,扩大允许裂纹发生并且提高强度。

7 结论

通过分析起重机载重表明,一些金属材料受到较大动态载荷,从而导致疲劳损伤的积累,其次是疲劳失效。

机械设计设计外文文献翻译、中英文翻译、外文翻译

机械设计 摘要:机器是由机械装置和其它组件组成的。它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。术语中的“机械装置设计”的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。 一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。 也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。 最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要

塔式起重机外文翻译、中英对照、英汉互译

外文资料翻译译文 塔式起重机 动臂装在高耸塔身上部的旋转起重机。作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。由金属结构、工作机构和电气系统三部分组成。金属结构包括塔身、动臂和底座等。工作机构有起升、变幅、回转和行走四部分。电气系统包括电动机、控制器、配电柜、连接线路、信号及照明装置等。 塔式起重机简称塔机,亦称塔吊,起源于西欧。据记载,第一项有关建筑用塔机专利颁发于1900 年。1905 年出现了塔身固定的装有臂架的起重机,1923 年制成了近代塔机的原型样机,同年出现第一台比较完整的近代塔机。1930 年当时德国已开始批量生产塔机,并用于建筑施工。1941 年,有关塔机的德国工业标准DIN8770 公布。该标准规定以吊载(t)和幅度(m)的乘积(tm)一起以重力矩表示塔机的起重能力。 我国的塔机行业于20 世纪50 年代开始起步,相对于中西欧国家由于建筑业疲软造成的塔机业的不景气, 上海波赫驱动系统有限公司我国的塔机业正处于一个迅速的发展时期。 从塔机的技术发展方面来看,虽然新的产品层出不穷,新产品在生产效能、操作简便、保养容易和运行可靠方面均有提高,但是塔机的技术并无根本性的改变。塔机的研究正向着组合式发展。所谓的组合式,就是以塔身结构为核心,按结构和功能特点,将塔身分解成若干部分,并依据系列化和通用化要求,遵循模数制原理再将各部分划分成若干模块。根据参数要求,选用适当模块分别组成具有不同技术性能特征的塔机,以满足施工的具体需求。推行组合式的塔机有助于加快塔机产吕开发进度,节省产品开发费用,并能更好的为客户服务。 塔机分为上回转塔机和下回转塔机两大类。其中前者的承载力要高于后者,在许多的施工现场我们所见到的就是上回转式上顶升加节接高的塔机。按能否移动又分为:走行式和固定式。固定式塔机塔身固定不转,安装在整块混凝土基础上,或装设在条形式X 形混凝土基础上。在房屋的施工中一般采用的是固定式的。 设备特点和安全装置 塔式起重机的动臂形式分水平式和压杆式两种。动臂为水平式时,载重小车沿水平动臂运行变幅,变幅运动平衡,其动臂较长,但动臂自重较大。动臂为压杆式时,变幅机构曳引动臂仰俯变幅,变幅运动不如水平式平稳,但其自重较小。 为了确保安全,塔式起重机具有良好的安全装置,如起重量、幅度、高度和载荷力矩等限制装置,以及行程限位开关、塔顶信号灯、测风仪、防风夹轨器、爬梯护身圈、走道护栏等。司机室要求舒适、操作方便、视野好和有完善的通讯设备。 塔式起重机的检验产要点 1) 检查金属结构情况特别是高强度的螺栓,它的连接表面应清除灰尘、油漆、没迹和锈蚀,并且使用力矩手或专用扳手,按装配技术要求拧紧。 2) 检查各机构传动系统,包括各工作传动机构的轴承间隙是否合适,齿轮啮合是不是良好及制动器是否灵敏。 3) 检查钢丝绳及滑轮的磨损情况,固定是否可靠。 4) 检查电气元件是否良好,名接触点的闭合程度,接续是否正确和可靠。 5) 检查行走轮与轨道接触是否良好,夹轨钳是否可靠。装设附着装置、内爬装置时,各连接螺栓及夹块是否牢固可靠。

外文翻译--一个控制器使门式起重机和减摇桥精确定位

A controller enabling precise positioning and sway reduction in bridge and gantry cranes Khalid L. Sorensen, William Singhose, Stephen Dickerson The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 813 Ferst Dr., MARC 257, Atlanta, GA 30332-0405, USA Received 28 September 2005; accepted 30 March 2006 Available online 5 June 2006 一个控制器使门式起重机和减摇桥精确定位 Khalid L. Sorensen, William Singhose, Stephen Dickerson, 乔治亚机械工程学院,乔治亚技术学院, Ferst博士813,MARC 257 ,亚特兰大,GA 30332-0405,美国,2005年9月28日收到,2006年3月30日接受,2006年6月5日可在线使用.

