当前位置:文档之家› 我国给水深度处理应用状况与发展趋势

我国给水深度处理应用状况与发展趋势

我国给水深度处理应用状况与发展趋势
我国给水深度处理应用状况与发展趋势

我国给水深度处理应用状况与发展趋势

王占生刘文君

(清华大学环境科学与工程系, 北京100084)

摘要:本文综述了目前我国给水深度处理应用的背景、现状和各种深度处理单元的技术特点、去除污染物对象、污染物去除机理等,并对各种处理单元进行了技术经济比较。同时本文也对深度处理应用中存在的问题也进行了分析,提出了根据不同原水水质和出水要求合理选择深度处理工艺的原则。最后对消毒技术的应用和发展进行了分析。

关键词: 饮用水;深度处理;消毒

1 生活饮用水水质标准是纲,纲举目张

我国目前执行的国家水质标准是(GB5749-85)1985年前定的,当时只规定了35项水质项目,迄今为止尚无新的国家标准颁布。

我国卫生部于2001年以《生活饮用水卫生规范》名义颁布了水质检验项目,其中常规检验项目34项,非常规检验项目62项。虽然这96项水质项目中规定了大量的有机污染物限制浓度,可以与发达国家接轨,但在“水质监测”中都规定“对水源水、出厂水和部分有代表性的管网末梢水至少每半年进行一次常规检验项目的全分析。对于非常规检验项目,可根据当地水质情况和存在问题,在必要时具体确定检验项目和频率”。虽然说这符合我国国情,很多检验项目需要高精度的仪器才能分析测定,大多数地区、城市尚不具备这些条件,但实际上放弃了非常规项目(众多有机污染物)的检验。好在常规检验中规定了耗氧量这一有机物综合性指标,控制有机物的摄入总量,要比85年的目标前进了一大步。

我国建设部颁布了《城市供水水质标准》(CJ/T206-2005),将于2005年6月1日实施。遵循不低于卫生部的标准并尽量与之协调的原则,该标准中对浊度“特殊情况下不超过5度”改成不超过3度,对耗氧量“特殊情况下不超过5mg/L”注明为当原水耗氧量>6mg/L时,不超过5mg/L,这就明确规定凡水源水<6mg/L 时必须达到3mg/L,较之卫生部规范更严格。建设部规定常规检验40余项,非常规检验60余项。

2001年的卫生部规范、2005年建设部行业标准《城市供水水质标准》(CJ/T206-2005)的颁布为我国新的生活饮用水水质国家标准的制定奠定了基础,将能有效防止我国自来水行业水质标准执行过程中的混乱现象。

水质项目耗氧量是针对我国原水有机物污染较普遍、较严重的现状进行总量控制所必须的,因为检测众多的单个有机物目前尚为困难,但有机污染量微,却对健康有着潜在的威胁,随着时间的推移,在人体中积累到一定程度就会对健康有不利影响,况且人们对有机污染物的危害还有漫长的认识过程,今后有关有机污染物的水质项目还会增加、浓度限值会更加严格,因此少摄入总比多摄入好。传统地表水处理工艺对有机污染去除有限,为了保证饮用水COD Mn<3mg/L的要求必将采用深度处理。

原建设部作为达标的水质项目只有4项:浊度、余氯、细菌总数与总大肠杆菌,而回避了用户最敏感也最有争议的嗅味、色与最担心的耗氧量。这次城市供水水质标准规定作为达标的水质项目10项,将色、

嗅味、耗氧量等都列入,这就更完善、更全面衡量饮用水水质是否达到要求,对各供水单位提出更严格要求,也更好体现了“以人为本”的原则。

有了水质标准作为依据,要全面达到标准,给水工作者就应针对水源水质情况采取切实措施满足常规各水质项目,然后逐步检测非常规项目中各项有机污染物,因此势必在净化过程中采用国际先进工艺与技术,改善输水与配水管网,将合格饮用水送给用户,这将有效地推动给水事业进步,继而推动水源保护与江、河、湖、库水质的提高。

2 水质预处理

2.1 化学氧化

水质预处理常用氯氧化,当有机污染尚未得到去除时,会产生较多的有害消毒副产物。目前采用KM n O4与其复合剂(一种专门商品)的应用逐渐展开,对氧化有机物、改善混凝取得较好效果。根据当地水质采用KM n O4是否会产生有害氧化物,是否降低Ames致突活性,报道甚少,仍需作针对性的研究、测试。

臭氧预氧化可以提高有机物的可生物降解性,又可除嗅、脱色,去除铁、锰,但往往结合后续深度处理臭氧-活性炭时才采用。

2.2 投加吸附剂粉末碳

一般只有在消除冲击性污染时采用,因投加量需10~20mg/L,耗费较高(约需0.05元/m3左右)。

2.3 调节pH

由于投加酸与碱,运行成本增加,又在原水中增加无机离子,在我国很少采用。

2.4 投加絮凝剂

投加絮凝剂量不多(小于1mg/L)往往能获得好的效果,但我国仍习惯于只加一种混凝剂。

2.5 生物预处理

对水中氨氮的去除生物降解最有效,同时可去除一些有机物、铁、锰,现在上海与浙江嘉兴地区已有应用。

2.5.1 生物接触氧化

一般情况下NH4+-N可去除80%左右,COD Mn去除不稳定,溶解性COD Mn约可去除5-10%。较多的采用弹性材料,利用混凝土骨架绑扎,价格便宜,在粤港公司400万m3/d工程中使用,上海与嘉兴桐乡也有采用。弹性填料运行中主要问题是填料上积的泥不能自动脱落,填料上的生物膜不易更新。

流化填料是塑料片组成的球,比重控制在0.96-0.98,在水中悬浮滚动,采用多孔管曝气使球上下翻动处于流化状态,球上的膜不会积累,易更新,脱落的膜随水流带出。嘉兴地区、海宁、桐乡已采用,已获初步成效,尚有待长时间运行的总结。该填料只需填充池容积的一半,填料价格为每m3填料800元。

2.5.2 生物陶粒滤池

由于颗粒填料粒径小,比表面积大,生物膜量大,除具有生物絮凝、吸附、降解作用外,又有过滤作用,因此较其他填料去除氨氮效率较高,除生物降解有机物,还能有效去除悬浮、胶体态的有机物,由于反冲洗,滤料上生物膜易更新,COD Mn去除约10~20%。

生物滤池的问题在于有水头损失,需定期(1星期左右)反冲,消耗水。普通陶粒(粉末状)约500

元/吨,圆形颗粒约800元/吨,堆积容重约0.8。

2.5.3 卵石填料

粒径20~40mm,层厚3.4m,中试柱直径0.4m,滤速2.5m/h,曝气量2.5∶1,由美国水环纯水务集团与中国市政工程西北设计院浙江分院在嘉兴乍浦水厂及平湖古横桥水厂进行试验,可将NH4+-N从10mg/L 降解到0.2mg/L,去除率98%。

