当前位置:文档之家› BKS智能模糊控制系统

BKS智能模糊控制系统

BKS智能模糊控制系统
BKS智能模糊控制系统

智能模糊控制技术在某酒店中央空调工程中的节能应用

汪秦秦,陈栋,康永

(陕西奥升环境工程有限公司西安710049)

摘要本文通过四川达州凤凰国际大酒店中央空调智能模糊控制技术(BKS系统)应用的案例,就智能模糊控制技术在中央空调系统中的应用,从项目节能分析、技术应用及实施方案等进行技术方面的介绍,并对项目投资的经济收益和社会收益等进行分析和探讨,为同类型酒店、宾馆等商业建筑节能应用提供参考和借鉴。

关键词中央空调节能建筑节能模糊控制BKS系统

0.引言

中央空调系统随着社会生产力的发展以及人民生活水平的提高已经被广泛应用于工业及民用建筑中。另一方面,中央空调系统需要消耗大量的电能和热能,其能耗占建筑总能耗的50%以上。按照国家标准,中央空调的最大负载能力是按照气温最高、负荷最大的工作环境来设计的,空调设计时预留很大的负载。但是,在实际运行中,系统又往往极少在满负荷条件下运行。据统计,中央空调系统97%时间里面运转负荷是在70%以下,所以实际负荷通常达不到满荷运行(即通常所说的“大马拉小车”),特别是在冷量需求较少的情况下,主机负荷量更低;此外,与主机相匹配的冷冻泵、冷却泵不能自动调节负载,几乎长期在100%的负载下运行,造成了电能的极大浪费。目前我国单位建筑面积的空调能耗相当于气候条件接近的发达国家的2~3倍,据不完全统计,截至2006年,我国已安装中央空调的建筑物约有7万栋,其中高级星级酒店约有5000多家,若能全部采用节能技术,预计每年可节电35.7亿千瓦时,节约电费开支27亿元,所以我国酒店空调系统存在相当大的节能空间。因此,对中央空调系统进行节能改造是响应国家要求进行节能减排的重要环节之一。

达州市位于我国四川东北部,年平均温度为14.7℃~17.6℃,最高的8月,月平均气温33.1°C,最低的2月份,月平均气温12.5°C,年极端最高温度41.2℃,年极端最低温度-4.5℃,四季温差较大。在这种地理环境和气候条件下,受开机时间变化等多种因素将导致中央空调负荷波动较大,如果仅依靠传统的人工手段对空调系统进行控制和管理,不能实现空调冷量(或热量)的供应随负荷的变化而调节,就会浪费大量能源。尽管空调主机能够根据负荷变

化自动随之部分加载或减载,但与冷冻主机相匹配的冷冻泵、冷却泵却不能跟随负荷的变化自动调节负载,始终在100%负载下运行,将会造成能源的很大浪费。

本文通过四川达州凤凰国际大酒店中央空调智能模糊控制技术(BKS系统)应用的案例,就智能模糊控制技术在中央空调系统中的应用,从项目节能分析、技术应用及实施方案等进行技术方面的介绍,并对项目投资的经济收益等进行分析和探讨,为同类型酒店、宾馆等商业建筑节能应用提供参考和借鉴。

1. BKS智能模糊控制系统原理

中央空调系统是一个多变量的、复杂的、时变的系统,其过程要素之间存在着严重的非线性、大滞后及强耦合关系。对这样的系统,无论用经典的PID控制,还是现代控制理论的各种算法,都很难实现较好的控制效果。

模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的计算机智能控制,尤其适合于中央空调这样复杂的、非线性的和时变性系统的控制。基于模糊控制的变频调速可以实现中央空调水系统真正意义上的变温差、变压差、变流量运行,使控制系统具有高度的跟随性和应变能力,可根据对被控动态过程特征的识别,自适应地调整运行参数,以获得最佳的控制效果。图1示出了BKS智能模糊控制系统原理框图。

图1 BKS智能模糊控制系统原理框图

图1中所示的模糊控制器由模糊化接口、数据库、规则库、推理机、解模糊接口等构成。它的输入变量都选用受控变量,它们能够比较准确的反映受控过程中输出变量的动态特性。对于BKS系列中央空调节能控制系统而言,受控变量是系统的供回水温度、流量及压差等。模糊控制的核心是用自然语言来描述被控制系统,利用模糊规则推理对系统的粗略知识进行类似人脑的知识处理,实现对复杂系统的优化控制。在控制过程中,以语言描述人类知识,并把它表示成模糊规则或关系,通过推理、利用知识库,把某些知识与过程状态结合起来,构成一套自寻优的模糊控制策略。

当中央空调系统负荷变化造成空调主机及其水系统偏离最佳工况时,模糊控制器根据数据采集得到各种运行参数值,如系统供回水温度、供回水压差、流量及环境温度等,经推理运算后输出优化的控制参数值,对系统运行参数进行动态调整,确保主机在任何负荷条件下,都有一个优化的运行环境,始终处于最佳运行工况,从而保持效率(COP)最高、能耗最低,实现主机节能10%~30%。

2. 项目实施方案

2.1.工程项目概况

达州凤凰国际大酒店是一座大型五星级酒店,位于四川省达州市凤凰大道,楼高38层,有各类客房198间,建筑面积约57200m2,是达州市标志性建筑之一。根据当地能源状况、技术经济比较及现场情况确定机房主机选用电制冷+真空热水机组的方案,末端选用风机盘管+独立新风系统和空调器通风管道送风系统。中央空调夏季运行约120天,冬季运行约90天,每天平均运行时间在12~16小时左右,按照传统的人工手段对空调系统进行控制和管理,预估中央空调系统年平均总耗电约230万kWh,电费支出190万元左右。

2.2. 系统配置

凤凰国际大酒店中央空调系统的配置如表1:

表1 凤凰国际大酒店中央空调系统的配置

序号名称基本参数消耗功率

(KW)

数量

(台)

1 变频离心式冷水机组QL=900RT 529 1

2 变频离心式冷水机组QL=600RT 394 1

3 螺杆式冷水机组QL=300RT 205 1

4 空调冷冻水循环泵Q=364m3/h,H=35m 5

5 2

5 空调冷冻水循环泵Q=180m3/h,H=34m 30 2

6 空调冷却水循环泵Q=430m3/h,H=30m 55 2

7 空调冷却水循环泵Q=220m3/h,H=30m 30 2

8 热水循环泵Q=120m3/h,H=30m 18.5 4

9 冷却塔风机22 2

10 冷却塔风机11 2 表1中4~10项为本系统主要控制对象。

2.3. 系统控制模型

2.3.1. 冷冻水控制模型

BKS智能模糊控制系统采用了模糊预测算法对冷冻水系统进行最佳输出能量控制。当环境温度、空调末端负荷发生变化时,冷冻水供回水温度、温差、压差和流量亦随之变化,流量计、压差传感器和温度传感器将检测到的这些参数送至模糊控制器,模糊控制器依据所采集的实时数据及系统的历史运行数据,实时计算出末端空调负荷所需的制冷(热)量以及冷冻水供回水温度、温差、压差和流量的最佳值,并与检测到的参数值进行比较,根据其偏差值,利用现代变频高速技术,调节冷冻水泵的转速,改变其流量使冷冻水系统的温差、供回水温度、压差和流量运行在模糊控制器给定的最优值。