一个控制器使门式起重机和减摇桥精确定位 摘要 起重机是很难精确操纵载荷的。振荡,可以诱导成大桥或手推车的阻尼系统轻度运动,并且还对环境造成滋扰. 为解决上述两种振荡的来源,结合反馈和输入整形控制器的发展。该控制器是由三个不同的模块组成,反馈模块的检测和定位误差补偿; 第二反馈模块侦测并拒绝振动; 使用塑料造填充的第三个模块,以减轻振荡。一个使用精确的模型矢量驱动的交流感应马达,为典型的大型起重机, 用同一个褶分析技术,将非线性动力学起重机器分为对照设计。在佐治亚技术学院实验10吨桥式起重机控制器。该控制器具有良好的定位精度和性能以减少摆动.。 关键词:输入整形;指挥整形;起重机控制;振动控制;防摇;桥式起重机;龙门吊床 1. 绪论 桥、门式起重机在工业生产中占据了关键地位。它们被使用在世界各地数以千计的船场、建筑工地、钢铁厂、仓库、核电厂及废料储存设施,以及其他工业园区。这种操纵系统的及时性和有效性为工业生产力起了重要贡献。因此,可以提高企业经济效益的起重机是极其宝贵的。这些结构,见图一。1.被给予高度评价的压电性质.、抗外部干扰,如风力或气压 (例如桥梁或小车) 能造成载荷振动。在许多实际生产中,这些振动产生了不良后果。摇动使得有效载荷或钩的精确定位在一人操作的时候费时费力;此外,当载荷或周边障碍有是一个危险和脆弱的时候,振荡可能存在安全风险。广泛使用的桥、门式起重机,再加上要控制不必要的振荡,使得大量的研究与控制这些结构有了干劲。工程师们正试图改善其易用性,以增加经济效益,并减轻安全上的顾虑,起重机系统的三个主要要解决的方面: (1)运动诱发的振荡;(2)扰动诱发的振荡;(3)定位能力。一个15吨的桥式起重机采用鲁棒输入整形技术来减少运动诱发的振荡(Singer,Singhose, & Kriikku,1997)。莱利建议控制小车位置和振荡通过比例-微分( PD )控制,在这之间的耦合电缆角和运动的小车将被增加(Fang,Dixon, Dawson, & Zergeroglu, 2001)。Piazzi提出了动态基于逆控制以降低瞬态和残余运动诱发振荡(Piazzi & Visioli, 2002)。金大中推行了极点配置策略,对一个真正的集装箱起重机运动控制和振荡以及定位(Kim, Hong, & Sul, 2004) 。 Moustafa今日发达非线性控制载荷轨迹律跟踪基于Lyapunov的稳定性分析((Moustafa, 2001) 。奥康纳制定了控

外文翻译---港口起重机

附录A Portal power China’s rapid economic growth in the past decade has resulted in a big increase in freight traffic through the country’s seaports . Old ports are being expanded and new ports built to handle the large growth in container and bulk cargo traffic all along the Chinese coastline. China’s port expansion programme has provided a strong boost to the domestic port equipment industry, which has enjoyed a strong increase in demand for port cranes of various types, including container cranes and portal cranes along with bulk cargo handling equipment. State-run China Harbour Engineering (group) Corporation Ltd, established under the ruling State Council, is China’s largest supplier of port cranes and bulk cargo handling equipment. The organization controls both Shanghai Zhenhua Port Machinery Co Ltd (ZPMC),the world’s largest manufacturer of quayside container cranes, and Shanghai Port Machinery Plant (SPMP), which specializes in the manufacturer of portal cranes and other cranes used in ports along with dry bulk cargo handling equipment. SPMP’s main market is China, although the company is looking to expand its overseas sales. Although less well known than its associate ZPMC, SPMP also operates large manufacturing facilities, and is due to move part of its production shortly to Changxing Island near Shanghai where ZPMC already operates a large container crane fabrication plant. Portal and other harbour cranes are SPMP’s major production item. During the past two years, the corporation has won contracts for 145 portal cranes from port authorities throughout China, both from new ports under construction and ports undergoing expansion. In recent years, SPMP has also supplied portal cranes to the United States, Iraq,and Myanmar.The port Rangoon of Myanmar in has purchased a 47m,40t portal crane while BIW of the United States has purchased three cranes-15t,150t, and 300t portal

