当前位置:文档之家› 最简单的变频器控制电机正反转及调速电路

最简单的变频器控制电机正反转及调速电路

最简单的变频器控制电机正反转及调速电路
最简单的变频器控制电机正反转及调速电路

最简单的变频器控制电机正反转及调速电路

1.线路图

有正反转功能变频器控制电动机正反转调速线路,如下图

器件:QF:断路器

UF:变频调速器

SB1:正转启动按钮

SB2:反转启动按钮

SB3:停止按钮开关

SB4:故障复位按钮

K1,K2:继电器(线圈电压380Vac)

RP1,RP2:调速电位器

M:三相交流电动机

2.工作原理

旋转RP1调速电位器将设定频率调至目标值,再启动正反转,亦可在运行过程中随时调整电位器,改变变频器运行频率(注意不可转得太快)。

正转时,按下按钮SB1,继电器K1得电吸合并自锁,其常开触点闭合,FR-COM 连接,电动机正转运行;停止时,按下按钮SB3,K1失电释放,电动机停止。

反转时,按下按钮SB2,继电器K2得电吸合并自锁,其常开触点闭合,RR-COM

连接,电动机反转运行;停止时,按下按钮SB3,K2失电释放,电动机停止。

事故停机或正常停机时,复位端子RST-COM断开,并发出报警信号。按下复位按钮SB4,使RST-COM连接,报警解除。

控制线路串联于变频器内部热继电常闭辅助触点,提高电路保护性能。

3.应用

该电路有加减速平稳,运行可靠,控制简单的特点,大大调高了设备的自动化程度,比常规控制正反转电路的优点是:保护性能大大提高,可以调速。可广泛应用于建筑施工,仓库,酒店餐饮业,小型工厂等货物的上下传输系统中。

电动机正反转实验报告

实验一三相异步电动机的正反转控制线路 一、实验目的 1、掌握三相异步电动机正反转的原理和方法。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等 三、实验方法 1、接触器联锁正反转控制线路 (1) 按下“关”按钮切断交流电源,按下图接线。经指导老师检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q1,接通220V三相交流电源。 (3) 按下SB1,观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。 (4) 按下SB3,观察并记录M运转状态、接触器各触点的吸断情况。 (5) 再按下SB2,观察并记录M的转向、接触器自锁和联锁触点的吸断情况。 Q1 23 220V

图1 接触器联锁正反转控制线路 3、按钮联锁正反转控制线路 (1)按下“关”按钮切断交流电源。按图2接线。经检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q 1,接通220V 三相交流电源。 (3) 按下SB 1,观察并记录电动机M 的转向、各触点的吸断情况。 (4) 按下SB 3,观察并记录电动机M 的转向、各触点的吸断情况。 (5) 按下SB 2,观察并记录电动机M 的转向、各触点的吸断情况。 Q 1 220V

图2 按钮联锁正反转控制线路 四、分析题 1、接触器和按钮的联锁触点在继电接触控制中起到什么作用? 实验二交流电机变频调速控制系统 一﹑实验目的 1.掌握交流变频调速系统的组成及基本原理; 2.掌握变频器常用控制参数的设定方法; 3. 掌握由变频器控制交流电机多段速度及正反向运转的方法。 二﹑实验设备 1.变频器;2. 交流电机。 三、实验方法 (一)注意事项 参考变频器的端子接线图,完成变频器和交流电机的接线。主要使用端子为R﹑S ﹑T;U﹑V﹑W;PLC﹑FWD﹑REV﹑BX﹑RST﹑X1﹑X2﹑X3﹑X4﹑CM。 变频器电源输入端R﹑S﹑T和电源输出端U﹑V﹑W均AC380V高电压﹑大电流信号,任何操作都必须在关掉总电源以后才能进行。

ABB变频器参数及其正反转设置

一、为什么变频器能控制电机的正反转。能把他的控制原理告诉我吗目前市场上的变频器大都是交直交型。 先从交流整流成直流,再从直流分别逆变成相位相差120度的三相交流电。逆 变出来的电、频率、相位都是由微电脑控制的。 如果我给电机的UVW相分别送0度,120度和240度相位,那它就正转;给UVW相送0度,240度和120度相位时候,就反转。 反正微电脑的程序是人编的,让它送什么样的电它就送什么样的电,控制三相的相位差就能够控制电机的转向。 将控制正转、反转的继电器的触点分别接在二个多功能端子上,把变频器参数设定控制命为 为端子控制,修改多功能端子对应的参数功能为:正转、反转。(需与接线相对应,变频器都有正转、反转端子,接上正转、反转的继电器的触点就可)。变频器所控制的电机,要旋 转还需0---10V的模拟电压。(由上位机PLC,或CNC给出,或用电位器接DC10V电压给出)。 一般来讲,实现正反转有两种方法: 第一,就是通过变频器的外部控制正反转端子; 第二,如果是周期性的、规律性的正反转,也可以通过变频器的多段速功能来实现; 四 变频器控制正反转和工频控制正反转原理差不多,工频是通过控制电机的线圈从机控制主电路来实现,而变频器是通过控制变频器的正反转端子从而来控制电机的正反转,在原有工频控制线路基础上在一些改进,将正反转的两个接触器的输出拆掉,分别在每个接触器上加一个辅助触头,用常开触头的通断来控制变频器的正转FWD和DCM端子,反转REV和DCM端子就可以了 ACS550完整参数表 Group 99: 起动数据 代码英文名称中文名称用户/缺省值 9901 LANGUAGE 语言1(中文) 9902 APPLIC MACRO 应用宏3(交变宏) 9904 MOTOR CTRL MODE 电机控制模式3(标量速度) 9905 MOTOR NOM VOLT 电机额定电压380V 9906 MOTOR NOM CURR 电机额定电流 A