该研究拓宽了思路,将污水处理技术引入给水生物预处理取得初步结果。但可能存在的问题是滤池不设反冲系统,卵石填料积泥后不好运行。我国曾引入前苏联的接触滤池,水由底部进入,最终因长期运行后底部积泥而未得到推广;再有滤速仅2.5m/h,势必池子面积庞大。

污水处理中曝气生物滤池可以将水中NH4+-N从20~30mg/L降至<1mg/L,问题在于给水处理是否要为去除NH4+-N付那么大代价。

希望该技术能结合给水处理特点进行长时间的试验,从性价比来论证其应用的可能性。

3 深度处理

深度处理技术常用的是臭氧-生物活性炭(O3-BAC)。目前在深圳、广州、上海都已实施,从其发展趋势看,今后当水源水质超过II类时,必须采用,才能满足水质标准中COD Mn的要求。

3.1 臭氧氧化与臭氧发生器

臭氧是强氧化剂,可以除嗅、脱色、去除有机物与增加有机污染物的可生物降解性,在给水处理中得到广泛应用。可臭氧发生装置在我国目前还正处于发展阶段,臭氧发生器几乎被美国OZONIA与德国维得克垄断。这两年臭氧设备与制氧装置的制造我国企业正在努力突破,迎头赶上,青岛国林公司已生产出6、10甚至20kgO3/h管式(搪瓷管)臭氧发生器。青岛胶州科脉公司正在生产2、5kgO3/h板式发生器,尽管质量上与国际上还有差距,关键的是我国自制的发生器已经突破10kgO3/h,基本上可以满足给水事业发展的需要。从价格上占有优势(1kgO3/h国际上要30万元,我国<20万元),在售后服务方面较之国外公司更有长处,可望不断提高产品质量满足我国需求。

制氧装置多有生产,原理皆同,就是设备、零部件的供应不如国外,在必要的气动阀、分子筛方面从国外引进、提高质量,就能够适应臭氧生产需要。

3.2 活性炭与生物活性炭

活性炭市场上有粉碎碳、柱状碳、压块粉碎碳,价格不一,粉碎碳多在4500元~5000元/吨,柱状碳约为5500元/吨,压块碳在6500元/吨左右。

粉碎碳系将煤直接粉碎、筛分、烘熔、活化。压块碳系将煤磨成粉(50 mm),加入石油基粘结剂压成块,再粉碎后按需要425℃去除有机物,严格控制在近1000℃进行活化。压块碳吸附性能有很大提高,密度高,耐磨,可再生5~6次。

3.2.1 碳的选择与O3-BAC

将压块碳(泰兴)与柱状碳(ZJ-15)对原水的COD Mn作吸附等温线试验,结果见表1。

表1 活性炭吸附等温线试验结果

吸附等温线试验结果分析处理后代入Freundrich公式,得:

压块碳: q=14.7Ce0.82 (1)

ZJ-15碳: q=4.0Ce0.76 (2)

式中:q——吸附容量,mg/g;

Ce——平衡浓度,COD Mn,mg/L。

从表1与公式(1)、(2)可见,压块碳具有吸附性能优势。

用压块碳进行O3-BAC试验,此时活性炭成为生物活性炭,进水平均COD Mn1.34mg/L,经O3氧化为1.14mg/L,活性炭后0.51mg/L,8个月的试验,平均去除率为62.2%,不考虑运行初期碳的吸附率高的因素,平均去除率约为55%。该试验进水水质较好,臭氧投量稍高3~4mg/L,但总的吸附效果要比其他试验点

O3-BAC(用柱状碳)长期运行平均去除率30~40%为高。

以常规处理去COD Mn除35%计,加上深度处理O3-BAC(粉碎碳)对COD Mn去除40%,O3-BAC(压块碳)去除COD Mn50%,推算原水COD Mn为6、7、8、9mg/L时综合工艺出水COD值,见表2。从表2可见,采用粉碎碳时原水COD Mn8mg/L时综合工艺出水COD Mn为3.12mg/L已经超过水质标准3mg/L,而采用压块碳当原水COD Mn为9mg/L时,综合工艺出水COD Mn2.93mg/L仍<3mg/L。

表2 综合工艺出水COD值(mg/L)

以上为推算结果,进一步将用粉碎碳、压块碳、柱状碳用同一原水进行长期比较试验,从宏观指标COD Mn比较,以确定处理效果,从而解决O3-BAC工艺中应采用价廉的粉碎碳(目前大多数自来水厂采用),还是价格较贵的压块碳(国外水厂采用)。同时还将进行单个微量有机物的加标试验,比较不同碳的去除效果。如果压块碳去除COD Mn 值高,去除微量有机物效果好,则从性能、价格全面比较,从而证明采用压块碳的可取性。

3.2.2 两级O3-BAC

宁波自来水公司曾进行两级O3-BAC工艺试验,在进水COD Mn5.6mg/L时,一级O3-BAC(O3投量3.0mg/L)去除43%,出水COD Mn为3.2mg/L,二级O3投量1.5mg/L,O3-BAC在进水COD Mn为3.2mg/L 时去除率达47%,出水达到1.7mg/L。两级O3-BAC总去除COD Mn70%左右,较一级O3-BAC大有提高。以常规处理去除COD Mn35%计,两级O3-BAC进一步去除70%,综合工艺总去除率约为80%,可以推算出原水COD Mn可达15mg/L,出水仍然达标。值得置疑的是第二级O3-BAC能否长期地维持有效去除率,试验采用的碳是新碳还是老碳,试验维持多久,如采用两级O3-BAC可以取得70%左右效果,则不失为O3-BAC 的突破。

3.3 活性炭再生

活性炭吸附饱和后应该再生处理,不应丢弃,再生后吸附能力不但不会降低,还能稍有增加,再生时损耗(包括运输过程损失与升温损失)约为10%,每再生1吨约需2000元,补充新碳500元,总共2500元。

据嘉兴地区统计,活性炭如用一年换碳每m3水需0.09元,用2年为0.06元,3年则仅需0.03元,用后再生,则运转费还将经济。

当上海、广州、浙江、杭州、嘉兴地区大规模采用O3-BAC工艺前,应在各地区设置活性炭再生厂以便就地再生补充,为提高居民生活饮用水水质服务。

O3-BAC工艺将广泛得到应用,工程投资约在200~300元/m3/d左右,运转费0.2元~0.3元/m3,在现今水价每m3在1元~2元之际增加0.2~0.3元应可被接受。