基础防雷外文资料翻译 精品

毕业设计(论文)外文资料翻译 系(院):电子与电气工程学院 专业:电气工程及其自动化 姓名: 学号: 外文出处: (用外文写)Baidu library 附件: 1.外文资料翻译译文;2.外文原文。 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 基础防雷 简介 闪电是一个反复无常,随机和不可预测的事件。它的物理特征包括:电流超过400 kA;温度超过50000华氏度,速度接近或超过三分之一的光速。自2000年以来持续雷击地球约100次每秒。美国保险公司的资料显示每57索赔有一次是因为雷击损坏。这些数据还不包括商业,政府和工业雷电造成的损失。在美国每年因雷电造成的火灾超过26000起,财产损失在5-6亿美元。 地球上的雷击现象,按目前的技术角度来看,遵循一个近似的规律: 1。从顶层雷云朝地球的向下脉冲,寻求电气地面目标。 2。地基对象(围栏,树木,草叶,建筑,避雷针,等等)对此事件发出不同程度的电力活动。从这些地基对象向上发送电力波动,在离地面几十米的位置,会出现一个“聚集区”加剧当地的电场。 3。当带有异种电荷的雷云相遇,相当于电路“开关”被关闭,于是有电流流过。我们就会看到闪电。 闪电效果可以直接也可能是间接的。直接影响是有电阻发热,出现电弧并可能燃烧起来。间接影响是,多数时候对电容,电感出现电磁影响。在绝对意义上实现闪电的防护是不可能的,只能使其产生的影响减少,可以由一个整体性,系统性的风险缓解办法来实现保护。下面对通用条款进行描述。 避雷针 从富兰克林研究雷电开始,就使用避雷针进行建筑物防雷并引流接地。避雷针,是现在最常用的防雷装置,根据建筑物不同的地点,高度和形状,使用合适类型的避雷针来达到设计要求。一些公共事业如架空线、变电所喜欢屏蔽电线。在某些情况下,没有任何避雷装置的使用是最适当的。 高空避雷装置的使用可能会改变闪电的动作。在等效电力场所,钝尖杆被看作是一种有效的避雷针类型。高空防雷装置的设计和性能是一个有争议的并尚未解决

起重机论文中英文资料外文翻译文献

毕业设计论文外文资料翻译 附件1:外文资料翻译译文 起重机的工作需要更多的科学技术 起重机的出现大大提高了人们的劳动效率,以前需要许多人花长时间才能搬动的大型物件现在用起重机就能轻易达到效果,尤其是在小范围的搬动过程中起重机的作用是相当明显的。 战后的前几年,世界性的工业诞生了,起重机行业几乎完全停止。然而到这个年代末,起重机的建造变得多元化并传播到世界各地,它的前所未有的蓬勃发展似乎整个工业注入了新能源。轻型起重机投入到工作地点并准备作为主要机械,因为人们意识到了在工作间不用拆除他们的的优点。这些新的设计也不再需要其他起重设备协助操纵——相比以前在安装前要进行繁琐的设计。但是,在这一切之前发生了恐怖的第二次世界大战。到1940年,欧洲完全陷入了战争中。到战争结束后的几十年来,欧洲和世界其他地区发生了巨大的政治,经济和社会变化,将影响整个社会结构,包括建造业和起重机行业。在美国,蒸汽机已开始改为柴油机——到1953年超过百分之五十的机车将使用柴油机。战争期间,挖掘机,铲运机和起重机的大规模生产在继续。例如1940年,看到Thew推出新的'Lorain Motocrane'系列。这其中包括三种起重机,是历史上首次自身安装了底盘的起重机。最小的MC - 2 ,起重量达7.6吨,MC – 2起重量为9.9吨,MC – 3起重量为13.5吨。这些起重机许多被用于军队,有的还安装在港口用作港湾式起重机(在MC - 4型)。当然,这场战争已经削弱了能在起重机行业工作的健壮的男人的数量,并且优秀的起重机司