实验一 电动机正反转实验

实验一电动机正反转实验 一、实验目的 1、通过练习实现与、或、非逻辑功能,熟悉PLC编程方法。 2、熟悉ZY17PLC12BC实验箱的使用方法。 二、实验器材 1、ZY17PLC12BC型可编程控制器实验箱 1台 2、PC机或FX-20P-E编程器 1台 3、编程电缆 1根 4、连接导线若干 三、实验原理 (1)LD、LDI指令用于将触点接到母线上。另外,与后述的ANB指令组合,在分支起点处也可使用。 (2)OUT指令是对输出继电器、辅助继电器、状态继电器、定时器,计数器的线圈的驱动指令、对于输入继电器不能使用。 (3)并行输出指令可多次使用。 2、触点串联(AND/ANI) 说明: (1)用AND、ANI、指令,可进行触点的串联连接。串联触点的个数没有限制,该指令可以多次重复使用。 (2)OUT指令后,通过触点对其他线圈使用OUT指令称之为纵接输出。这种纵接输出,如果顺序不错,可以多次重复,

3、触点并联(OR/ORI) (1)OR、ORI用作为1个触点的并联连接指令。如果连接2个以上的触点串联连接的电路块的并联连接时,要用后述的ORB指令。 (2)OR、ORI指令是从该指令的当前步开始对前面的LD、LDI指令并联连接。并联连接的次数无限制,但由于编程器和打印机的功能对此有限制,所以并联连接的次数实际上是有限制的。 (1)两个以上的触点串联连接的电路称之为串联电路块。串联电路块并联连接时,分支的开始用LD、LDI指令,分支的结束用ORB指令。 (2)ORB指令与后述的ANB等均为无操作元件号的指令。 (1)分支电路并联电路块与前面电路串联连接时,使用ANB指令。分支的起点用LD、LDI指令。并联电路块结束后,使用ANB指令与前面电路串联。 (2)若多个并联电路块顺次用ANB指令与前面电路串联连接,则ANB的使用次数没有限制, (3)虽然可以连续使用ANB指令,但这时与ORB指令同样要注意LD、LDI指令的使用次数限制(8次以下)。 6、程序结束(END) 7、控制要求 本实验利用PLC控制电机正反转。发光二极管KM1亮模拟电机正转,发光二极管KM2

PLC控制实验--变频器控制电机正反转

实验二十八变频器控制电机正反转 一、实验目的 了解变频器外部控制端子的功能,掌握外部运行模式下变频器的操作方法。二、实验设备 序号名称型号与规格数量备注 1 网络型可编程控制器高级实验装置THORM-D 1 2 实验挂箱CM51 1 3 电机WDJ26 1 4 实验导线3号/4号若干 5 通讯电缆USB 1 6 计算机 1 自备 三、控制要求 1.正确设置变频器输出的额定频率、额定电压、额定电流。 2.通过外部端子控制电机启动/停止、正转/反转。 3.运用操作面板改变电机启动的点动运行频率和加减速时间。 四、参数功能表及接线图 1.参数功能表 序号变频器参数出厂值设定值功能说明 1 n1.00 50.00 50.00 最高频率 2 n1.05 1.5 0.01 最低输出频率 3 n1.09 10.0 10.0 加速时间 4 n1.10 10.0 10.0 减速时间 5 n2.00 1 1 操作器频率指令旋钮有效 6 n2.01 0 1 控制回路端子(2线式或3线式) 7 n4.04 0 1 2线式(运转/停止(S1)、正转/反转(S2)) 注:(1)设置参数前先将变频器参数复位为工厂的缺省设定值(2)设定n0.02=0可设定及参照全部参数 2.变频器外部接线图 五、操作步骤

1.检查实验设备中器材是否齐全。 2.按照变频器外部接线图完成变频器的接线,认真检查,确保正确无误。 3.打开电源开关,按照参数功能表正确设置变频器参数。 4.打开开关“K1”,观察并记录电机的运转情况。 5.旋转操作面板频率设定旋钮,增加变频器输出频率。 6.关闭开关“K1”,变频器停止运行。 7.打开开关“K1”、“K2”,观察并记录电机的运转情况。 六、实验总结 1.总结使用变频器外部端子控制电机正反转的操作方法。 2.总结变频器外部端子的不同功能及使用方法。

