当前位置:文档之家› 高压变频器常见故障和检修办法

高压变频器常见故障和检修办法

高压变频器常见故障和检修办法
高压变频器常见故障和检修办法

SH-HVF系列高压变频器

常见故障及检修办法湖北三环发展股份有限公司

HUBEI SANHUAN DEVELOPMENT CO,.LTD

2008年1月

目录

目录 (2)

II型变频器常见故障及检修方法 (2)

1.电压不平衡故障原因分析及处理 (2)

2.电流不平衡故障原因分析及处理 (4)

2-1.变频器触摸屏模拟量参数修正 (5)

3.运行过程中过流、过载急停原因分析及处理 (6)

4.运行过程中风机停止急停原因分析及处理 (7)

5.运行过程中风机故障急停原因分析及处理 (7)

6.运行过程中CF卡故障故障原因分析及处理 (8)

7.运行过程中主控通讯超时故障原因分析及处理 (8)

8.运行过程中单元故障急停原因分析及处理 (9)

8-1.功率单元IGBT故障 (9)

8-2.功率单元电压异常、功率单元超温报警 (9)

8-3.功率单元通讯故障 (10)

9.运行过程中控制电源掉电急停原因分析及处理 (10)

10.运行过程中主回路电源掉电急停原因分析及处理 (10)

11.运行过程中旁控电源掉电急停原因分析及处理 (11)

12.旁路失败急停原因分析及处理 (12)

13. UPS故障原因分析及处理 (12)

14.真空接触器故障原因分析及处理 (12)

15.移相变压器故障原因分析及处理 (13)

II型变频器常见故障及检修方法

1.电压不平衡故障原因分析及处理

1.1负载出现不平衡——如果把负载甩开,即将变频器和负载断开,单开变频器调试,变频器输出正常。

这时用摇表测量电机绝缘,电机绕组即对地短路,或电机线及接线短子板绝缘变差,此时应检查电机及附属设施。

1.2变频器内部问题——表现为三相输出波形不对称。此类问题可在高压上电调试过程中排查处理,可观测输出电压波形判断。可能情况有:1.2.1旁路部分常闭或常开点接触不好;

1.2.2功率单元故障,但不上报故障信息而不旁路;

1.2.3对于I型功率单元出现半波缺失。

1.3变频器内部干扰或检测电路问题——变频器内部干扰或检测电路问题也易造成此类问题,此时变频器并无大问题,即出现所谓的误保护。可能情况有:1.3.1高压取样电缆连接错误或脱落;

1.3.2取样电阻损坏或性能偏离;

1.3.3电压传感器损坏或性能偏离,端子电源不正常,接地不良好;

1.3.4传感器信号输出线路干扰或错误;

1.3.5采样板损坏或性能偏离;

1.3.6 PLC模拟量模块损坏或接线问题。

1.4参数设置问题——若设置不合理,也容易误保护。可能情况有:1.4.1触摸屏电压修正参数设置不当;

1.4.2触摸屏保护参数设置不当。

1.5现场处理步骤及方法:

2.电流不平衡故障原因分析及处理

2.1负载出现不平衡——如果把负载甩开,即将变频器和负载断开,单开变频器调试,变频器输出正常。

这时用摇表测量电机绝缘,电机绕组即对地短路,或电机线及接线短子板绝缘变差,此时应检查电机及附属设施。

2.2变频器内部问题——表现为三相输出波形不对称。此类问题可在高压上电调试过程中排查处理,可观测输出电压波形判断。可能情况有:2.2.1旁路部分常闭或常开点接触不好;

2.2.2功率单元故障,但不上报故障信息而不旁路;

2.2.3对于I型功率单元出现半波缺失。

2.3变频器内部干扰或检测电路问题——变频器内部干扰或检测电路问题也易造成此类问题,此时变频器并无大问题,即出现所谓的误保护。可能情况有:2.3.1电流传感器损坏或性能偏离,端子电源不正常,接地不良好;

2.3.2传感器信号输出线路干扰或错误;

2.3.3采样板损坏或性能偏离;

2.3.4 PLC模拟量模块损坏或接线问题。

2.4参数设置问题——若设置不合理,也容易误保护。可能情况有:2.4.1触摸屏电压修正参数设置不当;

2.4.2触摸屏保护参数设置不当。

2.5现场处理步骤及方法:

2-1.变频器触摸屏模拟量参数修正

⑴、参数修正

I型设备100A采样板:

电流通道:三相在0 27000 左右修正

电压通道:三相在0 28500 左右修正

I型设备300A采样板:

电流通道:三相在0 9000 左右修正

电压通道:三相在0 28500 左右修正

II型设备100A采样板:

电流通道:三相在0 27000 左右修正

电压通道:三相在0 28500 左右修正

II型设备300A采样板:

电流通道:三相在0 27000左右修正

电压通道:三相在0 28500 左右修正

注:0可用于修正初始值,如0可以修正为20,30,50等,以保证三相调零,调平衡为原则。27000可以修正不平衡值,以修到平衡为原则。

⑵、用户接口修正(输出模拟量信号)

标准接口为:256 6400 表示接用户电流100A传感器算法为:32000减6400后再除256(其中256可以根据用户侧传感器的量程修改,以满足变频器和用户侧电流显示一致为原则,可修大,也可修小,用户是200A的传感器,则修为128,用户为50A传感器则为512,用户300A传感器修为85.3)

⑶、测量采样板电压、电流信号

电流信号:

A、测输入(用万用表测采样板输入IN端,用电压交流档对交流地PGED 分别和IN1﹑IN2﹑IN3端测量,如电流传感器则输

入信号为:(0-100mA),测的电压值大约在(0—2V)。如传感器输入信号为:(4--20 mA),测的电压值大约在(0.4—2V)。

B、测输出(用万用表测采样板输出OUT端,用电压直流档对直流地GND 分别和OUT1﹑OUT2﹑OUT3端测量,其中如传感器为0---100A电流传感器电压值大约在(0—4V)。传感器为4--20 mA时电压值大约在(0—4v)。

电压信号:

A、测输入(用万用表测采样板输入IN端,用电压交流档对交流地PGED 分别和IN4﹑IN5﹑IN6端测量,测的电压值大约在(0-2V)。

B、测输出(用万用表测采样板输出OUT端,用电压直流档对直流地GND 分别和OUT4﹑OUT5﹑OUT6端测量,电压值大约在(0—4V)。

3.运行过程中过流、过载急停原因分析及处理

3.1 现象:运行时过流、过载急停跳机。

保护值初始设置为120% 1分钟(过载)、150%5秒(过流)、200%立即保护。3.2 导致原因主要有:

3.2.1用户负载有问题;

3.2.2用户负载过大;

3.2.3启动时电机没完全停止。

3.3现场处理步骤及方法:

3.3.1检测用户负载是否过重、频率调节过高;

3.3.2检测用户负载是否有堵塞或卡塞现象;

3.3.3检查用户是否在变频器启动时,负载没完全禁止。

4.运行过程中风机停止急停原因分析及处理

4.1 现象:运行时检测到风机控制用接触器辅助触点释放,风机停止运行,会急停跳机处理。

4.2 导致原因主要有:

4.2.1风机过流导致空开保护,无电源输入。

4.2.2风机控制用接触器损坏,主触点释放。

4.2.3风机控制用中间继电器损坏,自锁功能失效。

4.2.4 风机停止检测装置损坏,误触发报警。

4.3现场处理步骤及方法:

4.3.1 检查风机电源空开是否跳闸;

4.3.2 检查风机电源部分及控制回路端子排接线是否良好,航空插头接线是否良好,有无短路及松脱现象;

4.3.3 检查风机是否故障;

4.3.4 检查风机控制用接触器动作是否正常,触点有无损坏;

4.3.5检查风机控制用中间继电器动作是否正常,触点有无损坏;

5.运行过程中风机故障急停原因分析及处理

5.1 现象:运行时检测到风机故障,有风机故障停止运行,急停跳机处理。5.2 导致原因主要有:

5.2.1 风机本身故障――如风机轴承磨损,叶片摩擦,电机损坏等。EBM风机内部带热继等保护功能,有一对常闭辅助触点指示正常状态,如果辅助断开表示风机因某中原因故障。

5.2.2 电源缺相、接地――三相电源缺相或某相接地会导致风机运行时故障。5.2.3风机故障检测回路损坏,误触发报警。

5.3现场处理步骤及方法:

5.3.1 检查单个风机三相间电阻值是否平衡并为20欧姆左右,对地阻值是否为无穷或很大。

5.3.2 检查风机转动是否正常,判断有无机械磨损现象。

5.3.3 检查到风机的三相电源是否平衡,有无单相接地现象。

5.3.4 检查到风机的空开,接触器,接线端子是否完好,接线是否牢靠。5.3.5 检查风机控制检测回路端子排接线是否良好,航空插头接线是否良好,有无短路及松脱现象。

6.运行过程中CF卡故障故障原因分析及处理

6.1现象:运行时检测到CF卡故障,急停跳机处理。

6.2 导致原因主要有:

6.2.1 CF卡损坏

6.2.2 主控板损坏

6.2.3 接触不牢,松动引起

6.3现场处理步骤及方法:

6.3.1 紧固两者之间的连接。

6.3.2 反送电观测波形和故障信息。

6.3.3 更换相应器件。

7.运行过程中主控通讯超时故障原因分析及处理

7.1现象:运行时检测到主控通讯超时故障,急停跳机处理。

7.2 导致原因主要有:

7.2.1 PPI通讯电缆损坏;

7.2.2 主控板故障;

7.2.3 两端COM口接触不牢,松动引起;

7.3 现场处理步骤及方法:

7.3.1 更换相应器件;

7.3.2 检查更换主控板;

7.3.3 紧固两者之间的连接

8.运行过程中单元故障急停原因分析及处理

8.1 现象:运行时某相两个以上单元检测有故障,会急停跳机处理。

8.2 导致原因主要有:

8.2.1功率单元实际出现器件损坏,如快熔、整流桥、IGBT、驱动板等;8.2.2此相过流导致单元保护;

8.2.3出现所有单元失电导致的通讯故障。

8.3 现场处理步骤及方法:

8.3.1 查报警信息,定位哪几个功率单元报警,并为何种报警。如果所有单元同时故障,可能由于失电引起。

8.3.2 根据报警记录,检查相应故障单元器件状况,更换损坏的器件。8.3.3 反送电调试设备,观测波形或输出电压是否正常,有无报警信息。

8-1.功率单元IGBT故障

故障原因分析:

A、变频器瞬时过流,单元IGBT保护,实际IGBT完好。

B、变频器IGBT损坏。

C、驱动板故障。

检修方法:

A、变频器反送电试验,观察变频器是否继续报功率单元IGBT故障。

B、如反送电故障依旧,变频器停机后,在确认变频器不带高压的情况下,将功率单元拆下,检查IGBT、驱动板、快熔、整流桥是否正常。检查电容铜排螺丝是否紧固。发现问题后处理即可反送电检测故障是否排除。

8-2.功率单元电压异常、功率单元超温报警

故障原因分析:功率单元检测有误,属报警级别,不影响变频器的正常运行。检修方法:在触摸屏设置将此保护功能屏蔽。

8-3.功率单元通讯故障

故障原因分析:

A、单元壳体和上下固定导槽接触不好,存在放电现象造成单元通讯故障。

B、光纤及光纤头损坏。

C、驱动板故障。

D、主控单元故障。

检修方法:

A、用万用表电阻档检测单元壳体和上下固定导槽接触阻值。

B、检查功率单元光纤接口发送端是否有光,检查功率单元侧光纤接收端是否有光。

C、如以上检测均正常,将该单元拆下,检查快熔、整流桥、驱动板是否故障。9.运行过程中控制电源掉电急停原因分析及处理

9.1 现象:控制电源检测继电器触点释放等原因导致PLC控制电源检测输入信号为低电平而报警急停。

9.2 导致原因主要有:

9.2.1 双电源切换失败。

9.2.2 检测继电器损坏。

9.2.3 线路松动。

9.2.4 两相空开断路器脱扣,控制保险烧损。

9.3现场处理步骤及方法:

9.3.1 检查双电源切换装置是否正常;

9.3.2 检查控制电源检测继电器;

9.3.3 检查相关所有电源回路及信号回路;

9.3.4 检查保险是否完好,内部是否有短路现象。

10.运行过程中主回路电源掉电急停原因分析及处理

10.1 现象:主回路电源检测继电器触点释放等原因导致PLC主回路电源检测

输入信号为低电平而报警急停。

10.2 导致原因主要有:

10.2.1 运行过程中用户高压电源失电。

10.2.2 主回路电源检测继电器或接触器损坏;

10.2.3 相关线路松动。

10.3现场处理步骤及方法:

10.3.1 查询用户高压电源掉电历史记录;如非用户高压开关跳闸,检查用户高压开关高压检测继电器,是否有烧毁迹象;如无,做反送电试验:当调压器输出在300V时,观察用户高压开关高压检测继电器是否有放电现象,正常情况下继电器应该常亮;如继电器不亮,停止反送电试验,停止调压器输出,检查高压检测回路接线,是否有松动。

10.3.2 检查主回路电源检测继电器或接触器;主回路掉电急停,外部控制电源送上,检查主回路检测继电器是否常亮,如不亮检查继电器、底座是否完好、检测回路线路是否有松动。

10.3.3 检查相关所有电源回路及信号回路接线;

11.运行过程中旁控电源掉电急停原因分析及处理

11.1 现象:旁控电源检测继电器触点释放等原因导致PLC旁控电源检测输入信号为低电平而报警急停。

11.2 导致原因主要有:

11.2.1 双电源切换失败。

11.2.2 旁路电源检测继电器损坏。

11.2.3 线路松动。

11.2.4 两相空开断路器脱扣,控制保险烧损。

11.2.5旁路UPS损坏;

11.3现场处理步骤及方法:

11.3.1 检查双电源切换装置是否正常;

11.3.2 检查旁路电源检测继电器;

11.3.3 检查相关所有电源回路及信号回路接线;

11.3.4 检查保险是否完好,内部是否有短路现象;

11.3.5 检查旁路UPS是否正常;,用万用表交流电压档测量UPS输出是否有220V。

12.旁路失败急停原因分析及处理

12.1 现象:旁路失败急停。

12.2 导致原因主要有:变频器在低频运行时,由于电压、电流采样信号较弱,不能正常对目前运行频率进行计算,造成旁路失败。

12.3现场处理步骤及方法:反送电试验,排查处理故障单元。重复投运即可。

13. UPS故障原因分析及处理

13.1 现象:UPS无电压输出,在线式UPS旁路运行。

13.2导致原因主要有:

13.2.1 保险熔断;

13.2.2 输入电源的电压及频率超过正常范围;

13.2.3 负载过载或短路;

13.2.4 UPS自身质量问题。

13.3现场处理步骤及方法:

13.3.1 更换保险;

13.3.2 检查输入电源的电压及频率;

13.3.3 检查负载是否有过载及短路现象;

13.3.4 更换UPS。

14.真空接触器故障原因分析及处理

14.1 现象:不能正常动作,主触点烧损,辅助触点烧损。

14.2导致原因主要有:

14.2.1 真空接触器内部合分闸回路故障;

14.2.2 中间继电器或接触器故障;

14.2.3 真空杯故障;

14.2.4 辅助触点不能动作或烧损;

14.3现场处理步骤及方法:

14.3.1 检查分合闸线圈、整流桥及内部线路;14.3.2 检查中间继电器或接触器触点和控制线路;14.3.3 观测真空杯及主触头;

14.3.4 检查辅助触点状态;

14.3.5 更换真空接触器。

15.移相变压器故障原因分析及处理

15.1 现象:变压器烧损,线圈老化,底部风机故障。15.2导致原因主要有:

15.2.1 现场环境温度过高,通风不畅;

15.2.2 现场粉尘浓度较高,或有金属粉尘;15.2.3 负载过载,超负荷运行;

15.2.4 二次绕组输出短路;

15.2.5 顶部、底部风机故障。

15.3现场处理步骤及方法:

15.3.1 降低环境温度,改善室内环境;

15.3.2 检查负载情况;

15.3.3 检查变频器功率单元;

15.3.4 检查顶部风机和底部风机是否正常。

变频器的常见故障及处理方法介绍

变频器的常见故障及处理方法介绍 在变频器维修时我们需要根据变频器的故障来判断,一般发生的故障和损坏的特征一般可分为:一种是在运行中频繁出现的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书上提供的指导方法,进行处理和解决。这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象。另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。这类故障发生后,一般会使变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载试运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加载运行,达到解决故障的目的。 关于变频器的常见故障以及维修方法详解 1.维修变频器整流块损坏 变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。 中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。 在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。 2.变频器充电电阻易损坏维修 导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。 其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。

变频器常见故障

变频器的常见故障分析 1 引言 在现代工业中,采用变频器控制的电动机系统,有着节能效 果显著、调节控制方便、维护简单、可网络化集中、远程控制、可 与PLC组成自动控制系统等优点。变频器的这些特质使其在电力电 子系统、工业自动控制等领域的应用日益广泛。市场上不同型号规 格变频器的安装、接线、调试各有特点,但主要方法及注意事项基 本一致。本文阐述了变频器的常见故障,并对其进行分析。 2 变频器常见故障分析 2.1 维修的原则:先静后动 静是指不通电状态,动是指通电后的工作状态。检修开始时,要先静下来,不要盲目动手,应多问。例如: 问清是否违反操作规程、出现故障时的现象、是否更改过内部参数等,根据情况对故障 作客观的、大致的分析,再根据变频器显示的故障提示,判断故障 部位。检修时,应先仔细阅读变频器说明书,了解其检修注意事 项。 不要贸然通电,通过眼观、手摸、鼻嗅等先做必要的安全检查,以 免引发新的故障。 (1)检查快熔FU是否烧断; (2)检查线路板上元件引线间有无碰锡、碰线或细金属落在二线 间; (3)检查电容器、整流桥、逆变桥、集成电路等元件有无明显烧坏 的痕迹; (4)检查线路板上是否有水滴(尤其在潮湿环境中使用的变频 器); (5)检查线路板上是否有灰尘。 通过以上检查,可发现变频器是否有短路故障点及元件的炭化熏黑 部位。 2.2 参数设定不当时易碰到的问题 (1)变频器在电机空载时工作正常,但不能带负载启动 这种问题常常出现在恒转矩负载。遇到此类问题时应重点检 查加、减速时间设定或提升转矩设定值。 (2)变频器开始运行,但电机还未启动就过载跳停 如冶金厂一台725kW-6电机,投入运行时,跳停频繁。经检查,偏置频率原设定为3Hz,变频器在到运行指令但未给出调频信 号之前,电机将一直接收3Hz的低频运行指令而无法启动。经测定 该电机的堵转电流达到50A,约为电机额定电流的3倍;变频器过