机严重短缺。在Thew ,一位毕业于美国海军学院的经验丰富的技工A C Burch和L K Jenkins进行了为期两天的起重机业务课程的教授。这两位绅士好比是我们今天所知的―经营者培训‖的创始人。他们实际上已设计了动力起重机,都深深地了解起重机,并很高兴传授这方面的知识。 当日本国家铁路公司致力于采购一种旨在搬动钢轨扣板的原型机,潮流逆转。该设备工作极为出色。iVlasuo Tadano环游日本,用35毫米的电影展示该设备的强大用途。沿路上,他获取了大量订单。同时,他好像成为当今市场营销专家所宠爱的公司影像传播的先驱! 其他国家也在大力发展起重机。特别是意大利,逐渐发展成为该行业的创新基地。1948年Carlo Raimodi在米兰附近的Legnano,首次建造了回转塔式起重机,一种经典的顶端回转起重机。公司最初成立于1863年,在生产起重机之前,是一间铸造厂并为技工和其他行业生产机械设备。当时全球建筑业空前繁荣,吸引了专业设备制造商的注意。其中许多公司在推广起重机后,推出了混凝土搅拌设备。提供了多种不同组合,例如,Reich, Ibag和Liebherr设计开发了起重机与混凝土搅拌设备一起使用的组合。 桥式起重机小车运行机构设计主要包括起升机构、小车架、小车运行机构、吊具等部分。其中的小车运行机构主要由减速器、主动轮组、从动轮组、传动轴和一些连接件组成。桥式起重机是水电站桥式起重机,安装于丰满水电站扩建工程厂房内,用于水轮发电机组及其附属设备的安装和检修工作。水电站内设备一般都是大中型设备,对桥式起重机的载荷要求较高,所以对减速器性能要求较高。 桥式抓斗起重机是桥架在高架轨道上运行,由起重小车带动抓斗抓取物料的一种桥架型起重机。桥架沿铺设在两侧高架上的轨道纵向运行,起重小车沿铺设在桥架上的轨道横向运行,构成矩形的工作范围,就可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。桥式抓斗起重机广泛应用于电厂、煤厂等需要散料装卸的场合,由于该设备笨重,运输安装困难,对其产品质量检测一般需要在现场进行。所以要求控制设备接线方便,体积小便于携带。又由于使用现场条件不动,还要求检测设备有随机手动控制功能,以保证运行时的安全。随着对起重运输机械控制要求的不断提高,控制手段也越来越先进。目前国内的桥式起重机控制系统都需要人在现场进行控制,控制方式都比较落后。在中小型起重机中, 大都采用控制器直接控制大、小车运行, 主、副钩提升、下降重物及调速。

毕业设计,外文翻译,起重机

二○一三届毕业设计外文翻译 学院:工程机械学院 专业:机械设计制造及其自动化姓名:赵国超 学号:2504090516 指导教师:陈新轩 完成时间:2013 年 3 月 27 日