由于冷冻水系统采用了输出能量的动态控制,实现空调主机冷媒流量跟随末端负荷的需求供应,使空调系统在各种负荷情况下,都能既保证末端用户的舒适性,又最大限度地节省了冷冻水的输送能耗。

2.3.2. 冷却水及冷却塔风机控制模型

中央空调系统的运行效率(COP)会受各种因素的影响而变化,通过有效控制系统工质参数(即运行环境),可以优化系统的运行效率,然而,这些参数的运行特征表现为非线性和时变性,因此,传统的或简单的控制技术都难以取得满意的效果。

BKS智能模糊控制系统采用了系统模糊优化对冷却水及冷却塔风机系统采用最佳效率控制。当环境温度、空调末端负荷发生变化时,中央空调主机的负荷率将随之变化,主机冷凝器的最佳热转换温度也随之变化。模糊控制器依据所采集的实时数据及系统的历史运行数据,计算出主机冷凝器的最佳热转换温度及冷却水最佳进、出口温度,并与检测到的实际温度进行比较,根据其偏差值,利用现代变频高速技术,调节冷却水泵和冷却塔风机转速,动态调节冷却水的流量和冷却塔风机的风量,使冷却水的进、出口温度逼近模糊控制器给定的最优值,从而保证中央空调主机随时处于最佳效率状态下运行。

由于冷却水系统采用最佳效率控制,保证了中央空调主机在满负荷和部分负荷的情况下,均处于最佳工作状态,始终保持最佳的能源利用率(即COP值),从而降低了空调主机的能量消耗,同时因冷却水泵和冷却塔风机经常在低于额定功率下运行,也最大限度地降低了冷却水泵和冷却塔风机的能量消耗。

3. 系统构成

3.1. 系统构成框图

主要由模糊控制柜、冷冻水智能控制柜、冷却水智能控制柜、冷却塔风机智能控制箱、热水泵智能控制柜、现场模糊控制箱、各种传感器件以及系统软件组成(见图2)。

图2 系统构成框图

BKS2008 型中央空调节能管理系统主要由以下设备组成:

MKG2008-3 模糊控制柜 1套;

MKX2008-2B 现场模糊控制箱2套;(减少布线,类似采集终端/现场工作站)

LWK2008-55-10 冷冻水泵智能控制柜2套;

LWK2008-30-10 冷冻水泵智能控制柜2套;

LWK2008-18.5-10 热水循环泵智能控制柜4套;

LQK2008-55-10 冷冻水泵标准智能控制柜2套;

LQK2008-30-10 冷冻水泵标准智能控制柜2套;

LFX2008-22-1 风机智能控制箱2套。

LFX2008-11-2 风机智能控制箱1套。 3.2. 模糊控制器

模糊控制器包括MKG2008-3型模糊控制柜1台, 柜内配置模糊控制单元1套、工业控制计算机1台、通讯协议转换单元2套、数字量接口单元2套、保护单元1套以及系统软件模糊控制柜

传感器传感器现场模糊控制箱中央空调主机??????冷冻水泵 智能控制柜 冷冻水泵

冷冻水泵 智能控制柜 冷却水泵 风机 智能控制柜 冷却塔风机 热水循环泵 智能控制柜 热水泵 传感器传感器现场模糊控制箱??????

1套。模糊控制柜于现场用通讯线缆与冷冻水泵智能控制柜、热水循环泵智能控制柜、冷却水泵智能控制柜、冷却塔风机智能控制柜、现场模糊控制箱以及原有的空调起、停控制柜连接。模糊控制器系统通过协议解析,可与以上各控制柜进行通信,通过对空调系统全面的参数采集,实现对空调系统运行的集中监测、控制和管理。

3.3. 冷冻水模糊控制系统

冷冻水模糊控制系统设置LWK2008-55-10和LWK2008-30-10水泵智能控制柜各2套;每套柜内分别配置相应变频器各1台;基本接口单元各1套、数字量接口单元各1套,用于控制冷冻水泵;标准水泵智能控制柜以及各控制单元经传输导线与MKG2008-3模糊控制柜连接。冷冻水系统的供水管上安装水流压力传感器ΔP,于泵后冷冻水供、回水管上分别安装有水温传感器,主机冷冻水出口管上安装有水温传感器,于冷冻水回水管上安装流量计。每只流量计、水温传感器及水流压力传感器经传输导线与MKX 2008-2B现场模糊控制箱连接。原电机控制柜内的主电路不变,断开原控制柜进线断路器与降压起动(或Y/Δ起动)主电路的导线连接,加导线改接至对应水泵智能控制柜的进线端,水泵智能控制柜的出线再返回原电机控制柜,与降压起动(或Y/Δ起动)主电路连接,原控制电路的进线仍接至进线断路器的出线端,当需作能耗比较测试或变频器因严重故障短时间内不能恢复或置换时,可方便快捷地切换为原工频状态运行。

模糊控制器依据所采集的实时数据及系统的历史运行数据,计算出负荷需要制冷量及最佳温度、温差、压差和流量值,并与检测到的实际参数作比较,根据其偏差值控制冷冻水泵的转速,改变其流量使冷冻水系统的供回水温度、温差、压差和流量趋于模糊控制器给定的最优值。当原电机控制柜起动后,模糊控制器向对应变频器发出控制指令,软起动冷冻水泵(从0Hz升至设定低限频率值约10秒,冷冻水泵的低限频率由现场调试确定),水泵起动频率升至设定低限频率后,按模糊控制器输出的控制参数运行,使系统在保证末端空调用户的舒适度需求的同时,可实现最大限度的节能。机组运行时,如果冷冻水出口温度、流量或供回水压差出现异常时,系统送出报警信号并采取相应的保护措施,保证空调主机的安全正常运行。

3.4. 冷却水模糊控制系统

冷却水模糊控制系统设置LQK2008-55-10和LQK2008-30-10水泵智能控制柜各2套,每台柜内配置变频器各1台、基本接口单元各1套、数字量接口单元各1套,用于控制冷却水泵4台;变频器、标准水泵智能控制柜以及各控制单元经传输导线与MKG2008-3模糊控制柜连接。在主机冷却水出口管上安装有水温传感器。每只水温传感器经传输导线与MKX

2008-2B现场模糊控制箱连接。原电机控制柜内的主电路不变,断开原控制柜进线断路器与降压起动(或Y/Δ起动)主电路的导线连接,加导线改接至对应水泵智能控制柜的进线端,水泵智能控制柜的出线再返回原电机控制柜,与降压起动(或Y/Δ起动)主电路连接,原控制电路的进线仍接至进线断路器的出线端,当需作能耗比较测试或变频器因严重故障短时间内不能恢复或置换时,可方便快捷地切换为原工频状态运行。