3.4 膜技术的应用

各种膜技术:微滤、超滤、纳滤、反渗透在分质给水系统制取纯净水与饮用净水中都已有效地应用。在污水回用、工业给水中也已有应用实例,惟在市政供水中尚未见报道。广东东莞虎门曾建成10, 000m3/d 的微滤工程净化受污染的东江水,但因去除溶解性有机物不理想并未成功。

3.4.1微滤、超滤

当原水水质好,且有浊度、细菌需去除的情况,如清洁的水库水、泉水,此时微滤、超滤都将有好的净化效果。

在地下水中硬度、硝酸盐超标时,采用纳滤膜能很好地去除无机盐与有机污染。北京水源三厂正进行着有效的试验。天津郊区利用纳滤去除地下水中的氟很有成效。

当附近无其他水源,远距离调水成本太高,目前取水水源又遭到较为严重污染,即使增加O3-BAC工艺仍不能达标时,纳滤技术的应用将不可避免。

利用微滤、超滤直接净化地表水,以及采用混凝-微滤、混凝-过滤-微滤(或超滤)已有试验结果。对于微污染水源采用混凝-沉淀-投加粉末碳-微滤也都有试验。

清华大学、上海荏原环保公司、嘉源给水排水公司联合在嘉兴南门水厂做了较长时间试验。原想利用膜生物反应器加入粉末碳有效地去除COD Mn,但试验结果不甚理想,膜反应器中投加粉末碳只有吸附效果,未能起到生物碳的作用,不如先进入颗粒活性炭滤池然后再进入微滤。这样,膜生物反应器并不适宜于处理微污染原水。

3.4.2纳滤

纳滤技术在滤池后一般可去除COD Mn60~70%,再加上前处理去除35%,总去除率可达75~80%,较之常规处理加O3-BAC总去除COD Mn55~65%为高。因此在O3-BAC工艺中仍达不到要求时,高效去除COD Mn的技术当属纳滤。当无机离子不高,主要去除有机物时可选与之相适应的纳滤膜。

纳滤膜我国尚不能生产,国际上膜价格已逐渐下降。目前纳滤装置(与反渗透相当)的投资约为600元/m3/d,超滤膜我国可生产且质量不差,超滤装置投资约为300元/m3/d,国外超滤装置也需600元/m3/d。

纳滤技术每m3水的运行费用需视原水水质、膜清洗的耗药费、水费、升压0.8-1.0MPa所需电费以及占重要比重的膜价格与使用寿命而定。一般正常情况下纳滤膜可使用2~3年,超滤膜约为3~5年。

3.5 关于净化工艺中氨氮的去除

在具有预处理、常规处理、深度处理(O3-BAC)综合工艺中,水中NH4+-N有可能在以下环节去除:

1) 在预加氯过程中氯与氨的化合或在生物预处理中得到去除;

2) 在混凝沉淀过程中去除以悬浮颗粒、胶体态存在的有机氮与氨氮;

3) 在滤池滤层中长有生物膜的砂粒层的生物降解作用;

4) 经O3氧化得到充氧的水再流过生物碳层被生物降解;

5) 最后加氯消毒时部分氨被化合。

原水中氨氮经过以上多级屏障得到去除,其中伴随着NO2--N被生物氧化成NO3--N的作用。因此不用过分强调生物预处理的氨氮去除率,而采用诸如降低滤速、增加接触时间、增加气水比等耗费过大的代价来换取高氨氮去除率。只需充分发挥每一技术环节的生物作用(例如斜板上的生物膜等)就能较好地、全面地去除。

生物预处理可以有效降低氨氮(70%~90%)与去除部分COD Mn(视不同填料约为5%~20%),能产生生物絮凝而减少混凝剂(约1/3)。但由于停留时间1~1.5h,构筑物体积大、占地面积大,需投入适当资金(100~120元/m3/d)。因此生物预处理适用于在只有常规处理工艺、原水氨氮较高、COD Mn较高,当采用生物预处理后整个工艺就能较好去除氨氮与COD Mn,使出水达标的情况。

当有深度处理O3-BAC时,如氨氮并不很高(如小于3mg/L),可以不设生物预处理,采用预O3氧化(如上海周家渡水厂),使后续混凝沉淀过程、过滤滤料层与BAC发挥生物降解作用,有效去除氨氮。

3.6 各净水单元经济比较

给水处理各技术单元的机理、去处污染物对象,投资和运行成本比较见表4,表中经济分析的数据来源于各地实际工程总结。根据各地实际情况和水厂是改建或新建的不同,投资和运行成本会有所差异。

3.7 消毒

消毒是给水处理工艺的的重要组成部分。氯消毒是国内外最主要的消毒技术,美国自来水厂中约有94.5%采用氯消毒,中国据估计99.5%以上自来水厂采用氯消毒。但氯消毒近二十年受到很大挑战,主要由于下面三个方面的原因:1)消毒副产物问题。越来越多的消毒副产物如三卤甲烷、卤乙酸、卤代腈、卤代醛等在饮用水中被发现。三卤甲烷和卤乙酸由于其强致癌性已成为控制的主要目标,而且也分别代表了挥发性和非挥发性的两类消毒副产物。美国专门有消毒剂和消毒副产物法(D/DBPs RULE)对氯消毒剂和消毒副产物进行了规定,中国卫生部《生活饮用水卫生规范》和建设部新的行业标准《城市供水水质标准》也都将消毒副产物增加到水质标准中。因此氯消毒副产物的控制十分关键。2)贾第虫和隐孢子虫的问题。由于两虫有抗氯性,特别是隐孢子虫,氯消毒几乎不起作用,因此采用新的有效的消毒方式以保证饮用水安全性十分必要。3)饮用水生物稳定性问题。由于饮用水中生物可同化有机碳的存在,细菌能在管网中生长并形成生物膜,即使管网中余氯量很高也很难完全控制细菌的再生长,并对水质和输水管造成不利影响。

为了保证饮用水的安全性,包括微生物指标和消毒副产物指标将越来越严格,因此有必要对消毒技术进行改进。目前可行的方法有:

3.6.1 优化氯消毒。

因为氯消毒是现阶段的主体消毒技术,而且可以预计在短期内不会有根本变化,因此对氯消毒进行技术优化十分必要。手段包括:1)对清水池设计进行改进,以Ct10为设计和运行依据;2)以氯和氯胺消毒有机组合的方式;3)多点加氯;4)采用统合式IDDF模型作为氯消毒设计框架(Integrated Disinfection Design Frameworks)。