电机正反转实验

电机正反转实验 一.实验目的 1.了解机床电气中三相电机的正反转控制和星三角启动控制。 2.掌握电动机的常规控制电路设计。 3.了解电动机电路的实际接线。 4.掌握GE FANUC 3I系统的电动机启动程序编写。 二.实验原理和电路 交流电动机有正转启动和反转启动,而且正反转可以切换,启动时,要求电动机先接成星型连接,过几秒钟再变成三角形连接运行。PLC控制电动机的I/O 地址如下表所示: PLC模拟控制电动机I/O地址表 输入输出 器件(触摸屏M)说明器件说明I1(M21)正转Q2 正转 I2(M22)反转Q3 星形 I3(M23)停止Q4 三角形 Q5 反转 电动机星三角启动电气接口图:

模块的现场接线 接线前请熟悉接线图,我们在这里简单介绍下输入输出模块的接线方法,在接下来的实验中不再赘述。详细请见第一章的模块介绍。 ●输入模块现场接线 IC694MDL645,数字量输入模块,提供一组共用一个公共端的16个输入点,如图所示。该模块即可以接成共阴回路又可以接成共阳回路,这样在硬件接线时就非常灵巧方便。但在本系统中,我们统一规定本模块接成共阳回路,即1号端子由系统提供负电源,外部输入共阳。 IC694MDL645数字量输入模块现场接线 ●输出模块现场接线 IC694MDL754,数字输出模块,提供两组(每组16个)共32个输出点。每组

有一个共用的电源输出端。这种输出模块具有正逻辑特性;它向负载提供的源电流来自用户共用端或者到正电源总线。输出装置连接在负电源总线和输出点之间。这种模块的输出特性兼容很广的负载,例如:电动机、接触器、继电器,BCD 显示和指示灯。用户必须提供现场操作装置的电源。每个输出端用标有序号的发光二极管显示其工作状态(ON/OFF)。这个模块上没有熔断器。接线必须注意。 即:17端接正电源,18端接负电源及外部负载的共阴端。 IC694MDL754数字量输出模块现场接线 三:实验步骤: 1.编写PLC程序,可参照参考程序,并检查,保证其正确。 2.按照电器接口图接线。 3.下载程序。 4.置PLC于运行状态,按下启动键,观察电机运行。 5.实验结束后,关电源,整理实验器材。 四:实验器材 1.GE FANUC 3I系统一套 2.PYS3电机正反转模块一块 3.网线一根 4.KNT连接导线若干

变频器控制电动机正反转调速电路

变频器控制电动机正反转调速电路 很多变颇器控制电动机正反转调速电路.通常都利用交流接触器来实现其正转、反转、停止,以及外接信号的控制,其优点是动作可靠、线路简单、r办企业电工人员都能掌握。 如图85所示,合上电源断路器QP,接人380v交流电源.使电路处于热备机状态。若需要正转时,则按下正转起动按钮sBI(1—3),此时交流接触器KI线圈得电吸合且KI辅助常开触点[3—5)闭合白锁,同时KI常开触点(19—21)闭合,将FR与c〔)M连接起来、变频器正相序工作,控制电动机正转运行;欲停止时,按下停止按钮sDl(1—3),此时.交流接触器Kj线圈断电释放.Kl常开触点(19—21)断开FR与c[)M的连接,使变频器停止丁作,电动机失电停止运转。 需要反转时,按下反转起动按钮sB2(3—9),此时交流接触器K2线圈得电吸合fl K2辅助常开触点(3—9)闭合自锁,同时K2常开触点(19—23)闭合,将R只—coM连接起来,变频器反相序工作,控制电动机反转运行;欲停止时,按下停止按钮sIL(1—3).此时.交流接触器x2线圈断电释放.K2常开触点(19—23)断开RR—c()M的连接,使变频2R停止丁作,中压变频器电动机失电停止运转。

因电路中正反转交流接触器线圈回路中各串联了对方接触器的互锁常闭触点,以保证在正反转操作时,不会出现两只交流接触器同时工作的现象,起到互锁保护作用。 当需要正常停机或出现事故停机时.复位端子RST—COM(13—19)断开,变频器发出报警信号。此时技下复位按钮sB4(17—19),将RsT与c()M端子连接起来,报警即可解除。 阐85巾,QF为保护断路器;Fu为控制回路熔断器Exl为正转控制交流接触器;K2为反转控制交流接触器,s11j为停止按钮;sB2为正转起动按钮;SB3为反转起动按钮;SB4为复泣按钮,Hz为频率表;RPl为1kn、2w的线绕式频率给定电位器;配Pg为10ko、1/2w校正电阻,用于频率调整。