当原电机控制柜起动完毕后,起动完毕信号送至模糊控制器,由模糊控制器向对应变频器发出指令,软起动冷却水泵(从0 Hz升至设定低限频率值约10秒)。冷却水泵起动后,按模糊控制器输出的控制参数值,调节各冷却水泵变频器的输出频率,控制冷却水泵的转速,动态调节冷却水的流量,使冷却水的进、出口温度逼近模糊控制器给定的最优值,从而保证中央空调主机随时处于最佳转换效率状态下运行。以实现冷却水泵和空调主机在最佳工况下节能运行。由于模糊控制器设定了冷却水泵的最低运行频率(设定低限频率值为略大于中央空调主机冷却水容许最低流量时对应的水泵运行频率),故确保了中央空调主机冷却水的安全运行。机组运行时如果冷却水出口温度超过高限温度,系统送出报警信号并采取相应的保护措施,保证空调主机的安全正常运行。

3.5. 冷却塔风机模糊控制系统

冷却塔风机控制系统设置LFX2008-22-1和LFX2008-11-2冷却塔风机智能控制箱2台,箱内分别配置数字量接口单元1套以及相应控制电路1套,用于冷却塔风机的起、停控制。冷却塔风机智能控制箱经通讯总线与MKG2008-3模糊控制柜连接。在冷却水进水总管上安装有水温传感器。水温传感器经传输导线与现场模糊控制箱MKX2008-2B连接。原冷却塔风机控制柜的主电路不变,控制电路按“原冷却塔风机控制电路更改原理图”进行更改。冷却塔风机智能控制箱于现场经多组导线与原冷却塔风机控制柜连接,实现对10组冷却塔风机进行远程起、停控制和就地起、停控制以及对冷却塔风机的运行状态进行监测。

当接收到启动指令后,模糊控制器向对应的冷却塔风机发出控制指令,起动冷却塔风机。风机起动后按模糊控制器输出的控制参数值,动态调整风机的运行台数和运行时间,使冷却水的进口温度逼近模糊控制器给定的最优值,使冷却水入口温度保证空调主机处于最佳运行工况。当第一台冷却塔的风机起动正常后,模糊控制器向对应风机智能控制箱发出指令,起动第二台冷却塔的风机。倘若空调主机冷却水进口水温低于模糊控制器确定的优化值,风机在运行10分钟后,则自行停止或自动减少运行台数。直到水温升至模糊控制器确定的动态优化值后再自行起动。

3.6. 系统原理图(见图3)

图3 系统原理图

4. 应用效果

4.1. 安全可靠性和节能效果

凤凰国际大酒店中央空调系统通过安装BKS智能模糊控制系统,实施节能控制后,实际运行结果表明:

系统运行安全、稳定、可靠,功能指标达到设备技术要求;系统直观、自动化程度较高,能及时、准确地自动跟踪末端空调负荷运行;系统实现了空调泵组的软启动、软停止、运行平滑稳定,较大地改善了设备的启停性能和运行磨损;系统具有强大的管理功能和安全保护功能,确保整个空调系统优化、安全的运行;实现了中央空调系统最大限度的节能,系统(主机、冷冻水泵、热水循环泵、冷冻水泵、冷却塔风机)综合节电率达26.42%。

4.2. 节能效果及社会效益

如不实施BKS智能模糊控制系统,该项目年耗电230万kWh,电费190万元。

实施BKS智能模糊控制系统后,每年节约电量60.8万kWh,每年减少电费支出50万元人民币(系统综合节能率26.42%,综合电价0.8224元/kWh计算)。按照现行标准折算,即每年可节约243.2吨标准煤,每年可减排:

CO2 排放:608000*900/106= 547.2吨;

SO2 排放:608000*11/106 = 6.69吨;

N2O3排放:608000*3/106 = 1.82吨;

由此可见,本项目的实施不仅节约了大量的能源,还大大减少了煤炭燃烧所产生的废气排放和温室气体排放,对环境保护起到了巨大的作用。

5. 结语

随着国内的高档酒店、宾馆、大型商场等商业建筑的大量兴建,中央空调能耗已成为商业建筑设计和运营过程中亟待解决的重要课题。先进节能技术的成功引入和推广,为各行业客户带来巨大的节能经济收益和社会效益,同时也必将推动我国节能投资机制的深入变革,为节能产品在建筑节能领域的推广和应用提供良好的发展前景。

参考文献:

1. 《中央空调》,何耀东何青主编,冶金工业出版社,2001

2. 《旅馆建筑空调设计》,何青何耀东,中国建筑工业出版社,1995

3. 《2004年中国星级饭店统计公报》,国家旅游局,2005

4. 《BKS中央空调管理专家系统技术规范》,贵州汇通华城楼宇科技有限公司,2005

5. 《酒店中央空调节能原理及应用》,管宏,深圳市建筑设计研究总院有限公司,2010

6. 《中央空调模糊控制技术》,李玉街,贵州汇通华城楼宇科技有限公司,2005

智能家居系统需求分析

智能家居系统 1 智能家居整体系统的功能分析 背景和系统结构图的介绍 智能家居又称住宅智能化,是智能建筑的重要组成部分。它随着科技的高速发展和人们生活要求的不断提高而应运而生,成为21世纪的热点技术。智能家居可以定义为一个过程或者一个系统,该过程(系统)利用先进的计算机技术、网络通信技术、综合布线技术构建与家居生活有关的各种子系统,并将其有机结合在一起,通过统筹管理,将智能家居的被动静止结构转变为具有智慧的新动态,为住户生活提供全方位的信息交换功能,帮助家庭和外部、使用者与家庭环境之间保持信息交流畅通,优化人们的生活方式。 图1为智能家居的系统结构图,该图列举了典型智能家居的系统组成:家庭网关、电动窗帘和门窗系统、家庭智能照明系统、家庭多媒体系统、可视门禁系统、安防周界系统、环境温度控制系统、视频监控系统等,其中家庭网关是智能家居系统的通信管理单元和子系统控制中心,在家庭网关通信管理体系下,可构建家庭网络通信系统。 图1 智能家居系统结构图 通过采用上述功能系统,实现家居智能化和自动化。相对传统家居而言,智能家居通