3.6.2 采用紫外线消毒

紫外线是指电磁波波长处于200~380nm的光波,一般分为三个区,即UVA(315~380nm)、

UVB(315~280nm)、UVC(200~280nm)。低于200nm的远紫外线区域称为真空紫外线,极易被水吸收,因此不能用于消毒。用于消毒的紫外线是UVC区,即波长为200~280nm的区域,特别是254nm附近。紫外线消毒机理与前面的氧化剂不同,是利用波长254nm及其附近波长区域对微生物DNA 的破坏,阻止蛋白质合成而使细菌不能繁殖。由于紫外线对隐孢子虫的高效杀灭作用和不产生副产物,紫外线消毒在给水处理中显示了很好的市场潜力。紫外线的灭菌作用最早在20世纪初由英国学者贝纳德和莫加报道,真正开

始应用为二十世纪六十年代。早期主要是低压汞灯(LP),九十年代中压汞灯(MP)和脉冲汞灯(P-UV)得到研究、应用。

紫外线消毒技术在饮用水处理中的应用自1993在美国Milwaukee市爆发隐孢子虫病后倍受青睐年,因为氯消毒不能有效杀灭隐孢子虫卵囊,而研究发现紫外线对隐孢子虫卵囊有很好杀灭效果。而且在常规消毒剂量范围内(40 mJ/cm2)紫外线消毒不产生有害副产物,因此在西方发达国家应用实例在近几年增加十分迅速,特别是在小型水厂。为此国际紫外线协会(IUVA)在1999年成立。

美国对新技术在饮用水处理中的应用历来比较迟缓、保守,但对紫外技术的应用则采取了出乎以外的快速行动。美国环保局在实验室证实紫外消毒对隐孢子虫的灭活有效后仅仅5年就批准了紫外线消毒在饮用水中的应用。大型水厂如西雅图水厂今年将建成紫外消毒系统,美国纽约自来水公司780万m3/d的饮用水已决定采用紫外线消毒,目前正在作施工准备。

紫外线消毒的优点有:1)对致病微生物有广谱消毒效果、消毒效率高;2)对隐孢子虫卵囊有特效消毒作用;3)不产生有毒、有害副产物;4)不增加AOC、BDOC等损害管网水质生物稳定性的副产物;5)能降低嗅、味和降解微量有机污染物;6)占地面积小、消毒效果受水温、pH影响小。

紫外线消毒的缺点主要有:1)没有持续消毒效果、需与氯配合使用;2)石英管壁易结垢,降低消毒效果;3)消毒效果受水中SS和浊度影响较大;4)被杀灭的细菌有可能复活;5)国内使用经验较少。

3.6.3 采用二氧化氯和臭氧消毒

为了灭活两虫、减少氯代消毒副产物,采用二氧化氯和臭氧消毒成为新的选择之一。二氧化氯有以下几点优点:1)杀菌效果好、用量少,作用快,消毒作用持续时间长,可以保持剩余消毒剂量;2)氧化性强,能分解细胞结构,并能杀死孢子;3)能同时控制水中铁、锰、色、味、嗅;4)受温度和pH影响小;5)不产生三卤甲烷和卤乙酸等副产物。臭氧消毒有以下优点:1)杀菌效果好、用量少,作用快,2)能同时控制水中铁、锰、色、味、嗅,3)不产生卤代消毒副产物。因此二氧化氯消毒在我国某些水厂已经开始得到应用;臭氧消毒也在中水回用中有应用。

但二氧化氯和臭氧消毒都有各自的缺点。二氧化氯消毒的缺点是:1)二氧化氯消毒产生无机消毒副产物亚氯酸根离子(ClO2-)和氯酸根离子(ClO3-),二氧化氯本身也有害,特别是在高浓度时,因此美国EPA消毒剂和消毒副产物法和我国建设部的《城市供水水质标准》对此都有规定。2)另外二氧化氯的制备、使用也还存在一些技术问题,二氧化氯发生过程操作复杂,试剂价格高或纯度底,二氧化氯的运输、储藏的安全性较差,因此国内尽管目前二氧化氯在小规模的给水厂有应用,但大型水厂还未见使用的报道。

臭氧消毒的缺点是:臭氧分子不稳定,易自行分解,在水中保留时间很短,小于30分钟,因此不能维持管网持续的消毒效率,而且臭氧消毒产生溴酸盐、醛、酮和羧酸类副产物,其中溴酸盐在水质标准中有规定,醛、酮和羧酸类副产物部分是有害健康的化合物,部分使管网水生物稳定性下降,因此臭氧消毒在使用中受到一定的限制。对于大、中型管网系统,采用臭氧消毒时必须依靠氯来维持管网中持续的消毒效果。

因此从发展的角度看,在氯、紫外线、二氧化氯和臭氧等主流消毒技术中,紫外线极其组合消毒技术由于其消毒效率高,不产生消毒副产物或产生的消毒副产物少在给水处理中将有很好的前途。

结语

我国近年来水源水质日益恶化、短期内难有根本好转,而我国饮用水水质标准越来越严,公众对水质的要求也越来越高,因此为了解决饮用水水质现状与目标的矛盾,合理选择给水深度处理工艺已经成为给水处理的重要任务和面临的挑战。随着试验研究的进展,对已有工程的认真总结,加上国外技术的引进,有理由相信给水深度处理技术在将在我国得到大力发展和应用。

表3 给水处理各技术单元技术经济比较

参考文献:(略)

作者简介:王占生(1933 - ),男,上海人。教授,博士生导师,研究方向为水质科学与技术

我国皮革行业未来市场发展趋势深度分析

我国皮革行业未来市场发展趋势深度分析 对于传统皮革制造业,一个重要的政策性取向即产 业发展趋势方向。据慧聪皮革网了解,2010上半年皮革行业延续恢复性增长的趋势,规模以上皮革、毛皮及制品企业工业总产值3255亿元,同比增长25.4%;出品228亿美元,同比增长25%进口28.6亿美元,同比增长39.8%。从数据中不难看出,皮革行业发展较为平稳较快的发展。如何才能进一步更快的发展皮革行业的新局面,大致有几大趋势? 皮革产业结构全面优化升级 众所周知,我国皮革行业涵盖了制革、制鞋、皮 衣、皮件、毛皮及皮革制品等主体行业,以及皮革机械、皮革化工、皮革五金、辅料等配套行业,上下游关联度高(制革是基础,科技是灵魂,皮革机械、皮革化工是双翼,制鞋、皮衣、皮件、毛皮服装等皮革制品是拉动力),才能形成完整的皮革产业链。要实现皮革产业结构的全面优化升级,不仅要做到各各主体全方位坚定不移的转化,更需要从研发、