利用PLC控制电动机的正反转原理

PLC 控制三相异步电动机正反转 1、实验原理 三相异步电动机定子三相绕组接入三相交流电,产生旋转磁场,旋转磁场切割转子绕组产生感应电流和电磁力,在感应电流和电磁力的共同作用下,转子随着旋转磁场的旋转方向转动。因此转子的旋转方向是通过改变定子旋转磁场旋转的方向来实现的,而旋转磁场的旋转方向只需改变三相定子绕组任意两相的电源相序就可实现。如图2.1所示为PLC控制异步电动机正反转的实验原理电路。 图2.1 PLC控制三相异步电动机正反转实验原理图 左边部分为三相异步电动机正反转控制的主回路。由图 2.1可知:如果KM5的主触头闭合时电动机正转,那么KM6 主触头闭合时电动机则反转,但KM5 和KM6 的主触头不能同时闭合,否则电源短路。 右边部分为采用PLC对三相异步电动机进行正反转控制的控制回路。由图可知:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2;继电器KA4、KA5 分别接于PLC 的输出口Y33、Y34,KA4、KA5 的触头又分别控制接触器KM5和KM6的线圈。 实验中所使用的PLC为三菱FX2N系列晶体管输出型的,由于晶体管输出型的输出电流比较小,不能直接驱动接触器的线圈,因此在电路中用继电器KA4、KA5 做中间转换电路。

电路基本工作原理为:合上QF1、QF5,给电路供电。当按下正向按钮,控制程序要使Y33为1,继电器KA4线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序要使Y34 为1,继电器KA5 线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。 2、实验步骤 1.断开QF1、QF5,按图2.2接线(为安全起见,虚线框外的连线已接好); 2.在老师检查合格后,接通断路器QF1、QF5 ; 3.运行PC机上的工具软件FX-WIN,并使PLC工作在STOP状态; 4.输入编写好的PLC控制程序并将程序传至PLC; 5.使PLC工作在RUN 状态,操作控制面板上的相应按钮,实现电动机的正反转控制。在PC机上对运行状况进行监控,同时观察继电器KA4、KA5 和接触器KM5 、KM6的动作以及主轴的旋转方向,调试并修改程序直至正确; 6.重复4、5步骤,调试其它实验程序。 图 2.2 实验接线图 3、实验说明及注意事项 1.本实验中,继电器KA4、KA5的线圈控制电压为24V DC,其触点5A 220V AC (或5A 30V DC);接触器KM5、KM6的线圈控制电压为220V AC,其主触点25A 380V AC。 2.三相异步电动机的正、反转控制是通过正、反向接触器KM5、KM6改变定子绕组的相序来实现的。其中一个很重要的问题就是必须保证任何时候、任何条件下正反

PLC控制电机正反转论文模板

摘要 可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装臵。目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,PLC已跃居工业自动化三大支柱的首位。 生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。按下正转启动按钮SB1,电动机正转运行,且KM1,KMY接通。2s后KMY断开,KM 接通,即完成正转启动。按下停止按钮SB2,电动机停止运行。按下反转启动按钮SB3,电动机反转运行,且KM2,KMY接通。2s后KMY断开,KM 接通,即完成反转启动。

目录 第一章 PLC概述 (1) 1.1 PLC的产生 (1) 1.2 PLC的定义 (1) 1.3 PLC的特点及应用 (2) 1.4 PLC的基本结构 (4) 第二章三相异步电动机控制设计 (7) 2.1 电动机可逆运行控制电路 (7) 2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (9) 2.3. 三相异步电动机正反转PLC控制的梯形图、指令表 (12) 2.4 三相异步电动机正反转PLC控制的工作原理 (13) 2.5 指令的介绍 (14) 结论 (16) 致谢 (17) 参考文献 (18)

第一章 PLC概述 1.1 PLC的产生 1969年,美国数字设备公司(DEC)研制出了世界上第一台可编程序控制器,并应用于通用汽车公司的生产线上。当时叫可编程逻辑控制器PLC(Programmable Logic Controller),目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。紧接着,美国MODICON公司也开发出同名的控制器,1971年,日本从美国引进了这项新技术,很快研制成了日本第一台可编程控制器。1973年,西欧国家也研制出他们的第一台可编程控制器。 随着半导体技术,尤其是微处理器和微型计算机技术的发展,到70年代中期以后,特别是进入80年代以来,PLC已广泛地使用16位甚至32位微处理器作为中央处理器,输入输出模块和外围电路也都采用了中、大规模甚至超大规模的集成电路,使PLC在概念、设计、性能价格比以及应用方面都有了新的突破。这时的PLC已不仅仅是逻辑判断功能,还同时具有数据处理、PID调节和数据通信功能,称之为可编程序控制器(Programmable Controller)更为合适,简称为PC,但为了与个人计算机(Persona1 Computer)的简称PC相区别,一般仍将它简称为PLC(Programmable Logic Controller)。 1.2 PLC的定义 “可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储和执行逻辑运算、顺序控制、定时、计数和算术运算等操作命令,并通过数字式和模拟式的输入和输出,控制各种类型的机械或生产过程。可编程控制器及其有关外围设备,都按易于与工业系统联成一个整体、易于扩充其功能的原则设计。” 可编程序控制器是应用面最广、功能强大、使用方便的通用工业控制装臵,自研制成功开始使用以来,它已经成为了当代工业自动化的主要支柱之一。