高压变频器的工作原理和常见故障分析 贾瑟

高压变频器的工作原理和常见故障分析贾瑟 摘要:随着现代科学技术的迅速发展,大量的发电企业正在使用着高压变频器。高压变频器在使用过程中具有显著的节能效果,但也存在一定的潜在安全隐患, 可能会对发电企业的生产活动造成严重影响。基于此,本文先对高压变频器工作 原理进行具体的分析,然后对高压变频器在运行中常见的故障及原因进深入的探讨,以供相关的工作人员参考,希望能给我国发电企业的发展带来一定的贡献。 关键词:高压变频器;工作原理;常见故障;分析 采用交流变频器调速技术对交流电机进行调速,具有节电效果好、调速方便、保护功能完善、组态灵活、可靠性强等很多优点。由于交流变频调速技术的众多 优越性,在发电领域也得到了非常广泛的应用,对电厂内的风机、水泵等大功率 耗能设备实现高压变频器调速改造,已成为公认的节能方案。随着变频器应用范 围的扩大,检修维护工作中遇到的问题也越来越多。因此,本文对此进行分析。 1高压变频器工作原理 高压变频器一般采用目前国际流行的功率单元串联多电平技术,系统为高-高 结构。高压电直接输入变频器,经过变频器内部功率系统整流、逆变后,变频器 直接高压输出至电机,不需要升压变压器等部件。每个功率单元都是一台三相输入、单相输出的脉宽调制型低压变频器,技术可靠,结构和性能完全一致,极大 的提高了高压变频器的可靠性与维护性;采用叠波技术,最大限度的消除了高压 变频器输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了变频 器的输出性能,是真正的“无谐波”高压变频器。 变频器一般由以下几个部分组成:制动单元、微处理单元、滤波、整流、逆变、检测单元以及驱动单元等等。它能够按照电动机的具体需求为其提供所需的 电源电压,从而实现调速和节能。此外,大部分变频器都具备多种保护功能,如 过载保护、过电压保护以及过电流保护等。 对于不同电压等级的高压变频系统,一般采用每相5~8个功率单元串联方案。通过主电路图,可以更加直观的了解变压器的副边绕组与功率单元以及各功率单 元之间的电路连接方式:具有相同标号的3组副边绕组,分别向同一功率柜(同 一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起 形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式, 将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源, 驱动电动机运行。当电网电压为6kV时,变压器的副边输出电压即功率单元的输 入电压为690V,每个功率单元的最高输出电压也为690V,同一相的五个单元串 联后,相电压为690V×5=3450V,由于三相连接成星型,那么线电压便等于 1.732×3450V≈6000V,达到电网电压的水平。功率单元串联后得到的是阶梯正弦 的PWM波形,PWM控制,脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要形状和幅值的波形,这种波形正弦度好,du/dt小,可 减少对电机和电缆的绝缘损坏,无需输出滤波器就可以使输出电缆长度很长,电 动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大 大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。 通过本相上的5(8)个功率单元输出的SPWM波相叠加后,可得到正弦波形。这种波形正弦度好,dv/dt小,即使在低速下也能保持很好的波形。电机的谐波

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5、5kW变频器时,客户送修時标明电机行抖动,此时第一反应就是输出电压不平衡、在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1、5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的就是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不就是参数问题,又怀疑就是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此瞧来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3、7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的就是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于就是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查瞧,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7、5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬

变频器线路板常见维修方法

变频器线路板常见维修方法 往往变频器的故障只有一点,而对于维修者最重要的就是找到故障点,有针对性地处理问题,尽量减少无用的拆卸,尤其是要尽量减少使用烙铁的次数。除了经验,掌握正确的检查方法是非常必要的。正确的方法可以帮助维修者由表及里,由繁到简,快速的缩小检测范围,最终查出故障并适当处理而修复。 首先谈谈故障的检查方法 报警参数检查法: 所有的变频器都以不同的方式给出故障指示,对于维修者来说是非常重要的信息。通常情况下,变频器会针对电压、电流、温度、通讯等故障给出相应的报错信息,而且大部分采用微处理器或DSP处理器的变频器会有专门的参数保存3次以上的报警记录。 (例1)某变频器有故障,无法运行并且LED显示“UV”(under voltage的缩写),说明书中该报警为直流母线欠压。因为该型号变频器的控制回路电源不是从直流母线取的,而是从交流输入端通过变压器单独整流出的控制电源。所以判断该报警应该是真实的。所以从电源入手检查,输入电源电压正确,滤波电容电压为0伏。由于充电电阻的短路接触器没动作,所以与整流桥无关。故障范围缩小到充电电阻,断电后用万用表检测发现是充电电阻断了。更换电阻马上就修好了。 (例2)有一台三垦IF 11Kw的变频器用了3年多后,偶尔上电时显示“AL5”(alarm 5 的缩写),说明书中说CPU被干扰。经过多次观察发现是在充电电阻短路接触器动作时出现的。怀疑是接触器造成的干扰,在控制脚加上阻容滤波后果然故障不再发生了。 (例3)一台富士E9系列3.7千瓦变频器,在现场运行中突然出现OC3(恒速中过流)报警停机,断电后重新上电运行出现OC1(加速中过流)报警停机。我先拆掉U、V、W到电机的导线,用万用表测量U、V、W之间电阻无穷大,空载运行,变频器没有报警,输出电压正常。可以初步断定变频器没有问题。原来是电机电缆的中部有个接头,用木版盖在地坑的分线槽中,绝缘胶布老化,工厂打扫卫生进水,造成输出短路。 (例4)三肯SVF303,显示“5”,说明书中“5”表示直流过压。电压值是由直流母线取样后(530V左右的直流)通过分压后再由光耦进行隔离,当电压超过一定阀值时,光耦动作,给处理器一个高电平。过压报警,我们可以看一下电阻是否变值,光耦是否有短路现象等。 由以上的事例当中不难看出,变频器的报警提示对处理问题有多么重要,提示你正确的处理问题的方向。 类比检查法:

艾默生变频器常见故障及维修

艾默生CT变频器常见故障代码及维修方法 1、电流检测故障(如报E019,E001): (1)控制板Q1(15050026)坏。 (2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为2.5,2.5,5为正常,否则7840坏。 (3)小板坏:在变频器通电时,用直流档,黑接7840的5脚,红分别接小板的脚从左到右应为2.5,2.5,2.5,3.41.5,0,1.6。 如值不对,小板坏:此时可更换小板坏中的三个小IC(39030024LMV393),如还不好,更换小板。 2、显示POFF: 驱动板上电POFF,测CVD电压正常应为2.6-2.7,如测得1.9,可能R51,R52,C36,C37,排线中的某一个坏,其中的电解电容坏的最多。只在带电机运行时报POFF,驱动板变压器也有可能坏。 3、缓冲电阻坏: 缓冲电阻和滤波大电容是成对的。如果其一坏,另一个很可能也坏。缓冲电阻坏也有可能是继电器不吸合(继电器坏或控制板坏,或与二者相连的电路上元件坏)引起。单相输入(220V)的变频器,特别要注意:如果无显示或炸机,很可能是用户接入了三相电(380V)引起的(可察控制板的故障记录:母线电压是否由310变为了540)。此时不断IPM的整流桥已坏,滤波大电容也坏(或炸裂或顶面凸起变硬)。如果只更换IPM后就上电,会听到“啪,啪”的响声(电容内的声音),应立即掉电,否则IPM的整流桥又会坏。发现一个大电容坏,最好都换新的。因电容是易坏易老化的器件。 4、显示不稳: 先有显示,然后没有,风扇停下,电压只有12,此种现象一般是U1厚膜坏。报故障E015:通电指示灯亮,键盘不亮,拨了风扇就好--风扇短路。 5、不制动: 01180099,01180100,01180113,01180114的制动管不在IPM内部,变频器炸机和不显示很可能就是在变频器停机制动时引起的,所以更换IPM后,一定要检测制动电路的好坏:制动光耦,制动管(MOS管不好测,可测其串联的续流二极管,正常应为0.37左右),门极电阻(也就是MOS管的门极电阻,正常应为100欧姆)。修好上电后,TD900F093改为150,报E007,红接P(+),黑接PB,如电压在17-30跳动,制动正常。TD3200F133=150直流电压270-350V制动起作用。 6、炸整流桥:

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(0C) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检 测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流 上限设置太小、转矩补偿(V/F )设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“ 0C” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTR0-VERT2kW 变频通电就跳“ 0C ”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(0U ) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单 元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“ 0U”。

分析与维修:首先要搞清楚“ 0U ”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191 )时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电 电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“ Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触 器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳 压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004 变频器,上电显示正常,但是加负载后跳 “ DCLINKUNDERVOLT ” (直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是 那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任 何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流 桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一 路桥臂开路,更换新品后问题解决。 四、过热(OH )。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW 变频器客户反映在运行半小时左右跳“OH ”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。 五、输出不平衡

变频器常见故障分析与处理

变频器常见故障分析与处理 本系列变频器具有过流、过热、过载、欠压多种保护功能。当发生故障时,变频器就会立即报警跳开,LED监视器上显示相应的故障类型,并且电动机自动停止转动。当排除故障后,按“STOP”键或输入控制电路端子复位命令,即能解除报警跳开状态。 故障代码表: 一过压:分别为加速时过电压(E002)、定速时过电压(E003)、停止时过电压(E00A)、减速时过电压(E00B) 分析:E002、E003、E00A、E00B故障出现的直接原因就是变频器本身检测到的电压过高。

而出现E002、E003、E00A根本原因有三个:1)外部实际电网电压过高,处理方法:降低电网电压(可采用稳压电源)。2)变频器检测到的电压(U)比外部实际的高,处理方法:重新检测电压(进入内部参数b123)。3)能量反馈,电机实际转速高于变频器输出(即电机被拖动);处理方法:去除电机拖动现象或加能耗电阻。4)变频器内部电压检测电路有故障,与办事处联系维修。 出现E00B则与下列几个因素有关:减速时间、制动器(制动电阻或制动单元)、负载惯性 减速时间过短会使变频器在减速过程中产生反馈电压(减速时间越短同样的负载产生的反馈电压越大),如果没有制动器或制动器过小,那就无法消耗这部分多余的电压,当电压高到一定值时(460)就会跳E00B报警,而负载惯性越大同样的减速时间产生的反馈电压就越高。所以,应适当的加长减速时间。 二欠压:E001 出现E001故障报警的原因有: 1)外部电网电压异常(缺相、三相不平衡、电压过低); 2)有大容量负载在同一线运行,处理方法:另选电源; 3)变频器检测到的电压(U)比实际低,处理方法:重新检测电压(进入内部参数b123); 4)变频器内部故障,继电器没吸合(现象是带负载时跳)。处理方法:检查继电器接口是否接触良好;否,则为变频器内部电压检测电路故障,与办事处联系。 三过流:分别为加速时过电流(E004)、定速时过电流(E005)、减速时过电流(E006)出现这三类故障的原因有: 1)电机连接端子相间短路,处理方法:检查输出线路及负载; 2)负载突变或过重,处理方法:减小线路负载,检查变频器与电机搭配是否适当; 3)加速时间过短,处理方法:加长加速时间;