设计、管理、营销等不断展开,并走出一条属于皮革行业的一条新型工业道路。 调整产业结构还要提高自主创新能力。皮革制品不论是鞋、皮衣还是箱包等都是流行的产品。它的消费群多为年轻人,其消费群的总体特征是追求挑战、个性独特、消费超前、推崇时尚。创新是时尚之源,创新才能带来飞跃。一个企业只有依靠自主创新,不断充当时尚的创造者,才能引领时尚,创造市场。 向多元化皮革行业目标转变 加快转变发展的步伐,当然不能单独靠产值的增长而说,更要用多元化体系来运行考量。皮革行业,作为传统的劳动密集型产业,经过30多年的发展,我国已经成为世界上名副其实的皮革生产大国,可以说,过去的30年,我国皮革产业是凭借低成本、出口数量增长拉动了产业的快速发展,在自主品牌、产品创新和营销方面尚缺乏竞争能力。随着经济的发展,这种低水平的竞争优势也逐渐丧失。当国

(发展战略)国内外水处理技术的状态 发展方向

国内外相关技术的现状发展趋势世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。

处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模的工厂,大型反渗透海水淡化厂已是司空见惯。 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污

饮用水深度处理工艺设计

饮用水深度处理工艺设计 [摘要]针对饮用水水源有机物污染现象日趋严重,常规水处理工艺已难以生产出符合水质标准的饮用水,本文在常规饮用水处理的基础上设计了饮用水深度处理工艺,采用臭氧+砂滤+生物活性炭的新型组合工艺,能够有效保证饮用水的安全性。 [关键词]饮用水;深度处理;臭氧;生物活性炭 1.设计背景 饮用水的质量与人们的生活水平和身体健康息息相关。由于人们对饮用水水质的要求在不断提高,我国也提出了比现行饮用水水质标准(GB5749-85)更严格的2000年城市供水水质目标。 2.设计思想 2.1活性炭吸附 活性炭是一种具有较大吸附能力的多孔性物质。活性炭吸附在常规处理基础上去除水中有机污染物最有效最成熟的水处理深度处理技术。实验研究表明,饮用水处理中活性炭吸附去除的有机物的分子量主要分布在500-1000u(道尔顿)之间,分子量过大或过小吸附作用都较差。 2.2臭氧氧化 臭氧是一种氧化剂,它可以通过氧化作用分解有机污染物。臭氧可氧化溶解性铁、锰、氰化物、酚、致嗅物质和有色物质、生物难降解的大分子有机物等。 2.2.1去除无机物 臭氧预氧化可去除大多数无机物,但预氧化后必须有过滤或凝聚一絮凝一沉淀处理措施,以除去金属离子氧化后形成的不溶物。 2.2.2促进凝聚一絮凝处理 低剂量03(0.5g/m3lg/m3)就足以强化凝聚一絮凝处理。因为一些大分子溶解状污染物被03氧化后分子的极性变大,可与其他含有氢原子的有机物形成氢键,增加分子量,当这种达到一定程度时,溶解度将降低,产生微絮凝效果。 2.2.3氧化天然有机物 地表水和地下中含有大量会使水质恶化的有机物,另外,在末端氧化中腐殖

深部技术开采及发展趋势

采矿工程学科前沿与进展 ——深部技术开采及发展趋势 姓名: 班级:采矿1101班 学号:1111104007

深部技术开采及发展趋势 随着浅部资源的逐渐消耗殆尽,矿产资源开发向深部发展将成为一种趋势。根据矿床开采工作所面临的地压问题,可按开采深度将矿山分为以下几类。 开采深度小于300m,称浅井开采。在此深度内采矿时,一般地压显现不严重,即使发生地压活动,也属静压问题,易于处理。 开采深度300~800m,称为中深井开采。根据矿体赋存条件、矿岩的物理力学性质,在掘进或开采过程中,可能发生轻度岩爆,如岩石弹射等现象。 开采深度超过800m,为深井开采。在此深度内具有二类变形特征的岩石会发生频繁的岩爆,影响作业安全。 与浅井或中深井开采相比,深井(含超深井)开采这一特殊环境将带来一系列安全问题,主要包括岩爆(即在压力作用下,岩石发生爆裂的现象)、高温、采场闭合和地震活动等,其中尤以岩爆为丰要危害。 预计随着浅部资源町供开发量的减少,深部资源勘探技术发展获得更多深部可开采资源,这一比例将会呈逐步减小的趋势。当代露天采矿工艺的技术发展趋势是开采工艺的综合化。采剥工艺的选择,贵在因地制宜。对于范围广阔、能力巨大的大型矿山,针对不同开采深度、不同地段、不同开采对象的特点,采用不同开采工艺,并组成综合工艺,以实现优化开采效果,已成为现代露天矿山的发展趋势。将机械化、自动化、通信、计算机及优化理论等多学科交叉应用,通过研究、开发,实现露天开采生产的自动调度,生产计划和过程的优化,开拓运输系统和采装系统的优化将是露天开采常用的计划、生产管理手段;在未来几年,数字矿山技术将会得到普及。2.2 地下开采工艺地下开采虽然产量比例小,但数量多,西方国家有地下矿 365 座(2002 年数据),其中多为小型但却高效的矿山。尽管如此,许多地下矿山十分巨大并装备有非常精致的设备和较高的自动化水平。对传统主要采矿方法的不断改进是地下开采工艺的发展趋势。如大间距集中化无底柱参数的进一步扩展,充填采矿技术中新的充填材料和充填工艺的研究,自然崩落法技术的完善与应用范围的扩展等等;针对特定矿体改进的采矿技术将会不断出现。由于易采资源耗竭,勘探深度的加深,将越来越多地开采深部矿体和难采矿体,深井开采技术、复杂难采矿体开采技术将是今后几年研究的重点,在理论研究和系统开采技术方面都将取得突破。深井开采的岩爆、矿震、冲击地压等动力灾害是深部开采中面临的突出问题,除此之外,安全技术、地质构造、采场布置与采矿方法、降温与通风、采场支护、超深竖井掘进、钢绳提升和无绳提升等都是深部开采面临的关键问题。 对此,深部开采岩爆、矿震、冲击地压等动力灾害控制、预报与防治技术,深部开采的采、掘技术,深部开采通风与降温技术将在对正在或逐步进行的深井矿山开采技术研究及理论研究的基础上获得快速发展。难采矿开采面临一系列特殊的技术难题。如松散破碎矿体顶板与围岩稳定性控制技术,流砂含水层覆盖的

污水深度处理工艺的综述与比较综述.