plc控制电动机正反转

作业名称:PLC控制电动机正反转可编程控制器(1)期末大作业 得分: 任课教师: 班级: 姓名: 学号: 2011年12月

摘要 三相异步电动机一般采用降压起动、能耗制动。针对传统的继电器一接触器控制的降压起动、能耗制动方法存在的不足,将OMRON公司的CPM2*型可编程序控制器(PLC)与接触器相结合,用于三相异步电动机的Y一△降压起动、能耗制动控制,改进后的方法克服了传统方法手工操作复杂且不够可靠的缺点,控制简单易行。 关键词:三相异步电动机;PLC控制系统; Abstrcut the Three-phase asynchronous motor step-down start, generally USES the braking energy. In traditional relay a contact device control step-down start braking energy, the shortcomings of the methods, the company will CPM2 * type OMRON PLC and contactor, combining for three-phase asynchronous motor step-down start a train of Y, braking energy control, the improved method can overcome the disadvantage of traditional method manual operation complex and not reliable enough shortcomings, simple and easy to control.

PLC控制电机正反转 教学案例

PLC控制电机正反转 类别:职教专业编号:()教材简析: 职业教育的目的就是培养应用人才和具有一定文化水平和专业知识技能的工作者,职业教育强调理论和实践训练并重,《可编程序控制器(英文缩细PLC)及其应用》(第二版)(以后简称《PLC》)教材侧重理论,学生单独学习较为吃力。而在《电力拖动》这门课程中的三相异步电动机正反转控制线路学生已非常熟悉,也是电拖这门课程的重点。将这二者联系起来学习将会收到意想不到的效果。 学情分析:中专学生比较活跃,但是理论基础较差,已具有PLC的基础知识,熟悉三相异步电动机正反转控制线路的工作原理与接线方法。 教学目标: 1、知识目标: (1)掌握继电器控制三相异步电动机正反转控制线路的工作原理 (2)熟练掌握PLC编程基本方法和编程技巧及基本指令的应用,并利用PLC 完成调试。 (3)熟练掌握分配PLC的输入点和输出点,并画出梯形图,转换成语句表,控制电动机工作。 2、能力目标 (1)通过任务驱动和引导教学培养学生分析问题和解决问题的能力。 (2)通过运用PLC完成电动机正反转控制电路的实训,培养学生动手动脑,团结协作的能力。 3、情感目标 让学生将逐步养成严谨求实,合作创新的科学态度为继续学习和发展奠定基础。

教学重点、难点: 1、重点:(1)三相异步电动机正反转控制线路的工作原理。 (2)PLC编程基本方法和编程技巧及基本指令的应用。 (3)分配PLC的输入点和输出点,并画出梯形图,转换成语句表,控制电动机工作。 2、难点:(1)PLC具体的编程方法。 (2)分配设计完成任务的控制程序“梯形图—语句表” 教学方法: 在这节课里主要采用的是任务驱动教学法和行为引导教学法进行教学,以任务为主线、教师为主导、学生为主体,整个教学围绕任务的解决而展开,教师提出引导性问题,给定任务要求;学生小组协作进行决策分析,制定出计划,并实施计划,完成任务。创设真实氛围的工作环境,将教室与实训室合二为一,开展一体化教学,形成仿真的工作场所,使教学过程变为生产过程,学习任务变为工作任务,使学生通过学习亲身体验工作,培养学生自主思考的能力。 设计理念: PLC教材偏重于理论,学生实训完继电器控制的三相异步电动机正反转控制线路之后,并且已经掌握了基本编程指令的基础上,通过理论与实践相结合掌握PLC在电动机的正反转电路中的应用。三相异步电动机的正反转可以通过继电器控制,也可以通过PLC控制,通过本节的学习,学生即回顾了继电器控制的方法,又将PLC的基本指令应用于实践当中,还为学生以后的编程提供一种有效的方法,因此学好本节内容在整个学习过程中就显得至关重要。由于学生知识水平层次差异,根据教材制定的实施性教学计划,保证每个学生课有所得,本节课我设计少讲多练,让学生在操作中懂理论,在练习中长技能。

PLC控制电机正反转资料讲解

作业名称:PLC控制电动机正反转指导老师:周力 班级:机械2093 姓名:张悦 学号:3092101318 2012年5月

摘要 三相异步电动机一般采用降压起动、能耗制动。针对传统的继电器一接触器控制的降压起动、能耗制动方法存在的不足,将OMRON公司的CPM2*型可编程序控制器(PLC)与接触器相结合,用于三相异步电动机的Y一△降压起动、能耗制动控制,改进后的方法克服了传统方法手工操作复杂且不够可靠的缺点,控制简单易行。 关键词:三相异步电动机;PLC控制系统; Abstrcut the Three-phase asynchronous motor step-down start, generally USES the braking energy. In traditional relay a contact device control step-down start braking energy, the shortcomings of the methods, the company will CPM2 * type OMRON PLC and contactor, combining for three-phase asynchronous motor step-down start a train of Y, braking energy control, the improved method can overcome the disadvantage of traditional method manual operation complex and not reliable enough shortcomings, simple and easy to control. Key words: the three-phase asynchronous motor; PLC control system