过全新的3C技术(Computer Communication Control Technology),提供了全方位的信息服务,赋予了家居生活安全、舒适、节能的特性。 设计原则 (1)功能需求。智能家居注重满足人们在方便性和舒适度方面的需求,如:遥控功能(遥控控制家居范围内所有的灯,窗帘及其他电气设备),网络化控制、场景控制,本地控制等。 (2)高性价比。在系统设计中要充分考虑系统的性能和价格的要求,使系统在较低成本的条件下,尽可能满足用户需求。 (3)通用性。目前所有的智能家居技术都处于发展阶段,所以系统设计时,要注意选择兼容性好,符合国际通用协议的技术。 (4)兼容性和可扩展性。随着智能家居技术的不断发展,会有越来越多的家居智能化产品和技术的诞生,因此,在智能家居系统的设计之初,就必须考虑系统未来的兼容和发展。 (5)布线简洁。易于安装,符合大多数人的习惯。 (6)安全性。包括所进行设计运行过程的安全性和耐久性。 基于以上原则,才能设计出一套完整的智能家居系统。 设计依据 设计依据主要有: 《全国住宅小区智能化技术示范工程建设要点与技术导则》 《住宅小区安全技术防范综合报警服务系统设计导则》 《社会公共安全标准汇编》 《防盗安全门通用技术条件》(GB17565—2007) 《民用建筑电气设计规范》(JGJ/T 16—2008) 《安全防范工程程序要求》(GA/T 75—1994) 《家庭布线标准》(TIA/EIA 570—A) 《计算机软件开发规范》(GB 8566—1988) 《电气装置安装工程施工及验收规范》(GBJ 232—1982) 《建筑智能化系统工程实施及验收规范》(DB 32/366—1999) 《建筑智能化系统工程评估标准》(DB 32/T367—1999)

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师___________ 日期20门年9月20日 在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)

的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意头重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: ⑴模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点 是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 ⑵由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控 制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

⑶基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同, 容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 ⑷模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人 工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 ⑸模糊控制系统的鲁棒性強,干扰和参数变化对控制效果的影响被大大减 弱,尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率仝,输出变量为电机的电压变化量u。图2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 OOOr / s时,电机能很快稳定运行于2 OOOr / s;当设定转速下降到1 OOOr / s时,转速又很快下降到1 OOOr / s稳定运 行。

智能控制问答题终极版

1-1 智能控制系统由哪几部分组成?各部分的作用是什么? 答:六部分组成:执行器、传感器、感知信息处理、规划与控制、认知和通信接口。 1、执行器是系统的输出,对外界对象发生作用。 2、传感器产生智能系统的输入,传感器用来监测外部环境和系统本身的状态。传感器向感知信息处理单元提供输入。 3、感知信息处理,将传感器得到的原始信息加以处理,并与内部环境模型产生的期望信息进行比较。 4、认知主要用来接收和存储信息、知识、经验和数据,并对他们进行分析、推理作出行动的决策,送至规划和控制部分。 5、通信接口除建立人机之间的联系外,还建立系统各模块之间的联系。 6、规划和控制是整个系统的核心,它根据给定的任务要求,反馈的信息,以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用。 1-2 智能控制系统的特点是什么? 答:1、智能控制系统一般具有以知识表示的非数学广义模型和以数学模型表示的混合控制过程。 2、智能控制器具有分层信息处理和决策机构。 3、智能控制器具有非线性和变结构特点。 4、智能控制器具有多目标优化能力。 5、智能控制器能够在复杂环境下学习。 从功能和行为上分析,智能控制系统应具备以下一条或几条功能特点: 1、自适应功能 2、自学习功能 3、自组织功能 4、自诊断功能 5、自修复功能 1-3 智能控制与传统控制相比较有什么不同?在什么场合下应该选用智能控制策略? 答:(1)不同点:1、涉及的范围:智能控制的范围包括了传统控制的范围。有微分/差分方程描述的系统;有混合系统(离散和连续系统混合、符号和数值系统混合、数字和模拟系统混合)。2、控制的目标:智能的目标寻求在巨大的不确定环境中,获得整体的优化。因此,智能控制要考虑:故障诊断、系统重构、自组织、自学习能力、多重目标。3、系统的结构:控制对象和控制系统的结合。 (2)在什么场合下应该选用智能控制策略。说法一:主要针对控制对象及其环境、目标和任务的不确定性和复杂性的系统。说法二:主要针对无法获得精确的数学模型、无法解决建模问题、假设条件与实际不相吻合的系统。2-11 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:(1)组成:输入量模糊化接口、知识库(数据库和规则库)、推理机、输出解模糊接口四部分。(2)功能:1、模糊化接口测量输入变量和受控系统的输出变量,并把它们映射到一个合适的响应论域的量程,然后精确的输入数据被变换为适当的语言值或模糊集合的标示符。2、知识库涉及应用领域和控制目标的相关知识,它由数据库和语言控制规则库组成。数据库为语言控制规则的论域离散化和隶属函数提供必要的定义。语言控制规则标记控制目标和领域专家的控制策略。3、推理机是模糊控制系统的核心,以模糊概念为基础,模糊控制信息可以通过模糊蕴涵和模糊逻辑的推理规则来获取,并可以实现拟人决策过程。根据模糊输入和模糊控制规则,模糊推理求解模糊关系方程,获取模糊输出。4、模糊决策接口起到模糊控制的推断作用,并产生一个精确的或非模糊的控制作用。此精确控制作用必须进行逆定标,这一作用是在对受控过程进行控制之前通过量程变换实现的。 模糊控制器的结构组成和作用:一、模糊化接口测量输入变量和受控系统的输出变量,并把它们映射到一个合适的响应论域的量程。二、知识库为语言控制规则的论域离散化和隶属函数提供必要的定义。 三、推理机根据模糊输入和模糊控制规则,模糊推理求解模糊关系方程,获得模糊输出。四、模糊判决接口起到模糊控制的推断作用,并产生一个精确的或非模糊的控制作用。 2-12 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题? 答:(1)原则性步骤:1、定义输入输出变量2、定义所有变量的模糊化条件3、设计控制规则库4、设计模糊推理机构5、选择精确化策略的方法 (2)常规设计方法:查表法。步骤:1、确定模糊控制器的输入输出变量2、确定各输入输出变化量的变化范围、量化等级和量化因子3、在各输入输出语言变量的量化域内定义模糊子集4、模糊控制规则确定5、求模糊控制表 (3)注意的问题:1、在定义输入和输出变量时,要考虑到软件实现的限制,一般用于小于10个输入变量时,软件推理还能应付,但当输入变量的数目再增加时,就要考虑采用专用模糊逻辑推理集成芯片。 2、确定模糊控制规则的原则是必须保证控制器的输出能够使系统输出响应的动静态特性达到最佳。 补充1 模糊集合:定义实际上是将经典集合论中的特征函数表示扩展到用隶属度函数来表示。 补充2 隶属度函数:模糊集合的特征函数,实质上反映的事物的渐变性。