安徽建筑大学 污废水深度处理技术论文 专业:xx级市政工程 学生姓名:xx xx 学号:xxxxx 课题:污水深度处理工艺的综述与比较指导教师:xxxx xx年xx月xx日

污水深度处理工艺的综述与比较 摘要:为了达到一定的回用水标准使污水作为水资源回用于生产或生活中,污水经过城市污水或工业废水经一级、二级处理后必须进行深度处理。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。深度处理的方法有:絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、催化氧化法等物理化学方法与生物脱氮、脱磷法等。熟悉了解国内外这些工艺,因地制宜的合理选择适用技术对我们的城市污水深度处理处理工程设计和建设都有重要的意义。关键词:城市污水;污水深度处理工艺;优缺点 引言: 目前,饮用水水质安全正受到人们普遍关注,而国家现行的水质标准也在不断提高.为了满足日益严格的饮用水水质标准,深度处理工艺正在成为技术改造的主要途径。污水深度处理,也称高级处理或三级处理。它是将二级处理出水再进一步进行物理、化学和生物处理,以便有效去除污水中各种不同性质的杂质,从而满足用户对水质的使用要求。深度处理常见的方法有以下几种。 1.絮凝沉淀法 1.1絮凝沉淀法概述 絮凝沉淀处理利用絮凝剂使水中悬浮颗粒发生凝聚沉淀的时处理过程。地面水中投加絮凝剂后形成的矾花或生活污水的有机性悬浮物、活性污泥等在沉淀池中沉降处理时,絮体互相碰撞凝聚,颗粒尺寸变大,沉速随深度加深而增快。这时,水的沉淀处理效率不仅取决于颗粒沉速,而且与沉淀池深度有关。絮凝过程为水中细小胶体与分散颗粒由于分子吸引力的作用互相粘结凝聚的过程,分自由絮凝与接触絮凝两种类型(前者发生在沉淀池中,而后者发生在悬浮澄清池或接触滤池中),生成的矾花在沉淀、过滤等水处理过程中起着强化和提高处理效率的作用。 1.2絮凝沉淀法工艺特点 絮凝沉淀法絮凝体成型快,活性好,过滤性好;不需加碱性助剂,如遇潮解,其效果不变;适应PH值宽,适应性强,用途广泛;处理过的水中盐份少;能除去重金属及放射性物质对水的污染;有效成份高,便于储存,运输。 2.砂虑法 2.1砂虑法概述 水和废水通过粒状滤料(如砂滤中的石英砂)床层时,在压力差的作用下,悬浮液中的液体(或气体)透过可渗性介质(过滤介质),固体颗粒为介质所截留,从而实现液体和固体的分离.其中的悬浮颗粒和胶体就被截留在滤料的表面和内部空隙中,这种通过粒状介质层分离不溶性污染物的方法称为粒状介质过滤。石英砂滤器是利用一种或几种过滤介质,常温

水的深度处理DOC

水的深度处理 水中溶解的有机物大致可以分成四类:(1)可吸附与可生物降解的;(2)可吸附但非生物降解的;(3)非吸附但可生物降解的;(4)非吸附与非生物降解的。当进入活性炭滤池水中的有机物可以生物降解的,或者经预臭氧氧化后变成可生物降解的,都起到了减少活性炭的吸附负载,从而延长了活性炭使用寿命的作用。 在水源水质不断恶化的条件下,要使自来水达到新的水质标准要求,视水源水质的不同,有些是可以强化常规处理即可达到标准;有些必须将常规处理工艺改造成深度处理工艺,增加去除溶解性有机污染物、臭味与氨氮才能达到标准的要求。深度处理是在强化常规处理的条件下,增加活性炭吸附、生物预处理等构筑物。 1、深度处理技术可以分为以下几种: 1.1、投加氧化剂 投加高锰酸钾、臭氧、过氧化氢、二氧化氯等氧化剂取代氯,使氯的消毒副产物减少,可以改善水的混凝条件,将粘附在胶体表面的有机物氧化,使胶体容易凝聚下沉。 1.2、活性炭吸附(下节内容讨论) 1.3、生物预处理 如原水中氨氮高,则采用生物预处理去除。 1.4、膜技术 微滤(孔径约0.1μm)和超滤(孔径约0.01μm),在给水厂可取代砂滤,超滤可去除细菌、病毒等颗粒污染物,但对溶解性小分子有机污

染物和臭味物质不能去除,可去除CODMn约10%(主要去除1万以上分子量)。 2、活性炭的吸附性能: 任何碳质原材料几乎都可以用来制造活性炭。植物类原料有木材、锯末、果壳、蔗渣、纸浆、废液等。无机类原料有褐煤、烟煤、无烟煤、泥炭、石油脚、石油焦炭、石油沥清等。 活性炭的制造主要分成碳化及活化两步。碳化有多种作用,一是使原材料分解放出水气、一氧化碳、二氧化碳及氢等气体,二是使原材料分解成碎片,并重新集合成稳定结构。原材料碳化后成为一种由碳原子微晶体构成的孔隙结构,其表面积达200~400m/g。活化是在有氧化剂的作用下,对碳化后的材料加热,以产生活性炭。活化过程大致所起的3个作用:(1)生成新的微孔或将原来闭塞的微孔打通;(2)扩大原有的细孔尺寸;(3)将相邻细孔合并成更大的孔。经活化后就产生更完善的孔隙结构,并使比表面积可达1000~1300m/g。活化过程同时把活性炭表面的化学结构固定下来。 活性炭的孔隙大小可分成微孔、中孔和大孔三级,其孔径分别为<2nm、2~6nm和60nm~10μm。活性炭以粉状(粉状活性炭PAC)和粒状(粒状活性炭GAC)两种形式应用。 粉炭的粒度为10~50μm,直接投入水中,一般与混凝剂一起联合使用,很难回收重复利用,粉炭只用于投量少或间歇处理的情况。 颗粒活性炭包括柱状炭和破碎炭二种,前者是制备好的粉末活性炭通过煤焦油等粘接材料通过粘接、成型工艺制成一定大小园柱颗粒,直