实验一 三相异步电动机的正反转控制实验报告

实验一三相异步电动机的正反转控制实验报告 实验目的 ⑴了解三相异步电动机接触器联锁正反转控制的接线和操作方法。 ⑵理解联锁和自锁的概念。 ⑶掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。 实验器材 三相异步电动机(M 3~)、万能表、联动空气开关(QS1)、单向空气开关(QS2)、交流接触器(KM1,KM2)、组合按钮(SB1,SB2,SB3)、端子排7副、导线若干、螺丝刀等。实验原理 三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。任意改变电源的相序时,电动机的旋转方向也会随之改变。 实验操作步骤 连接三相异步电动机原理图如图所示,其中线路中的正转用接触器KM1和反转用的接触器KM2,分别由按钮SB2和反转按钮SB2控制。控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。 当按下正转启动按钮SB1后,电源相通过空气开关QS1,QS2和停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、接触器KM和其他的器件形成自锁,使得电动机开始正转,当按下SB3时,电动机停止转动,在按下SB2时,接触器KM和其他的器件形成自锁反转。安装接线 1在连接控制实验线路前,应先熟悉各按钮开关、交流接触器、空气开关的结构形式、动作原理及接线方式和方法。 2 在不通电的情况下,用万用表检查各触点的分、合情况是否良好。检查接触器时,特别需要检查接触器线圈电压与电源电压是否相符。 3将电器元件摆放均匀、整齐、紧凑、合理,并用螺丝进行安装,紧固各元件时应用力均匀,紧固程度适当。

ABB变频器的手自动控制原理图

ABB变频器的手自动控制原理图

图1

图2 设计题目:手自动控制变频器电机正反转两地调速 要求:1手动正转,本地调速 2自动反转,远方调速 3按钮3个,正转、反转、停止 4、指示灯3个,正转指示1个、反转1指示个,停止1个。 5、变频器参数设置 《手自动控制电路》考核评分表 姓名:准考证号:考核开始时间:考核终止时间:序号考核内容考核要求标准分评分标准扣分得分 1 文明生产劳动防护用品穿戴齐全 现场文明生产10 1.绝缘鞋未穿,扣3分 2.工作服未穿,扣3分 3.现场不文明生产,扣4分 2 绘制电路图根据题目要求绘制电路图、标识符正确10 1.电路图绘制时,错1处扣2分 2.绘制电路图不规范及不标准每 1处扣2分

3 元件安装元件在配电板上布置要合理,安装要准 确紧固、美观10 1.元件布置不整齐、不匀称、不 合理,每只扣1分 2.元件安装不牢固、安装元件漏 装螺钉,每只扣1分 3.损毁元件每只扣2分 4 接线配线要求紧固、美观、导线要求布线整 齐、控制回路进出按钮导线要求采用软 铜线且上端子排并穿线号30 1.布线零乱,不美观每根扣0.5 分 2.接点松动、露铜过长、压绝缘 层、标记线号不清、遗漏或误标, 引入端子无别径压端子,每处扣 0.5分 3.损毁导线绝缘,导线线芯外露, 每根扣0.5分 5 调试及试转按照控制要求、进行正确调试 熟练使用绝缘电阻表对电机绝缘进行摇 测并记录数据 上电试转40 1.调试时,没有严格按照被控制 设备的要求进行,而达不到题目 要求、每缺少1项功能,扣5分 2.上电试转一次不成功,扣10 分 3.上电试转二次不成功,扣20 分 合计100 考评组长:考评员:考核日期:年月日

PLC控制三相异步电动机正反转

实验三PLC控制三相异步电动机正反转 一、实训目的 1.掌握PLC控制代替传统接线控制的方法,编制程序控制三相异步电动机正反转控制。 2.掌握三相异步电动机正反转主电路和控制电路的接线方法。 3.学会用可编程控制器实现三相异步电动机正反转控制的编程方法。。 三、实验控制要求 1.用两个按钮控制起停,按动启动按钮后,电动机开始正转。 2.正转5 min 后,停2 min ,然后再开始反转。 3.反转3 min 后,停 1 min,再正转,依次循环。 4.如果按动停止按钮开头,不管电动机在哪个状态(正转、反转或停止),电动机都 要停止运行,不再循环运行。 电动机可逆运行方向的切换是通过两个接触器KM1、KM2的切换来实现的。切换时要改娈电源的相序。在设计程序时,必须防止由于电源换相所引起的短路事故。例如,由于向正向运转切换到反向运转时,当正转接触器KM1断开时,由于其主触点内瞬时产生的电弧,使这个触点仍处于接通状态;如果这时使反转接触器KM2闭合,就会使电源短路。因此必须在完全没有电弧的情况下才能使反转的接触器闭合。 四、I/O分配表和电路图 控制电路