智能家居家电控制系统系统设计说明

xx家电控制系统设计说明 一、定义 智能家居又称智能住宅,在国外常用Smart Home表示。与智能家居含义近似的有家庭自动化(HomeAutomation)、电子家庭(ElecctronicHome、E-home)、数字家园(DigitalFamily)、家庭网络(Home Net/Networks for ome)、网络家居(Network Home)、智能家庭/建筑 (IntelligentHome/Building),在我国香港和台湾等地区,还有数码家庭、数码家居等称法。 智能家居是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。 智能家居是一个居住环境,是以住宅为平台安装有智能家居系统的居住环境,实施智能家居系统的过程就称为智能家居集成。 智能家居集成是利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成。由于智能家居采用的技术标准与协议的不同,大多数智能家居系统都采用综合布线方式,但少数系统可能并不采用综合布线技术,如电力载波,不论哪一种情况,都一定有对应的网络通信技术来完成所需的信号传输任务,因此网络通信技术是智能家居集成中关键的技术之一。安全防范技术是智能家居系统中必不可少的技术,在小区及户内可视对讲、家庭监控、家庭防盗报警、与家庭有关的小区一卡通等领域都有广泛应用。自动控制技术是智能家居系统中必不可少的技术,广泛应用在智能家居控制中心、家居设备自动控制模块中,对于家庭能源的科学管理、家庭设备的日程管理都有十分重要的作用。音视频技术是实现家庭环境舒适性、艺术性的重要技术,体现在音视频集中分配、背景音乐、家庭影院等方面。 二、表述 智能家居其实有两种表述的语意,定义中描述的,以及我们通常所指的都是智能家居这一住宅环境,既包括单个住宅中的智能家居,也包括在房地产小

模糊控制系统及其MATLAB实现

1. 模糊控制的相关理论和概念 1.1 模糊控制的发展 模糊控制理论是在美国加州伯克利大学的L.A.Zadeh 教授于1965 年建立的模糊集合论的数学基础上发展起来的。之后的几年间Zadeh 又提出了模糊算法、模糊决策、模糊排序、语言变量和模糊IF-THEN 规则等理论,为模糊理论的发展奠定了基础。 1975年,Mamdani 和Assilian 创立了模糊控制器的基本框架,并用于控制蒸汽机。 1978年,Holmblad 和Ostergaard 为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。 20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁模糊控制系统的成功应用引起了模糊领域的一场巨变。到20世纪90年代初,市场上已经出现了大量的模糊消费产品。 近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息检索、地震研究、环境预测、楼宇自动化等学科和领域, 并且渗透到社会科学和自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。 1.2模糊控制的一些相关概念 用隶属度法来定义论域U 中的集合A ,引入了集合A 的0-1隶属度函数,用()A x μ表示,它满足: 1 ()0A x μ?=?? x A x A ∈? 用0-1之间的数来表示x 属于集合A 的程度,集合A 等价与它的隶属度函数()A x μ 模糊系统是一种基于知识或基于规则的系统。它的核心就是由所谓的 IF-THEN 规则所组成的知识库。一个模糊的IF-THEN 规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN 形式的陈述。例如: 如果一辆汽车的速度快,则施加给油门的力较小。 这里的“快”和“较小”分别用隶属度函数加以描述。模糊系统就是通过组合IF-THEN 规则构成的。 构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN 规则,然后将这些规则组合到单一系统中。不同的模糊系统可采用不用的组合原则。 用隶属度函数表征一个模糊描述后,实质上就将模糊描述的模糊消除了。 模糊控制系统设计的关键在于模糊控制器的设计。模糊控制器的设计主要有三个部分: (1) 输入量的模糊化 所谓模糊化(Fuzzification) 就是先将某个输入测量量的测量值作标准化处理,把该输入测量量的变化范围映射到相应论域中,再将论域中的各输入数据以相应

专家控制系统课后大作业

5-1 什么是专家系统?它具有哪些特点和优点? 专家系统(Expert System) 是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的特点如下: (1)启发性。不仅能使用逻辑知识,也能使用启发性知识,它运用规范的专门知识和直觉的评判知识进行判断、推理和联想,实现问题求解; (2)透明性。它使用户在对专家系统结构不了解的情况下,可以进行相互交往,并了解知识的内容和推理思路,系统还能回答用户的一些有关系统自身行为的问题; (3)灵活性。专家系统的知识与推理机构的分离,使系统不断接纳新的知识,从而确保系统内知识不断增长以满足商业和研究的需要; (4)实用性。可长期保存人类专家的知识与经验,且工作效率高、可靠性好、能汇集众多专家的特长,达到高于任何单个专家的水平,是保存、传播、使用及提高专家知识与经验的有效工具; (5)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作。使用符号表示知识,用符号集合表示问题的概念,一个符号是一串程序设计,并可用于表示现实世界中的概念; (6)不确定性推理。领域专家求解问题的方法大多数是经验性的,经验知识一般用于表示不精确性且存在一定概率的问题。此外,其提供的有关信息往往是不确定的。而专家系统能够综合应用模糊和不确定的信息与知识进行推理; 专家系统的优点如下: (1)专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作; (2)专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记; (3)军事专家系统的水平是一个国家国防现代化的重要标志之一;

智能家居系统设计方案

智能家居系统设计方案 一、智能家居概述 智能家居是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术等,将家居生活有关的家用电器设备和住宅设施监控集成,构建高效的家用电器日程事务管理系统,提升了家居安全性、便利性、舒适性、艺术性,并可实现节能环保的居住环境。通常我们把实施智能家居系统的过程称为智能家居集成。 二、智能家居系统范围 智能家居系统的主要子系统有:家居布线系统、家庭网络系统、智能家居集成控制管理系统、家居照明控制系统、住宅安防系统,这些是智能家居配置的必备系统,还有家庭影音系统、家庭环境控制系统,家庭门窗窗帘自动控制系统、家庭宠物喂养控制系统、家庭智能单品电器等是智能家居系统配置的可选系统。三、智能家居系统功能介绍 本方案针对别墅三层智能家居系统规划有可视对讲门禁系统、远程访问控制系统、定时控制系统、远程监控及安防报警系统、

灯光控制系统、家电控制系统等六大子系统。以下针对各系统作系统功能组成说明: 1.可视对讲门禁系统 访客来访,您在家时的情境 (1)访客可直接透过别墅门口机呼叫室内机做可视对讲,确认访客身份开门。 (2)当呼叫时,您不在室内主机旁,您不用再急急忙忙地跑到对讲管理主机接听,只要拿起家用的电信分机即可与来访客人对讲/开门。 (3)您也可以使用室内对讲分机,做访客呼叫对讲/开门。 (4)您也可以拿起专用的遥控器控制开门。 访客来访,您不在家时的情境 (1)当您外出时,可于智能控制管理主机设定外出转接,当客人来访时,系统会作呼叫转移,您可以用手机与来访客作对讲。 (2)若是您的家人忘了带锁匙时,可直接于手机上透过3G网络做远程控制开门。或者使用短消息发送关键词密码方式,经系统辨识确认后,也可以开门。 (3)当您外出时,可于智能控制管理主机设定外出转接,当客人来访时,系统会作呼叫转移,您可以直接用手机与门口访客做对讲。 主人回到家时的情境