水厂预处理及深度处理的几点研究

水厂预处理及深度处理的几点研究 摘要:近年来,企业造成的水源污染现象不断增多,阻碍我国持续健康的发展。随着经济的发展,我国的水厂已经探索出多种多样的处理技术,从而确保水源的优质化。文章将会从实际出发,系统的分析水厂的预处理技术与深度处理技术,对几项重要的技术研究进行逐一的描述。 关键词:水厂;预处理;深度处理;相关研究 0 引言 近年来,我国水污染事件发生的频率逐渐升高。我们所熟知的2005年的哈尔滨市的停水事件,就一度引起人们对用水与水源保护问题的关注。在未来的一段时间内,我国的经济依旧会得到更为迅猛的发展,而水污染的问题如果没有得到一个非常好的治理的话,水污染的事故仍然会频繁爆发,使人民的生命财产安全受到更大的威胁。因此,为了迎合当前发展形势,更好的应对水污染事件,我国的各级供水公司都在积极的出台应对措施,对用水进行预处理与深度处理,从而能够更好的保证水资源的干净与环保,让人民百姓能够饮用到安全干净的水源。 1 水厂对于水资源的预处理 预处理通常指的是在对用水采用常规的处理工艺之前要适当的用物理、化学或者是生物领域的相关处理方法,对残留在水中的污染物进行初级的去除。在预处理的环节中,相关的处理技术有很多种,但是水厂常用的主要是生物预处理技术、化学预氧化技术、粉末活性炭技术。 1.1 生物预处理技术水厂根据水源被污染的一般特性进行研究,可以在水处理的环节利用生物预处理技术对其进行预处理。生物预处理主要指的是对水源进行曝气处理,除去水中存在的氨氮或者是将有机物进行降解,主要的方式是设置氧化池。最早使用此类方式的是日本,首次将接触氧化技术全面的应用在对水资源的预处理的环节上,此法一经使用就使得水中藻类、氨氮、嗅味大幅度的减少,使水厂产出的水能够切实的保障质量。 1.2 化学预氧化技术化学预氧化技术主要是将一些含氯、臭氧或者是高锰酸盐等化学成分的氧化剂放到水里,用来氧化或者是催氧化水中的有机物,或者是改变有机物自身的性质,同时还要减少污染物对常规水处理工艺的不良影响,从而更好的强化常规水处理工艺的处理效能。通过化学预氧化技术主要的目的在于除去水中的污染物或者是为了控制氧化消毒而产生的副产物,最终保证水的质量与饮用的安全性。除此之外,它还能够达到除藻、除嗅、除味、除铁等目的。在水的预处理的过程中,通过氧化剂与水中成分产生的作用,可以切实提高去除污染物的效率,但是要注意的是用氧化剂对水进行预处理的时候会给水本身造成一定的影响,因此要注意氧化剂的选用。目前能够在的预处理环节充当氧化剂的主要有臭氧、氯、二氧化氯或者是高锰酸盐等。

2020专业技术人员继续教育-人工智能技术及其发展趋势 100分

人工智能技术及其发展趋势100分 1.关于专用人工智能与通用人工智能,下列表述不当的是()。(3.0分) A.人工智能的近期进展主要集中在专用智能领域 B.专用人工智能形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能 C.通用人工智能可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题 D.真正意义上完备的人工智能系统应该是一个专用的智能系统 我的答案:D√答对 2.()是人工智能的核心,是使计算机具有智能的主要方法,其应用遍及人工智能的各个领域。( 3.0分) A.深度学习 B.机器学习 C.人机交互 D.智能芯片 我的答案:B√答对 3.()是自然语言处理的重要应用,也可以说是最基础的应用。(3.0分) A.文本识别 B.机器翻译 C.文本分类 D.问答系统 我的答案:C√答对 4.()是指直接通过肢体动作与周边数字设备和环境进行交互。(3.0分)

A.体感交互 B.指纹识别 C.人脸识别 D.虹膜识别 我的答案:A√答对 5.(),中共中央政治局就人工智能发展现状和趋势举行第九次集体学习。(3.0分) A.2018年3月15日 B.2018年10月31日 C.2018年12月31日 D.2019年1月31日 我的答案:B√答对 6.立体视觉是()领域的一个重要课题,它的目的在于重构场景的三维几何信息。(3.0分) A.人机交互 B.虚拟现实 C.自然语言处理 D.计算机视觉 我的答案:D√答对 7.下列选项中,不属于生物特征识别技术的是()。(3.0分) A.步态识别 B.声纹识别 C.文本识别 D.虹膜识别

我的答案:C√答对 8.()是通过建立人工神经网络,用层次化机制来表示客观世界,并解释所获取的知识,例如图像、声音和文本。(3.0分) A.深度学习 B.机器学习 C.人机交互 D.智能芯片 我的答案:A√答对 9.生物特征识别技术不包括()。(3.0分) A.体感交互 B.指纹识别 C.人脸识别 D.虹膜识别 我的答案:A√答对 10.下列对人工智能芯片的表述,不正确的是()。(3.0分) A.一种专门用于处理人工智能应用中大量计算任务的芯片 B.能够更好地适应人工智能中大量矩阵运算 C.目前处于成熟高速发展阶段 D.相对于传统的CPU处理器,智能芯片具有很好的并行计算性能 我的答案:C√答对 1.一般说来,人工智能技术包括()。(4.0分)) A.深度学习、机器学习

污水深度处理分级工艺划分

污水深度处理分级工艺划分 污水深度处理需要根据水质污染和危害情况选用不同的处理级别,确保污水排放符合国家规定标准,尤其是化工污水处理要求更为严格。 污水深度处理工艺级别划分 一级处理 该步骤主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理 主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准,目前使用比较广泛的是短纤维,悬浮物去除率达95%出水效果好。 三级处理 进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。

化工污水处理设备整个过程为通过粗格栅的原污水经过污水提 升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。 经过三级污水深度处理处理后的,出水水质即可满足污水排放水质标准,如若想污水回用,则需再经过深度处理才能满足水质要求。

国内外饮用水的预处理和深度处理

国内外饮用水预处理与深度处理技术 学生:曾雪萍学号:20086814 摘要:随着有机化工、石油化工、采矿、农药和医药工业的迅速发展,造成水源水污染的有害物质数量也逐年增多。水源水中的人工合成有机物污染、内分泌干扰物污染等问题都开始受到人们的关注。这些污染物浓度很低,但很难通过常规的水处理工艺有效去除,且来源难以确定,已成为饮用水水质净化面临的重要挑战。研究表明,通过对原水采用预处理,以及在常规水处理后再进行深度处理可以改善和提高饮用水水质。关键词:饮用水预处理深度处理 一、饮用水预处理 预处理通常是指在常规处理工艺前面采用适当的物理、化学和生物的处理方法,对水中的污染物进行初级去除。同时使常规处理更好的发挥作用,减轻常规处理和深度处理的负担,发挥水处理工艺的整体作用,改善和提高饮用水水质。 工程中可采用的预处理方法有:生物预处理法、化学预氧化法、粉末活性炭法等。(1)生物预处理法 针对水源水被污染的特性,可适时增加生物预处理。生物预处理主要是对原水进行曝气或其他生物处理,去除水中氨氮和生物可降解有机物,包括生物接触氧化池和曝气生物滤池等。1971年,日本的小岛贞男首次成功地将生物接触氧化法应用于富营养化水源水预处理,去除藻类60%^80%,氨氮90%以上,嗅味50%-70%,使水厂出水水质得到明显改善,把本来属于污水处理应用范畴的生物法引人了给排水处理领域。 生物预处理工艺以生物膜法为主导,生物预处理的填料上生长着细菌、原生动物、后生动物等微生物形成生物膜,在与水接触时,生物膜上的微生物摄取、分解水中的有机物和氮、磷等营养物质。去除常规工艺不能充分去除的氨氮、亚硝酸盐氮、藻类、可生物降解有机污染物等,此外,还能去除或减少可能在加氯后生长的致突变物质的前驱物,不同程度地去除原水中的铁、锰、色、嗅及浊度,从而使水得到净化。其中,CODMn,,去除率一般为15%-20%,氨氮和亚硝酸盐去除率可高达80%以上。 生物预处理适合于水中有机污染物可生化性较强、无工业废水污染的情况,,对优先污染物去除效果也不佳,且无法间歇运行等。如果原水受生活污水污染,有机物和氨氮较高〔接近或超过《地表水环境质量标准》(GB 3838-2002) 中的111类水体的上限〕,与增加臭氧一活性炭深度处理相比,选用生物预处理是解决该类水质问题的经济合理的选择方案。生物预处理方案的确定应结合已有研究成果和原水水质特征进行必要的模拟试验,确定生物预处理的工艺适用性、池型及设计和运行参数。 (2)化学预氧化法 化学预氧化法是将氯、臭氧、高锰酸盐等氧化势较高的氧化剂投加到原水中,以氧化或者催化氧化水中的有机物或改变有机物的性质,同时削弱污染物对常规处理工艺的不利影响,强化常规处理工艺的除污效能。化学预氧化的目的主要是为去除水中有机污染物和控制氧化消毒副产物,从而保障饮用水的安全性。此外预氧化的目的还有除藻、除嗅和味、除铁和锰、氧化助凝等作用。 在传统给水处理工艺中,可在多个点加人氧化剂,氧化剂在不同点起着不同的作用。在预处理过程中,氧化剂和水中多种成分作用,能够提高对有害成分的去除效率,但各种氧化剂作为预处理对给水处理的综合影响程度较大。目前,能够用于给水处理的氧化剂主要有臭氧、高锰酸盐、氯、二氧化氯、过氧化氢等。