变频器常见故障维修方法

变频器常见故障维修方法 在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。 一、静态测试 1、测试整流电路 找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。 2、测试逆变电路 将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障 二、动态测试 在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。 2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。 3、上电后检测故障显示内容,并初步断定故障及原因。 4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障。 5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。 三、故障判断 1、整流模块损坏

丹佛斯变频器的常见故障及维修对策

丹佛斯变频器的常见故障及维修对策 丹佛斯变频器的常见故障及维修对策 唐山三友集团兴达化纤股份有限公司张志远 摘要主要阐述我公司生产线中的丹佛斯变频器常见故障与处理方法, 并协住车间提出合理的解决方案,减少此类故障的发生。 关键词:变频器故障处理 一.引言 我公司共有粘胶五条生产线,主要产品为粘胶短纤维,扩建后生产能力为16万吨。生产线上大量使用了Danfoss公司的VLT5000系列变频器,变频器具有调速性能好、调速范围宽和运行效率高、使用操作方便等优点并得以广泛的推广,多年来,我们在生产实践中对变频器原理与故障现象不断探索与学习,总结出一套切实可行的变频器维护保养和维修经验。 二.变频器的组成: 变频器主要由整流电路、平波电路、控制电路、逆变电路等几大部分组成,以下是变频器主电路图。 变频器控制电路: 给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路。控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,驱动电路为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。 1、速度检测电路 装在异步电动机轴上的速度监测器(TG 、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 2、保护电路 (1)电压检测:主要检测三相整流桥输出电压是否过压、欠压,它通过取样电路运算放大器(CPU)进行比较。 (2)电流检测:它通过检测IGBT三相输出,输出电缆穿过(2-3)个霍尔电流检测

元件到变频器的输出端子(U、V、W)。在运行时进行电流检测,如:电机过载、电机或电缆是否接地、缺相等。 (3)温度报警:主要检测变频器运行中的温度是否超过设定值,它通过变频器内的风扇、温度检测器来散热和检测 三、Danfoss 变频调速器故障及分析实例 首先在检修故障机时对变频器做静态的测试,一般通用型变频器大致包括以下几个部分:1整流电路,2直流中间电路,3逆变电路,4控制电路。静态测试主要是对整流电路、直流中间电路和逆变电路部分的大功率晶体管(功率模块)的一个测试,工具主要是数字万用表.整流电路主要是对整流二极管的一个正反向的测试来判断它的好坏,直流中间回路主要是对滤波电容的容量及耐压的测试,我们也可以观察电容是否出现鼓包或漏液等现象来判断它的好坏,耐压检测方法采用可调的直流电压进行充放电检测,功率模块的好坏判断主要是对功率模块内的续流二极管和绝缘栅双极型晶体管的检测。 1.开关电源损坏 此型号变频器最常见的故障,通常是由于开关电源电路各别元件性能发生变化或保护部分失控造成电源损坏,丹佛斯变频器采用了新型脉宽集成控制器UC3844来调整开关电源的输出,同时UC3844还带有电流检测,电压反馈等功能,当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。 2.ALARM 37—IGBT模块损坏 IGBT模块损坏,这也是变频器损坏的常见故障之一,电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些都是IGBT模块损坏的常见现象。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真或驱动电压波动太大而导致IGBT损坏,每一路驱动电路丹佛斯都使用了独立的带变压器隔离的电源,控制信号也是通过门极驱动变压器提供,所以可靠性相当高。 3. ALARM 14—接地报警 接地故障:主要检测到负载(电机)对地出现漏电流现象,致使变频器保护停机。而实际检测电机绝缘正常,在维修此类故障机时问题主要出在检测电路检测值出现偏差,导致变频器误报警。经分析电路为霍尔元件输出电压信号到电流取样板在送到运算放大器进行比较,检查发现电流取样板中的一路限流电阻断路造成变频器故障,用同规格的贴片电阻修复后,试验正常。

高压变频器常见故障的排除

高压变频器常见故障的排除 摘要:针对高压变频系统构成庞大、元器件较多,运行中经常出现故障的问题,分析输入电源、输出回路、调制板回路、外部通信、冷却相关回路、输入变压器 温度相关回路、系统I/O相关回路、单元旁路相关回路等引起的故障,介绍故 障实例和防范措施,力求减少变频器故障的发生。 关键词:高压变频器;常见故障;维护 1、概述 大唐河北发电有限公司马头热电分公司(简称“马头电厂”)安装有2台22 0MW,2台300MW国产燃煤机组,目前总装机容量为1040MW。目前,已完成4号岸边泵,7号锅炉甲吸风机、7号锅炉乙吸风机、8号锅炉甲吸风机、8号锅炉乙吸风机、8号锅炉甲送风机、8号锅炉乙送风机、8号机组甲复水泵 高压变频器的改造;9号机组凝结水泵、10号机组凝结水泵变频器为机组投运 时新安装设备。其中,9、10号机组凝结水泵采用哈尔滨九州电气股份有限公 司生产JZE系列变频器;7号锅炉吸风机、送风机采用西门子罗宾康变频器; 8号锅炉吸风机、送风机2014年改造前采用罗宾康变频器,改造后采用西门 子罗宾康变频器;4号岸边泵采用罗宾康变频器。 这些高压变频器的投入使用,取得了显著的节能降耗效果,但由于高压变频 系统构成庞大,元器件较多,在运行中经常会出现故障,导致变频器跳闸,从而 对机组的安全稳定运行造成不利影响。 2、输入电网电源引起的故障 2.2故障介绍 此类故障包括,输入缺相、输入接地、输入过压、输入欠压、输入单循环、 输入相不平衡。这类缺陷在运行中出现的较少,而且如果出现时比较容易查找。 故障时可重点检查输入侧熔断器和连接线,用示波器测试三相输入电压,以判断 输入侧电压是否存在问题。 2.2实例分析 2010年5月19日,马头电厂8号锅炉乙吸风机变频器故障,乙吸风机 变频器颜色由红变灰,就地UPS装置报警,冷却风机停运。经检查测试为装置 浪涌吸收器损坏导致电源保险熔断。为此,更换了浪涌吸收器。浪涌吸收器是抑 制雷击浪涌电压,电源投入时异常的电压波形会导致变频器内部的浪涌吸收器损坏。 2.3防范措施 电源电压容许波动范围为+10%、-15%,过高电压的输入会导致变频 器损坏。监测变频器输入电源电压尤为重要,应保证变频器在运行时电源电压波 动在允许范围内。设备检修时可重点检查电源输入侧接线紧固情况,并在变频器 传动试验时用示波器测试三相输入电压,观察电源波形是否正常。 3、电机/输出回路引起的故障 3.1故障介绍 此类故障包括,超速故障、输出接地故障、电机热过载故障、电机过压故障、变频器瞬时过流故障、欠载故障、输出相不平衡、输出相开路、最小转速跳闸、 变频器损耗过大、CPU温度故障、A/D硬件故障等。这类缺陷中较常出现的 为变频器瞬时过流故障。 3.2实例分析