Type of Cranes 起重机的类型 Cranes can be classified into four kinds, namely, (a) overhead traveling crane; (b) jib crane; (c) bridge or gantry crane; and (d) cantilever crane. 起重机可分为四类:高架移动起重机、动臂起重机、桥式或门式起重机、悬臂吊车。 Overhead traveling crane. Consists of a girder and a trolley. The girder is supported at each end on trucks capable of traveling on elevated fixed tracks. The trolley is equipped with hoisting and other mechanism, capable of traversing from end to end of such girder. The girder and associated end carriages are known as the bridge. 高架移动起重机由横梁和空中吊运装置组成。横梁靠固定道轨支承,并且可以在轨上来回移动。空中吊运装置由提升装置和其他装置组成,可以从横梁的一端运动到另一端。横梁和与之相连的框架统称为桥。 Such cranes vary in lifting capacity from about 2 tons to 400 tons, and in span from 20 ft to 150 ft,or more. Depending on the purpose for which it is to be used, the crane can be operated either from a cabin fixed to the bridge or the trolley, or from the ground. When two trolleys are furnished, these may run on a common tracks arranged side-by-side or one above the other so that each trolley can traverse the entire span. 这些的起重机囊括了起重量从2吨到400吨,跨度从20英尺到150英尺的各种类型。根据目的不同,在机舱工作的起重机常在桥或空中吊运装置进行控制,其他情况控制装置常在地面。当两个空中吊运装置安装完毕,他们就能在同一道轨上并行或上下交错的并行,以确保每个空中吊运装置都能在整个横梁上移动。 Jib crane 动臂起重机 Consists of an inclined member, or jib, capable of suspending a load at its outer end. The jib is supported by a rope or other member attached to a vertical mast of frame. The out reach of the jib can be constant or variable, and the crane as a whole may be either fixed or movable. 动臂起重机有能在它的外侧提升重物的倾斜动臂。动臂通过绳索或其他方式连接到垂直的框架上。动臂可以是定长或者可伸缩的。起重机可以是固定式或移动式。 Included in this kind are: mobile and caterpillar cranes, builders tower cranes, wharf cranes, and movable cranes mounted on high pedestals, gantries, pontoons and barges. 这一类的起重机包括:移动和履带起重机,建筑商,码头起重机、塔式起重机和可移动的安装在高台子,井架,浮筒和驳船上的起重机。 Lifting capacities vary from 1/2 ton to 300 tons or more, and outreaches from a few feet to 150 ft. Cranes required for handling heavy machinery and equipment in shipyards and at ports are frequently mounted on pontoons. 起重能力不同从1/2吨到300吨不等,动臂可伸展范围从几英尺到150英尺。

汽车起重机毕业设计外文翻译

本科毕业设计(论文) 外文翻译 译文题目:使用智能液压缸增加起重机的稳定性学院:机电学院 专业:机械设计制造及其自动化 学生姓名:XXX 学号:1234567890 指导教师:XXX 完成时间:2017年3月12日

From:Hitchcox, Alan. Smart cylinders stabilize cranes[J]. Hydraulics & Pneumatics; Cleveland (Sep 12, 2013): n/a. Smart cylinders stabilize cranes Hitchcox, Alan. ASM International, Penton Media, OTP Industrial Solutions (formerly Ohio Transmission & Pump Co) Abstract:It's not unusual for cranes to reach 100 ft or more into the air at major construction sites. Traditionally, cranes are transported to a work area and assembled on-site. More recently, as truck-mounted cranes become bigger and more powerful, they have found favor because they are quicker to set up than traditional cranes. Truck-mounted cranes have a telescoping hydraulic boom mounted on commercial truck chassis. Their portability and lower setup costs have led to their widespread use at construction and utility sites around the world. But as loads get heavier and lifting distances become higher, designers of truck-mounted cranes must provide the stability to ensure that safety remains the top priority. Truck-mounted cranes use outrigger systems to ensure stable operation. The outriggers extend from the main body of the truck and contact the ground several feet away from the truck. This distributes the crane's load over a much larger area, thereby increasing stability. Manitowoc Company Inc., Manitowoc, Wis., takes this a step further by using smart cylinders in the A-frame outrigger systems of its National Crane line of truck-mounted cranes. The crane's hydraulic system is driven from a power takeoff on the truck's transmission. The crane operator then runs all crane functions through a series of lever-operated valves at a control station. The ELA is an externally mounted LDT that uses Hall-effect technology to sense the location of a magnet embedded in the cylinder's piston through the cylinder's carbon steel barrel. A microprocessor then assigns an analog voltage to the magnet's corresponding absolute position. For example, when the cylinder is fully retracted; the voltage may be 0.55 V. As the cylinder extends, the voltage gradually increases until 4.5 V is reached at full extension.