模糊控制器的设计

4模糊控制器的设计 4 Design of Fuzzy Controllor 4.1概述(Introduction) 随着PLC在自动控制领域内的广泛应用及被控对象的日趋复杂化,PLC控制软件的开发单纯依靠工程人员的经验显然是行不通的,而必须要有科学、有效的软件开发方法作为指导。因此,结合PLC可编程逻辑控制器的特点,应用最新控制理论、技术和方法,是进一步提高PLC软件开发效率及质量的重要途径。 系统设计的目标之一就是要提高装车的均匀性,车厢中煤位的高度变化直接影响装车的均匀性,装车不均匀对车轴有很大的隐患。要保持高度值不变就必须不断的调整溜槽的角度,但是,在装车过程中,煤位的高度和溜槽角度之间无法建立精确的数学模型。模糊控制它最大的特点是[43-45]:不需建立控制对象精确数学模型,只需要将操作人员的经验总结描述成计算机语言即可,因此采用模糊控制思想实现均匀装车是行之有效的方法。虽然很多PLC生产厂家推出FZ模糊推理模块,但这些专用模块价格昂贵,需使用专门的编程设备,成本高通用性差,所以自主开发基于模糊控制理论的PLC控制器有很大的工程价值。 本章首先介绍了模糊控制的基本原理、模糊控制系统及模糊控制器的设计步骤;然后在对煤位高度控制系统分析的基础上,设计基于模糊理论的PLC控制,分别从查询表计算生成和PLC程序查询两个部分进行设计。 4.2模糊控制原理(Fuzzy Control Principle) 4.2.1模糊控制理论(Fuzzy Control Theory) 模糊控制理论是由美国加利福尼亚大学的自动控制理论专家L.A.Zadch教授首次提出,由英国的Mamdani首次用于工业控制的一种智能控制技术[46]。模糊控制(FUZZY)技术是一种由数学模型、计算机、人工智能、知识工程等多门科学领域相互渗透、理论性很强的科学技术。 模糊控制是以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的数学工具,用计算机来实现的一中计算机智能控制[47-48]。它的基本思想是:把人类专家对待特定的被控对象或过程的控制策略总结成一系列以“IF…THEN…”形式表示的控制规则,通过模糊推理得到控制作用集,作用与被控对象或过程。与传统的控制方法相比,它具有以下优点[48]:无需知道被控对象的数学模型;是一种反映人类智慧思维的智能控制;易被人们所接受;构造容易;鲁棒性好。

智能家居控制系统

智能家居控制系统 This manuscript was revised by JIEK MA on December 15th, 2012.

智能家居控制系统 智能家居(Smart Home)是以住宅为平台,利用综合布线技术、网络通信技术、智能家居-系统设计方案安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。它将让用户有更方便的手段来管理家庭设备,比如,通过家、无线遥控器、电话、互联网或者语音识别控制家用设备,更可以执行场景操作,使多个设备形成联动;另一方面,智能家居内的各种设备相互间可以通讯,不需要用户指挥也能根据不同的状态互动运行,从而给用户带来最大程度的高效、便利、舒适与安全。与普通家居相比,智能家居不仅具有传统的居住功能,提供舒适安全、高品位且宜人的家庭生活空间,还将原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家庭与外部保持信息交换畅通,优化人们的生活方式,帮助人们有效安排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。系统的网络化功能可以提供遥控、家电(空调,热水器等)控制、照明控制、室内外遥控、窗帘自控、防盗报警、可编程定时控制及计算机远程控制等多种功能和手段。使生活更加舒适、便利和安全。因智能家居控制系统布线简单、功能灵活,扩展容易而被人们广泛接受和应用。 智能家居控制部分要求 一、智能家居控制主要分为灯光、家电(其中包含空调、电视、热水器等等);电动窗帘的控制这三大区域 A、灯光控制部分: 1.在灯光控制部分除了普通的对某一路灯进行开关控制之外;必须具有对白炽灯进行亮度的随意调节及软启动的功能。软启动及开启或关闭灯光的

专家控制系统

第三章 专家控制系统 3.1 专家系统概述 1.专家及专家系统的定义 专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验以及他们处理问题的详细专业知识。 定义 3.1专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家才能处理好的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的基本功能取决于它所含有的知识,因此,有时也把专家系统称为基于知识的系统(knowledge-based system)。 3.1.1 专家系统的特点及优点 1.专家系统的特点 与常规的计算机程序系统比较,专家系统具有下列特点: (1)启发性 专家系统要解决的问题,其结构往往是不合理的,其问题求解(problem-solving)知识不仅包括理论知识和常识,而且包括专家本人的启发知识。 (2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户了解推理过程,增大对专家系统的信任感。 (3) 灵活性 专家系统的灵活性是指它的扩展和丰富知识库的能力,以及改善非编程状态下的系统性能,即自学习能力。 (4)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作(运算),使用符号表示知识,用符号集合表示问题的概念。一个符号是一串程序设计,并可用于表示现实世界中的概念。 (5)不确定性推理。领域专家求解问题的方法大多数是经验性的;经验知识一般用于表示不精确性并存在一定概率的问题。此外,所提供的有关问题的信息往往是不确定的。专家系统能够综合应用模糊和不确定的信息与知识,进行推理。 2.专家系统的优点 (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏和忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够广泛有力地传播专家的知识、经验和能力。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力,它拥有更渊博的知识、更丰富的经验和更强的工作能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。专家系统对人工智能各个领域的发展起了很大的促进作用,并将对科技、经济、国防、教育、社会和人民生活产生极其深远的影响。 3.1.2 专家系统的结构与类型 1. 专家系统的结构 专家系统的结构是指专家系统各组成部分的构造方法和组织形式。系统结构选择恰当与否,是与专家系统的适用性和有效性密切相关的,选择什么结构最为恰当,要根据系统的应用环境和所执行任务的特点确定。例如,MYCIN系统的任务是疾病诊断与解释,其问题的特点是

模糊控制系统的应用2

3.1 模糊推理基础 3.1.1 模糊集合 1.模糊集合定义 延用普通集合论的有关概念,设为论域,为元素,模糊集合定义:论域中元素的模糊集A是以:[0,1]为隶属函数表征的集合。隶属函数表征属于模糊集合A的程度或等级,亦称模糊特征函数,是用于描述普通集合的特征函数的扩展,其值域是从普通集合特征函数的{0,1}扩充到[0,1]区间的实数。若接近1,则表示属于A的程度高,反之,若接近0,则表示属于A的程度低。 2.集合表示方法 1)Zadeh(查德)表示法在论域U中,>0的全部元素组成的集合,称为Fuzzy集合A的“台”,或“支集”。也就是说,当某个元素的隶属度为零时,它就不属于该Fuzzy集合。当Fuzzy集合A有一个有限的台时,A可表达为: (3-1) 式中,并不代表“分数”,而是表示论域U中元素与其隶属函数之间的对应关系,称为“单点”;符号“+”也不表示“求和”,而是表示Fuzzy集合在论域U上的整体。可见,通过台来表示Fuzzy集合的Zadeh 表示法,实际上是将Fuzzy集合视为一些单点的集合,使Fuzzy集合的表达式更加简明、醒目,而不必再考虑那些不属于该集合的元素(尽管这些元素也确在论域U之中)。当Fuzzy集合A的台有无限多个元素时,应用Zadeh表示法,Fuzzy集合A可表达为: (3-2) 式中,积分符号不代表普通的积分,也不意味着求和,而是表示无限多个元素与相应隶属度对应关系的一个总括。在这种情况下,式(3-2)中也不需加写算符。 2)向量表示法当Fuzzy集合A的台由有限个元素构成时,Fuzzy集合A还可表示成向量形式,即:

(3-3)注意,应用向量表示法时,隶属度等于零的项,在式(3-3)所示向量中必须以0代替,不能舍弃。例如,已知Fuzzy集合“几个”的Zadeh表示为: A = 0.3/3 + 0.7/4 + 1/5 + 1/6 + 0.7/7 + 0.3/8 其中,论域U = {1,2,3,4,5,6,7,8,9}。写成向量表示形式为: A= [0 0 0.3 0.7 1 1 0.7 0.3 0] 向量表示法对于Fuzzy集合的运算十分方便。 3)隶属函数法给出隶属函数的解析表达式,也能表示出相应的Fuzzy集合。Zadeh曾以年龄为论域,取=[0,100],给出的一个“年轻人”Y模糊集合的隶属函数为: (3-4)3.模糊集合的基本运算 定义:设A,B是论域U上的两个Fuzzy子集,规定A与B“并”运算(A∪B),“交”运算(A∩B)及“补”运算(,)的隶属函数分别为,,及,则对U上的每一个元素有: (3-5) (3-6) (3-7) (3-8)

智能家居控制系统

智能家居控制系统智能家居(Smart Home)是以住宅为平台,利用综合布线技术、 网络通信技术、智能家居-系统设计方案安全防范技术、自动控制技 术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与 家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术 性,并实现环保节能的居住环境。它将让用户有更方便的手段来管理 家庭设备,比如,通过家、无线遥控器、电话、互联网或者语音识别 控制家用设备,更可以执行场景操作,使多个设备形成联动;另一方 面,智能家居内的各种设备相互间可以通讯,不需要用户指挥也能根 据不同的状态互动运行,从而给用户带来最大程度的高效、便利、舒 适与安全。与普通家居相比,智能家居不仅具有传统的居住功能,提 供舒适安全、高品位且宜人的家庭生活空间,还将原来的被动静止结 构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家 庭与外部保持信息交换畅通,优化人们的生活方式,帮助人们有效安 排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。系 统的网络化功能可以提供遥控、家电(空调,热水器等)控制、照明 控制、室内外遥控、窗帘自控、防盗报警、可编程定时控制及计算机 远程控制等多种功能和手段。使生活更加舒适、便利和安全。因智能 家居控制系统布线简单、功能灵活,扩展容易而被人们广泛接受和应 用。 智能家居控制部分要求 一、智能家居控制主要分为灯光、家电(其中包含空调、电视、热水器等等);电动窗帘的控制这三大区域 A、灯光控制部分:

1.在灯光控制部分除了普通的对某一路灯进行开关控制之外;必须具有对白炽灯进行亮度的随意调节及软启动的功能。软启动及开启或关闭灯光的时候有个渐变的过程,即当开启灯光时,灯光强度由暗渐渐变亮,或关闭灯光的时候,灯光强度由亮慢慢变暗,可以让住户眼睛有个适应的时间,而不会因为灯光突然亮起而让眼睛感觉不舒服。 2.除了这些常见的功能外,系统还必须对灯光控制进行多种动作定义。如可以有灯光亮度的定义,比如开灯时可以让灯光渐亮到30%或50%,等等。这个主要用于模拟客户夜间回家或起床,可以让灯光不要开的太亮,以免影响其他休息的人。 3.灯光的延时开启或关闭。可以让灯光经过您设定的时间后开启或关闭。当模拟当你出门的时候,先按下玄关灯的按键,等您穿鞋关门走出去后,灯光才会慢慢的关闭。 4.动作跳变:即把灯光开之后,然后经过设定的时间后,灯光自动关闭。常应用在洗手间,这样模拟在洗手完之后按下跳变的按键,过段时间后,灯光及排气扇即可自动关闭。 5.灯光组合控制。就是一个按键可以让接入系统中的各路灯光进行不同的动作。一个按键执行的动作可以抵得上几个动作方能完成的效果。 如说离家的常用模式,当外出的时候,只需要按一个按键,即可以把家里面的灯光全部关闭,这样可以避免了走到各个房间或漏关而浪费资源的现象。 会客模式:当有客人一进来,按一个按键,把灯光全部打开,立

双闭环模糊控制系统的设计与仿真

《运动控制系统》课程设计学院:物联网工程学院 班级: 姓名: 学号: 日期: 成绩:

文章编号: 双闭环模糊控制系统的设计与仿真 (江南大学物联网工程学院,江苏省无锡邮编214122) 摘要:直流电机具有良好的起动、制动性能,因此其在电力拖动自动控制系统中应用广泛。众所周知,直流电机的闭环系统静特性要比开环系统的机械特写硬的多,而转速、电流双闭环控制直流调速系统是性能好、应用最广泛的直流调速系统,但该系统依赖精确的数学模型,在增加解决环节的同时,系统模型趋于复杂,还可能会影响系统的可靠性。因此我们在总结了以前经验的同时,提出了双闭环模糊控制系统的的设计与仿真。 关键词:直流电机;双闭环系统;模糊控制 中图分类号:文献标识码:A Double Closed Loop Fuzzy Control System Design and Simulation Author name (Jiangnan University, Wuxi 214122, China) Abstract:DC motor has good starting, braking performance, therefore in the electric drive automatic control system is widely applied in the field of. As everyone knows, the closed-loop DC motor system static characteristics than the open loop system of mechanical feature of more than hardware, and speed, electric current double closed loop DC motor control system is of good performance, the most widely used DC speed regulating system, but the system depend on the accurate mathematical model, increase solve link at the same time, the system model tends to be complex, also may influence the reliability of the system. Therefore we are summing up the previous experience at the same time, put forward a double closed loop fuzzy control system design and simulation. Key words:DC Motor; Double Closed Loop System; Fuzzy Control 1 引言 2 双闭环直流调速系统的设计 直流电动机具有启动转矩大、调速范围宽等优势,在轧钢机、电力机车等方面仍广泛采用。直流调速系统在理论上和实践上都比较成热,从控制技术的角度来看,它又是交流调速系统的基础;电力电子技术、计算机控制技术、智能控制理论的发展,,更为直流调速系统继续发展和应用提供了契机。进入21世纪后国外一些公司仍在不断推出高性能直 流调速系统。因此,对直流调速系统的研究仍具有重要意义。 直流调速系统中最典型的控制方式就是速度、电流双闭环调速。由于受参数时变和不确定性等因素的影响,传统的控制方法常受到很大的局限。另外,PID 控制方法往往在系统快速性与稳定性之间不能两者兼顾。模糊控制不依赖于被控对象的精确数学模型,既能克服非线性因素的影响,又具有较强的鲁棒性。因此,给直流电动机双闭环调速系统引入模糊控制器,可以改善系统性能。 2.1 双闭环可逆直流调速系统的原理结构 为了实现转速和电流两种负反馈分别起作用, 可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行串级联接。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变 换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外面,称作外环。这样就形成了转速、电流双闭环调速系统。如图1所示。 图1直流双闭环调速系统结构 双闭环直流调速系统目前应用广泛、技术成熟,常采用PID控制方式,它具有结构简单、可靠等优点,取得了较好的控制效果。但是,在实际生产现场,由于条件限制,使得PID控制器参数的整定往往难以达到最优状态,另外,PID 控制方法必须在系统快速性与稳定性程度之间做出折衷,往往不能两者兼顾,而模糊控制能利用其非线性特性,突破PID方法的局限,使调速系统既有快速的动态响应,又有较高的稳定程度。除此之外,模糊控制又进一步提高了调速系统的鲁棒性。 调速系统的模糊控制模型在异步电动机闭环调