AB变频器常见故障的原因及处理方法

AB变频器常见故障一、电动机不能启动 原因:没有输出电压送给电动机。 补救措施:检查电源电路,如电源电压、所有熔断器以及断路装置,检查电动机票,核查电动机连接是否正确,控制输入信号,起动信号是否存在。I/O端子01是否激活,核查P036与组态是否匹配。核查A095是否没有禁止转动。 AB变频器常见故障二、变频器不能从端子排连接线所送入的启动或运行输入启动 原因: 变频器存在故障。这类原因补救措施主要是清除故障,按停止键,重新上点,将A100设置为选项1“清除故障”。若A051—A052被设置为选项7“清除故障”,则重新送入数字量输入信号。 编程不正确。补救措施为检查参数设置。 输入接线不正确。补救措施:正确接线并/或安装跳线。 AB变频器常见故障三、变频器不能从集成式键盘启动 原因: 集成式键盘没被使能。将参数P036设置为选项0,将参数A051—A052设置为选项5,并激活输入。 I/O端子01的“停止”输入信号不存在。正确接线并/或安装跳线。 AB变频器常见故障四、变频器对速度命令不作响应 原因: 速度命令源中没有给定速度。检查参数D012,看控制信号来源是否正确。如果是模拟量输入,则检查接线并用表计检查信号是否存在。检查参数D002,核查命令是否正确。 通过远程设备或数字量输入选择了不正确的基准信号源。检查参数D012,检查参数D014,看输入是否选择交流电源。核查A051—A052的设置。检查P038中的速度基准来源。如果有必要就重新编程。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/9f15009369.html,/

变频器的常见故障及维修详解

变频器的常见故障及维修 变频器的发展应该说经历了一段很漫长的时间,中国变频器市场也经历了从80年代初--90年代中期日本变频器独领风骚,到现在的欧美变频器渐占主导地位的局面。在这中间我们不得不提到台湾产的变频器。作为一个半导体电子产品的集结地和加工中心,变频器这个和半导体IC业密切相关的行业在台湾也取得了巨大的发展。为台湾变频器在市场上也赢得了一席之地。并以其低廉的价格和较好的性能受到了中低档用户的青睐。处于领先地位的品牌主要有台达,台安,东元,其他我们还能碰到的品牌有爱德利,利佳,宁茂,欧林,九德松益等。 台湾变频器相对来说功能较简单,特别是早期的产品,像台安欧林主要功能就是调速,简单而实用。如台安早期的N1系列,和欧林的OL—2001系列OL—4001系列。但随着半导体技术的发展,以及用户客观使用场合使用要求的提高,变频器的功能也越来越丰富。台湾变频器也有了长足的发展,随着控制理论的成熟,控制方式也由原来的V/F控制提升至电压矢量控制,主要的功率器件也由大功率双极型晶体管GTR改善为绝缘栅双极型晶体管IGBT,变频器性能大为提高。 在功能上,台湾产变频器虽然无法和欧美及日本变频器相提并论,但功能上也越来越完善。台安,台达都有RS232/485通讯功能,内置PID功能,台达变频器还带有PG卡选件,参数里更带有电子齿轮设置,调速更精确。(VFD-V系列)。由于纺织行业的一些特殊性,台安变频器推出了内建摆频功能的SV300系列变频器。对于东元变频器来说由于采用了安川变频技术,东元无论从外形还是内部参数都和安川极为接近,功能也极其相近。由于是安川变频的成熟技术,质量还是相当可靠。分类也和安川变频接近。功能也十分强大,包括多种通讯方式