中英文文献翻译-起重机介绍

附录 外文文献原文: The Introduction of cranes A crane is defined as a mechanism for lifting and lowering loads with a hoisting mechanism Shapiro, 1991. Cranes are the most useful and versatile piece of equipment on a vast majority of construction projects. They vary widely in configuration, capacity, mode of operation, intensity of utilization and cost. On a large project, a contractor may have an assortment of cranes for different purposes. Small mobile hydraulic cranes may be used for unloading materials from trucks and for small concrete placement operations, while larger crawler and tower cranes may be used for the erection and removal of forms, the installation of steel reinforcement, the placement of concrete, and the erection of structural steel and precast concrete beams. On many construction sites a crane is needed to lift loads such as concrete skips, reinforcement, and formwork. As the lifting needs of the construction industry have increased and diversified, a large number of general and special purpose cranes have been designed and manufactured. These cranes fall into two categories, those employed in industry and those employed in construction. The most common types of cranes used in construction are mobile, tower, and derrick cranes. 1.Mobile cranes A mobile crane is a crane capable of moving under its own power without being restricted to predetermined travel. Mobility is provided by mounting or integrating the crane with trucks or all terrain carriers or rough terrain carriers or by providing crawlers. Truck-mounted cranes have the advantage of being able to move under their own power to the construction site. Additionally, mobile cranes can move about the site, and are often able to do the work of several stationary units. Mobile cranes are used for loading, mounting, carrying large loads and for work performed in the presence of obstacles of various kinds such as power lines and similar technological installations. The essential difficulty is here the swinging of the payload which occurs during working motion and also after the work is completed. This applies particularly to the slewing motion of the crane chassis, for which relatively large angular accelerations and negative accelerations of the chassis are characteristic. Inertia forces together with the centrifugal force and the Carioles force cause the payload to swing as a spherical pendulum. Proper control of the slewing motion of the crane serving to transport a payload to the defined point with simultaneous minimization of the swings when the

龙门起重机开题报告

一、选题背景和意义: 起重机是现代工业在实现出产过程机械化、自己主动化,改善物料搬运前提,提高劳动出产率必不可少的重要机械设备。它对于发展国民经济,改善人们的事物、文化生活的需要都起着重要的作用。随着经济建设的迅速发展,机械化、自己主动化程度也在不停提高,与此相适应的起重机技能也在高速发展,产物种类不停增加,使用规模越来越广。一些企业由于没有起重机械,不仅工作效率低,劳动强度大,甚至难以工作。高层建筑的施工,上万吨级或几十万吨级的大型船只的建造,火箭和导弹的发射,大型电站的施工和安装,大重件的装卸与搬运等,都离不开起重机的作业。 起重机不仅可以作为辅助的出产设备,完成原料、半成品、产物的装卸、搬运,进行机电设备、船体分段的吊运与安装,而且也是一些出产过程及工艺操作中的必需的装备。再如冶炼金属工业出产中的炉料筹办、加料、钢水浇铸成锭、脱模取锭等,必需依靠起重机进行出产作业。据统计,在国内的冶炼金属、煤炭部门的机械设备总数量或总自重中,起重运输机械约占45%。起重机是机械化作业的重要的事物基础,是一些工业企业中主要的固定资产。对于工矿企业、港口码头、车站库场、建筑施工工地,和海洋开发、宇宙航行等部门,起重机已成为主要的出产力要素,在出产中进行着高效的工作,组成合理社团批量出产和机械化流水作业的基础,是现代化出产的重要标志之一。 龙门起重机作为物料搬运机械中的最主要的一种,在各行各业中得到广泛的应用,龙门起重机起重范围可以从几吨到几十吨甚至几百吨,在机械制造、冶金、钢铁、码头集装箱装运等行业都必须有龙门起重机。而起升机构更是起重机的咽喉设备,因此对其进行研究,改进其结构使其更加合理,使用更加方便,成本更加低廉,具有重要的现实意义。 龙门起重机的市场份额越来越大,使用非常广泛,这是产品本身及起重 机厂家以及国家政策等多种因素共同作用下的结果,随着经济的不断发展, 尤其是目前经济危机的刺激,国家的一揽子计划的推动,龙门起重机市场的 需求、发展前景大好。 龙门起重机(gantry crane)是水平桥架设置在两条支腿上构成门架形状的一种桥架型起重机。这种起重机在地面轨道上运行,主要用在露天贮料场、船坞、电站、港口和铁路货站等地进行搬运和安装作业。 课题研究目的及价值: 我们研究这一课题的目的是:设计、分析、计算龙门起重机的各个部分的结构、受力、运作情况;通过研究龙门起重机机械系统结构了解龙门起重机的运作,运用机械知识并进一步优化其结构设计。 本项目所设计的龙门起重机是起重机中应用最广泛的一种,其主要由主梁