智能控制导论报告BP神经网络模糊控制

智能控制导论实验报告 2012-01-09 姓名:_______________ 常青_________ 学号:0815321002 班级:____________ 08自动化 指导老师:___________ 方慧娟________

实验一:模糊控制器设计与实现 一、实验目的 1. 模糊控制的特征、结构以及学习算法 2. 通过实验掌握模糊自整定PID 的工作原理 二、实验内容 已知系统的传递函数为:1/(10s+1)*e(-0.5s) 。假设系统给定为阶跃值r=30 ,系统初始值r0=0. 试分别设计 (1) 常规的PID 控制器; (2) 常规的模糊控制器; (3) 比较两种控制器的效果; (4) 当通过改变模糊控制器的比例因子时,系统响应有什么变化? 三、实验设备 Matlab 7.0 软件/SIMULINK 四、实验原理 1.模糊控制 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1 是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。

控制的。其传递函数的形式是: G(s) k p(1 T I S T D S),PID控制原理 针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e和误差变化率ec为模糊控制器的两个输入,则在e的论域上定义语言变量“误差 E ” ,在ec的论域上定义语言变量“误差变化EC ” ;在控制量u的论域上定义语言变量“控制量U”。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e,对误差取微分得到误差变化率ec,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 2.PID控制 在模拟控制系统中,控制器最常用的控制规律是PID控制。PID 控制器是一种线性控制器。它根据给定值与实际输出值之间的偏差来 框图如图1-2所示。

模糊控制系统设计及实现

物理与电子工程学院 《人工智能》 课程设计报告 课题名称模糊控制系统的设计与实现专业自动化 班级 2班 学生姓名梁检满 学号 指导教师崔明月 成绩 2014年6月18日

模糊控制系统的设计与实现 摘要 自然界与人类社会有关系的系统绝大部分是模糊系统,这类系统的数学模型不能由经典的物理定律和数学描述来建立。本文在模糊控制理论基础上设计模糊温控系统,利用专家经验建立模糊系统控制规则库,由规则库得到相应的控制决策,并分析系统隶属度函数,利用matlab与simulink结合进行仿真。仿真结果表明,该系统的各项性能指标良好,具有一定的自适应性。模糊控制算法不但简单实用,而且响应速度快,超调量小,控制效果良好。 关键词:模糊逻辑;隶属度函数;模糊控制; 控制算法

1引言 在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。随着社会及科技的发展,现代工程实践对系统的控制要求也在不断地提高,但对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,随着人类生产、生活对控制的精细需求,传统的控制理论已渐渐不能满足工艺要求。虽然于是工程师利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了,因此便尝试着以模糊数学来处理这些控制问题。 “模糊”是人类感知万物、获取知识、思维推理、决策实施的重要特征。模糊并非是将这个世界变得模糊,而是让世界进入一个更现实的层次。“模糊”比“清晰”所拥有的信息量更大,内涵更丰富,更符合客观世界。“模糊控制理论”是由美国学者加利福尼亚大学著名教授L. A. Zadeh于1965年首先提出,至今已有50多年的历史。模糊控制是用模糊数学的知识模仿人脑的思维方式,对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制,它是用语言规则描述知识和经验的方法,结合先进的计算机技术,通过模糊推理进行判决的一种高级控制策略。它含有人工智能所包括的推理、学习和联想三大要素;它不是采用纯数学建模的方法,而是将相关专家的知识和思维、学习与推理、联想和决策过程,有计算机来实现辨识和建模并进行控制。因此,它无疑是属于智能控制范畴,而且发展至今已发展成为人工智能领域中的一个重要分支。其理论发展之迅速,应用领域之广泛,控制效果之显著,实为世人关注。 在工业生产过程中,温度控制是重要环节,控制精度直接影响系统的运行和产品质量。在传统的温度控制方法中,一般采取双向可控硅装置,并结合简单控制算法(如PID算法),使温度控制

基于物联网技术的智能家居控制系统设计方案

基于物联网技术的智能家居控制系统设计方案 随着人们生活水平的提高和科技的发展,家庭智能化已成为一种必然趋势而深入千家万户。 家庭智能化即智能化家居 (Smart Home),亦称数字家园(Digital Family )、家庭自动化(Home Automation )、电子家庭(E-home)、智能化住宅(Intelligent Home )、网络家居(Network Home )、智能屋(Wise House, WH)、智能建筑(Intelligent Building、等。它是利用计算机、通信、网络、电力自动化、信息、结构化布线、无线等技术将所有不同的设备应用和综合功能互连于一体的系统。它以住宅为平台,兼备建筑、网络家电、通信、家电设备自动化、远程医疗、家庭办公、娱乐等功能,集系统、结构、服务、管理为一体的安全、便利、舒适、节能、娱乐、高效、环保的居住环境。其从控制层次来分,一般由中央控制中心、家居智能控制终端、小区智能控制系统、家庭网关和外部网络几部分组成。 1智能家居系统体系结构 家居系统主要由智能灯光控制、智能家电控制、智能安防报警、智能娱乐系统、可视对 讲系统、远程监控系统、远程医疗监护系统等组成,框图如图1所示。 图1智能家居系统结构框图 2系统主要模块设计 2.1照明及设备控制 智能家居控制系统的总体目标是通过采用计算机、网络、自动控制和集成技术建立一个 由家庭到小区乃至整个城市的综合信息服务和管理系统。系统中照明及设备控制可以通过智 能总线开关来控制。本系统主要采用交互式通信控制方式,分为主从机两大模块,当主机触 发后,通过CPU将信号发送,进行编码后通过总线传输到从模块,进行解码后通过CPU触 发响应模块。因为主机模块与从机模块完全相同,所以从机模块也可以进行相反操作控制主

相关主题
文本预览
相关文档 最新文档