日立变频器的常见故障及维修对策

日立变频器的常见故障及维修对策 日立,在自动化领域相对于西门子,ABB,三菱等一线品牌来说,还是一个相对比较陌生的品牌,其实在工控行业中日立的产品还是经常会看到的,像MICRO EH系列以及较大型的EH-150系列PLC,L系列,SJ系列,J系列变频器,以及交流伺服产品等等,在国内还是有一定的使用量。特别是日立变频器在启动负载较大的输送搅拌装置,需要四象限运行的升降装置,以及纺织化纤行业的卷绕等应用方面都有较多的应用实例。 日立变频器在选型划分上还是比较清晰的,现在市面上正在销售中的变频器包括经济型的L100系列,以及涵盖L100功能的SJ100矢量型变频器,无速度传感器矢量控制的SJ300系列变频器,电梯专用的SJ-300EL系列变频器,风机水泵专用的L300P系列变频器。现在,市场上的几款日立变频器性能稳定,特别是日立具有专利技术的无速度传感器矢量控制,使得日立变频器在低速时的启动特性相当优越。现在的日立变频器在功能应用上也比较丰富,在同类变频器上经常用到的内置PID功能,RS-485通讯功能,16段加减速功能,电机并行运行功能,速度升降功能,参数拷贝功能,三线运行功能等在日立变频器的应用中都能一一找到。特别值得一提的是当两台电机在并行运行时同时采用矢量控制,这对于一般变频器是很难做到的,大家都知道,矢量控制时对于电机的参数要求都非常精确。功率,电流,电压,定转子的阻抗都得非常准确,而两台电机并行运行时恰恰很难做到这一点。这可能也是日立变频器的一个亮点。日立变频器在可选件的应用上相对来说不是很多,在通讯选件上主要有Profibus,Device Net等可选。在抗干扰,抑制高低谐波,射频干扰上,日立变频器还是有多种选件可选,交直流电抗器,RFI滤波器,LCR输出正弦滤波器等都为抑制变频器的对外干扰做了很好的保证。 日立变频器相对于整个变频器市场,占有率可能并不是很高,对于用户来讲碰到故障可以查找解决故障办法的来源更少,以下我们就日立变频器的一些常见故障和大家做一探讨。 2、日立变频器的一些常见故障 2.1 液晶显示器 早期我们在国内市场上经常能碰到的日立变频器就是HFC-VWS3系列,这是一款V/F 控制的变频器,功率模块采用GTR的大功率晶体管。其最大功率能够做到132kW,采用液晶面板显示,这在同时期的日本变频器还是属于档次较高的。但相对于用数码管显示的变频器,液晶的使用寿命和稳定性相对就显得差了,我们经常会碰到液晶显示器有亮度但没有字幕,此类情况多半是由于液晶显示器的驱动电源侧由于贴片陶瓷电容容量下降而导致的,更换此类电容就能解决问题。 2.2 开关电源 此外,该系列变频器大量采用了厚膜电路,包括开关电源厚膜电路,驱动部分的厚膜电路。采用厚膜电路多半是出于技术保密上的考虑。碰到类似问题,我们首先应该考虑的是如何判断这些厚膜电路的好坏,对变频器维修来说,如何找出故障,也是一个很重要工作,对于开关电源的损坏,假如排除外围的部件包括开关管,起振电阻,脉冲变压器等的损坏外,最有可能出现问题的就是开关电源厚膜驱动电路了,在没有明显损坏痕迹下,我们可以外加直流电压测试厚膜电路能否正常输出驱动波形,外加直流电压一般在15V左右。如果输出

变频器常见故障代码及处理实例

一、过流(OC) 令狐采学 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,

更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。三、欠压(Uu)

变频器常见故障及处理方法

变频器常见故障及处理方法 1 引言 IGBT变频调速器,自研制开发投入市场以来,以其优越的调速性能,可观的节能量已为广大的电机用户所接受,正以每年大规模的销售量走向社会,为电力、建材、石油、化工、煤矿等各行业的发展提供了优质的服务,其用户群已遍布生产的各行各业,成为广大用户所喜爱的产品。 这里笔者结合自己在长期的售后服务工作中经历的一些常见故障及处理方法,提出来与广大的用户及维修工作者进行探讨,以期把该产品使用得更好,更切实的为顾客服务。 2 变频器运行中有故障代码显示的故障 在变频器的使用说明书中,有一栏具体阐述了变频器有故障代码显示的故障,具体如表1所示。 注:表1中Io、Vo分别是输出额定电流、输入额定电压;Vin是输入电压。 现就这几种情况作一下分析。 表1 故障代码显示的故障

2.1 短路保护 若变频器运行当中出现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。这有以下几方面的原因: (1) 负载出现短路 这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。 (2) 变频器内部问题 如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。如图1所示。

图1 变频器主电路示意图 在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。 (3) 变频器内部干扰或检测电路有问题 有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。 变频器的短路保护一般是从主回路的正负母线上分流取样,用电流传感器经主控板的检测传至主控芯片进行保护的,因此这些环节上任何一处出现问题,都可能造成故障停机。 对于干扰问题,现低压大功率的及中高压变频器都加了光电隔离,但也有出现干扰的,主要是电流传感器的控制线走线不合理,可将该线单独走线,远离电源线、强电压、大电流线及其他电磁辐射较强的线,或采用屏蔽线,以增强抗干扰能力,避免出现误保护。

变频器故障诊断与维修_变频器常见故障维修_变频器故障处理方法

变频器故障诊断与维修_变频器常见故障维修_变频器故障处理方法变频器常见故障维修_变频器故障处理方法一、参数设置类故障常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。 1、参数设置 常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行: (1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 (2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 (3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。 (4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 2、参数设置类故障的处理 一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。 二、过压类故障变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器

ABB变频器常见故障与维修对策

技师论文 ABB变频器的日常维护及常见故障维修 姓名:王以强 工种:电工 单位:锡沂水务 培训单位:省技师学院 日期:二零一三年十月一日

ABB变频器的日常维护及常见故障维修 锡省水务王以强 摘要:介绍ABB变频器的发展、维护及常见故障处理 关键词:滤波电容大功率模块轴流风扇智能化模块 ABB变频器以其稳定的性能,丰富的选件扩展功能,可灵活应用的编程环境,良好的力矩特性,以及可供不同场合使用的多种系列,在变频器市场占据着重要的地位。 ABB变频器进入中国的市场也并不太长,早期我们能看到的ABB 变频器主要有小功率的ACS300变频器,以及标准型的ACS500变频器,应该说这两个系列变频器在国并没有赢得太多的客户,而ABB变频器真正被广大用户认识和接受的就是采用DTC控制方式的ACS600的高端变频器。稳定,可靠,功能丰富,应用灵活,这就是ABB变频器赢得市场的法宝。随着产品的不断更新,ABB公司现在又推出了ACS600变频器的替代产品,ACS800,与ACS600相比,除保持DTC控制方式以及原有的一切功能之外,ACS800最明显的功能变化就是增加了简易PLC功能,不需要专门的工具和编程语言,用户可以自定义编程达15个模块。并能将程序绘制在功能模块模板上来存储该程序。此外我们还知道ACS600,ACS800变频器的选件功能特别丰富,除了常见的I/O扩展模块,用于通讯的 Profibus Modbus模块等,ABB公司还专门针对不同行业开发了多个宏程序,包括造纸机械上使用的主从宏,纺织机械上使用的摆频宏,以及在恒压供水上使用的PFC宏,PID 控制宏,转矩控制宏等等,应该说ABB变频器的选件功能相当丰富,基本满足了各个行业对变频器功能的需求。针对不同层次的客户群,

相关主题
文本预览
相关文档 最新文档