(完整版)中英文翻译机械类机械设计外文翻译毕业论文

外文资料翻译译文 机械设计 摘要:机器是由机械装置和其它组件组成的。它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。术语中的“机械装置设计”的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。 一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全

面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。 也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。 最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要求的,则再将对初步设计进行某些修改,使它能够在制造成本上有所降低。产品的设计需要不断探索和发展。许多方案必须被研究、试验、完善,然后决定使用还是放弃。虽然每个工程学问题的内容是独特的,但是设计师可以按照类似的步骤来解决问题。 产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序。在材料过程中,五个最常见的问题为:(a)不了解或者不会使用关于材料应用方面的最新最好的信息资料;(b)未能预见和考虑材料的合理用途(如有可能,设计人员还应进一步预测和考虑由于产品使用方法不当造成的后果。在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的原告控告生产厂家,并且赢得判决);(c)所使用的材料的数据不全或是有些数据不确定,尤其是当其性能数据长期不更新; (d)质量控制方法不适当和未经验证;(e)由一些完全不称职的人员选择材料。 通过对上述五个问题的分析,可以得出这些问题是没有充分理由而存在的结论。对这些问题的研究分析可以为避免这些问题的出现而指明

10t单梁桥式起重机大车运行机构设计

毕业论文(设计)任务书 学生姓名 学号 年级专业及班级 指导教师及职称 学部 20XX年9月20日

填写说明 一、毕业论文(设计)任务书是学院根据已经确定的毕业论文(设计)题目下达给学生的一种教学文件,是学生在指导教师指导下独立从事毕业论文(设计)工作的依据。此表由指导教师填写。 二、此任务书必须针对每一位学生,不能多人共用。 三、选题要恰当,任务要明确,难度要适中,份量要合理,使每个学生在规定的时限内,经过自己的努力,可以完成任务书规定的设计研究内容。 四、任务书一经下达,不得随意更改。 五、各栏填写基本要求。 (一)主要内容和要求: 1.工程设计类选题 明确设计具体任务,设计原始条件及主要技术指标;设计方案的形成(比较与论证);该生的侧重点;应完成的工作量,如图纸、译文及计算机应用等要求。 2.实验研究类选题 明确选题的来源,具体任务与目标,国内外相关的研究现状及其评述;该生的研究重点,研究的实验内容、实验原理及实验方案;计算机应用及工作量要求,如论文、文献综述报告、译文等。 3.文法经管类论文 明确选题的任务、方向、研究范围和目标;对相关的研究历史和研究现状简要介绍,明确该生的研究重点;要求完成的工作量,如论文、文献综述报告、译文等。 (二)主要参考文献与外文资料: 在确定了毕业论文(设计)题目和明确了要求后,指导教师应给学生提供一些相关资料和相关信息,或划定参考资料的范围,指导学生收集反映当前研究进展的近1-3年参考资料和文献。外文资料是指导老师根据选题情况明确学生需要阅读或翻译成中文的外文文献。 (三)毕业论文(设计)的进度安排: 1.设计类、实验研究类课题 实习、调研、收集资料、方案制定约占总时间的20%;主体工作,包括设计、计算、绘制图纸、实验及结果分析等约占总时间的50%;撰写初稿、修改、定稿约占总时间的30%。 2.文法经管类论文 实习、调研、资料收集、归档整理、形成提纲约占总时间的60%;撰写论文初稿,修改、定稿约占总时间的40%。 六、各栏填写完整、字迹清楚。应用黑色签字笔填写,也可使用打印稿,但签名栏必须相应责任人亲笔签名。 毕业论文(设计)题目10t单梁桥式起重机大车运行机构设计

相关主题
文本预览
相关文档 最新文档