梯形图参考程序 PLC 控制三相异步电动机正反转 四、实训步骤 程序中的I0.0至I0.1分别对应控制实训单元输入SB1和SB2。 通过专用PC/PPI 电缆连接计算机与PLC 主机。打开编程软件STEP7 ,逐条输入程序,

检查无误后,将所编程序下载到主机内,并将可编程控制器主机上的STOP/RUN开关拨到RUN 位置,运行指示灯点亮,表明程序开始运行,有关的指示灯将显示运行结果。 分别按下SB1和SB2开关,观察输出指示灯.Q0.0、Q0.1是否符合逻辑。观察各电器的动作情况。 思考题:

PLC控制电机正反转(DOC)

PLC控制电机正反转 段庆安 [摘要]:可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装置。目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,PLC 已跃居工业自动化三大支柱的首位。 生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。按下正转启动按钮SB1,电动机正转运行,且KM1,KMY接通。2s后KMY断开,KM 接通,即完成正转启动。按下停止按钮SB2,电动机停止运行。按下反转启动按钮SB3,电动机反转运行,且KM2,KMY接通。2s后KMY断开,KM 接通,即完成反转启动。 [关键词]:PLC 直流电机 PLC control motor reversing Duan Qing an [Abstract]: Programmable Logic Controller (PLC) is a microprocessor core, automatic control technology, computer technology and communication technology integration and the development of a new industrial automatic control device. PLC has basically replaced the traditional relay control is widely used in various areas of industrial control, PLC has leapt to the first of the three pillars of the industrial automation. Production machinery often require moving parts can be achieved in both directions of the starter, which requires the drag motor can make positive and reverse rotation. Seen by the motor principle, change the phase sequence of the motor three-phase power, will be able to change the direction of the motor rotation. Press Forward Start button SB1 motor forward run and KM1 KMY turned on. 2s after and KMY disconnect, KM switched to complete the forward start. Press the stop button SB2, the motor stops running. Press the start button reversal SB3 motor reverses and KM2, the KMY switched. 2s after and KMY disconnect, KM switched complete reversal to start. [Keywords]: PLC DC motor

触摸屏_PLC_变频器控制电动机正反转

触摸屏,PLC,变频器控制电动机正反转 学院:职业技术学院 专业:机电一体化 指导老师:老师 姓名:伦文 班级:机电15302 学号:1502304704 2016年12月1日

目录 1.概述 1.1 学习目的 (3) 1.2 实验要求 (3) 1.3 实验器材 (4) 2. 系统设计 2.1 变频器与PLC的接线图 (4) 2.2 PLC的I/O分配 (5) 2.3 触摸屏组态变量规划 (5) 3. 软件编程与变频器设置 3.1 PLC梯形图 (5) 3.2 变频器参数设置 (7) 4. 组态软件用户窗口设置 (8) 5、课程设计总结 (8) 6、参考文献 (11)

1、概述 1.1 学习目的 1、了解TPC 7062 KX触摸屏的特性及控制面板。 2、了解FX2N-48MT-001 PLC 编程软件在触摸屏中的应用。 3、了解FR-E740-1.5K-CHT变频器的参数设置及其应用。 4、会使用FX2N-48MT-001 PLC 编程软件进行MCGS组态控制画面。 5、掌握触摸屏与PLC和计算机的通信方法,以及PLC于变频器的连接。 1.2 实验要求 1.能用组态软件控制起停,同时也能由外部控制起停。 2.起动后能够以40HZ正转10秒,以20HZ

反转10秒,以18HZ正转10秒,以15HZ反转10秒,以45HZ正转10秒,以42HZ反转10秒,运行两次后自动停止。 3.变频器加减速时间设为1秒。 4.触摸屏能够显示运行指示,正转指示,反转指示,运行频率,运行次数,运行时间,启动按钮,停止按钮。 1.3 实验器材 1)、FX2N-48MT-001 PLC一台 2)、FR-E740-1.5K-CHT实验箱一台(含变频器及三相交流异步电动机)。 3)、MCGS的TPC 7062 KX的触摸屏一个。 4)、起动、停止按钮各一个共两个,型号为A22R-FG-10M 5)、空气开关三相和单相得各一个共两个及若干导线。 6)、直流24V电源一个。 2、系统设计 2.1变频器与PLC的接线图

电机正反转控制实验报告

电机正反转控制实验报告 电机正反转控制实验报告 电机正反转控制实验报告 实验目的 1、掌握可此人基层工作程控制器的工作原理。 2、通过动手接线,提高学生的实际动手能力以及加强对PLC基本 结构的了解。3、通过实验,加强学生对PLC逻本人顺序本人程的理解,使学生能够帮助熟练应用三 菱PLC的开发工具软件和软元件。 二、实验内容 三.硬件电路图将PLC与实验装置上面适配器的接线端子连接线,通过PLC来对上面的电机或进行控制。 四、PLC梯形图 PLC梯形图如下: I/O分配如下: 五、工作原理 当启动按钮SB1按下时,X0接通,系统进入工作状态,当停止按 钮SB2接 通时,X1接通,系统停止工作。 当SB1按下而SB2断开时,且电机触底反弹没有进行正转或反转,此时若按下SB3,即正转按钮,,则X3接通,此时Y0输出为1,正转 接触器KM1吸合,电机正转。同理按下SB4,则X3为1,Y1为1,KM2 吸合,点击反转。

若电机在正转过程中按下SB3,则电机停止正转,寄存器M1接通,而后计时器T0进行2秒计时,计时完成后T0为1,X1,X2,Y0均为0 且M1为1,则Y1接通,进入反转。同理课设计电机反转过程中按下正转按钮后延时2s进入正转。 六、使用说明书按下启动按钮SB1,再按下正转按钮SB3.,正传 接触器KM1吸合,电机正转。再按下反转按钮SB4,经过短暂延时(2s)后(可以避免机械接触器反应迟钝所造成的事故),反转接触器KM2 吸合,电机反转。 扩展阅读:电动机正反转实验报告 实验三相异步电动机的正反转控制线路 实验目的 1、掌握三相异步电动机正反转的原理和方法。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反 转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等三、实验方法 1、接触器联锁正反转控制线路 (1)按下“关”按钮切断液力,按下图接线。经指导老师检查无误后,按下“开”按钮通电操作。 (2)合上电源开关Q1,接通220V三相交流电源。 (3)按下SB1,观察并终其一生录电动机M的转向、接触器自锁和 联锁触点的吸断情况。(4)按下SB3,观察并本人录M运转状态、控制 器各触点的吸断情况。

PLC控制电机正反转(课程设计)

PLC课程设计(论文) 题目:三相异步电机联锁正反转控制 院(系):机械工程学院 专业:机电一体化 学生姓名:某某 学号:401042009 指导教师:王海珍 职称:讲师 2016年6月10日星期五

摘要 可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装置。目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,PLC已跃居工业自动化三大支柱的首位。 生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。按下正转启动按钮SB1,电动机正转运行,且KM1,KMY接通。2s后KMY断开,KM 接通,即完成正转启动。按下停止按钮SB2,电动机停止运行。按下反转启动按钮SB3,电动机反转运行,且KM2,KMY接通。2s后KMY断开,KM 接通,即完成反转启动。

目录 第一章PLC概述 (1) 1.1 PLC的产生 (1) 1.2 PLC的定义 (1) 1.3 PLC的特点及应用 (2) 1.4 PLC的基本结构 (4) 第二章三相异步电动机控制设计 (7) 2.1 电动机可逆运行控制电路 (7) 2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (9) 2.3. 三相异步电动机正反转PLC控制的梯形图、指令表 (12) 2.4 三相异步电动机正反转PLC控制的工作原理 (13) 2.5 指令的介绍 (14) 结论 (16) 致谢 (17) 参考文献 (18)

三相异步电动机的正反转控制实验报告

实验目的 ⑴了解三相异步电动机接触器联锁正反转控制的接线和操作方法。 ⑵理解联锁和自锁的概念。 ⑶掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。 实验器材 三相异步电动机(M 3~)、万能表、联动空气开关(QS1)、单向空气开关(QS2)、交流接触器(KM1,KM2)、组合按钮(SB1,SB2,SB3)、端子排7副、导线若干、螺丝刀等。实验原理 三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。任意改变电源的相序时,电动机的旋转方向也会随之改变。 实验操作步骤 连接三相异步电动机原理图如图所示,其中线路中的正转用接触器KM1和反转用的接触器KM2,分别由按钮SB2和反转按钮SB2控制。控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。 当按下正转启动按钮SB1后,电源相通过空气开关QS1,QS2和停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、接触器KM和其他的器件形成自锁,使得电动机开始正转,当按下SB3时,电动机停止转动,在按下SB2时,接触器KM和其他的器件形成自锁反转。安装接线 1在连接控制实验线路前,应先熟悉各按钮开关、交流接触器、空气开关的结构形式、动作原理及接线方式和方法。 2 在不通电的情况下,用万用表检查各触点的分、合情况是否良好。检查接触器时,特别需要检查接触器线圈电压与电源电压是否相符。 3将电器元件摆放均匀、整齐、紧凑、合理,并用螺丝进行安装,紧固各元件时应用力均匀,紧固程度适当。

PLC实现步进电机的正反转及调整控制

实训课题三 PLC实现步进电机正反转和调速控制 一、实验目的 1、掌握步进电机的工作原理 2、掌握带驱动电源的步进电机的控制方法 3、掌握DECO指令实现步进电机正反转和调速控制的程序 二、实训仪器和设备 -48MR PLC一台 1、FX 2N 2、两相四拍带驱动电源的步进电机一套 3、正反切换开关、起停开关、增减速开关各一个 三、步进电机工作原理 步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。从图中可以看出,它分成转子和定子两部分。定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。共有3对。每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。 反应式步进电动机的动力来自于电磁力。在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。 把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。 本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。因为

相关主题
文本预览
相关文档 最新文档