污水深度处理发展趋势

论未来污水物化深度处理技术发展 作者:米卫星 (长安大学环境科学与工程学院2015129093) 摘要 随着人类的发展,水污染问题日益严峻。与此同时物理化学法也在不断的发展,而且在水处理中的应用日显重要。本文主要论述了现如今已经应用到深度水处理过程中的各种物理化学方法,通过分析其优缺点和各种方法的适应条件,提出在未来的污水深处理过程中物理化学处理法的发展趋势。 关键字:水污染、物理化学法、深度处理 1、绪论 水资源是人类社会发展最重要的资源,而当今社会,人类正面临着水污染严重的环境问题。物理化学法是一种运用物理和化学的综合作用使废水得到净化的方法,处理的对象主要为:水中的无机的和有机的(难于生物降解)溶解质和胶体物质。尤其适合处理杂质浓度很高的废水以回收原料,适合于对杂质浓度很低的废水进行深度处理【1】。 通常有混凝、沉淀、浮选、过滤、化学沉淀、离子交换、消毒等。本文将着重介绍物理化学处理方法中的当前比较流行的、应用比较多的物理化学处理技术,并论述哪种处理方法在今后会得到更好的发展和更广泛的应用。 2、物理化学废水深度处理技术 2.1活性炭吸附 活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3000的有机物有十分明显的去除效果,去除率一般为70%~86.7%,可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。 近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用

深度处理工艺技术

深度处理工艺 深度处理工艺是指城市污水或工业废水经一级、二级处理后,为了达到一定的回用水标准使污水作为水资源回用于生产或生活的进一步水处理过程。针对污水(废水)的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD和BOD 有机污染物质,SS及氮、磷高浓度营养物质及盐类。 污水经生化处理后,废水的BOD已经很低,废水中的COD难以再用生化方法处理。要进一步满足更严格的排放标准和回用要求,需要采用化学及物理的方法,即通过增加深度处理系统,才能进一步去除水中污染物。深度处理单元可采用强氧化、絮凝沉淀、过滤的方法,去除水中难以降解的污染物。 深度处理工艺的方法有:絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、蒸发浓缩法等物理化学方法与生物脱氮、脱磷法等。深度处理方法费用昂贵,管理较复杂,除了每吨水的费用约为一级处理费用的4-5倍以上。 深度处理工艺在城市和工业污水回用处理中扮演着非常重要的角色。在传统的生物方法之后,深度处理用于去除额外的污染物、特殊金属以及其他有害成分。现在已有的深度处理方法包括颗粒介质过滤、吸附、膜技术、高级氧化和消毒等。声技术是一种正在发展的、重要的,并且能够得到高质量再生水源的污水回用技术。不断的深入研究将会带来更为有效的污水回用技术的改进,并在未来的污水回用中更为广泛的使用。思源深度处理工艺是以芬顿处理器+高效混凝机械澄清器+活性砂过滤器为主体设备开发出来的,实际应用效果良好。 污水回用可为城市的发展提供或补充充足的水源。目前,污水回用的一些研究热点包括: (1)与痕量有机物质相关的健康风险评价; (2)评价微生物性质的监测方法的改进; (3)用于制造高质量再生水的膜技术的应用; (4)再生水储存效果的评价; (5)再生水中微生物、化学物质、有机污染物的评价; (6)中小型生活污水处理与回用设备设计;

污水的几种深度处理方法

目录 污水的几种深度处理方法 (2) 1.1 活性炭吸附法与离子交换 (2) 1.2 膜分离法 (2) 1.3.1 湿式氧化法 (3) 1.3.2 湿式催化氧化法 (3) 1.3.3 超临界水氧化法 (4) 1.3.4 光化学催化氧化法 (4) 1.3.5 电化学氧化法 (4) 1.3.6 超声辐射降解法 (5) 1.3.7 辐射法 (5) 1.4 臭氧法 (5) Ⅰ

污水的几种深度处理方法 污水深度处理,也称高级处理或三级处理。它是将二级处理出水再进一步进行物理、化学和生物处理,以便有效去除污水中各种不同性质的杂质,从而满足用户对水质的使用要求。深度处理常见的方法有以下几种。 1.1 活性炭吸附法与离子交换 活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%[1],可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。 常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度[2]。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术[3]。 GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理[4]。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一[5]。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。 1.2 膜分离法 膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术[6,7]。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。 微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理, 满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求[8]。

皮革行业未来市场发展趋势深度分析

皮革行业未来市场发展 趋势深度分析 Last revised by LE LE in 2021

我国皮革行业未来市场发展趋势深度分析 对于传统皮革制造业,一个重要的政策性取向即产业发展趋势方向。据慧聪皮革网了解,2010上半年皮革行业延续恢复性增长的趋势,规模以上皮革、毛皮及制品企业工业总产值3255亿元,同比增长25.4%;出品228亿美元,同比增长25%;进口28.6亿美元,同比增长39.8%。从数据中不难看出,皮革行业发展较为平稳较快的发展。如何才能进一步更快的发展皮革行业的新局面,大致有几大趋势? 皮革产业结构全面优化升级 众所周知,我国皮革行业涵盖了制革、制鞋、皮衣、皮件、毛皮及皮革制品等主体行业,以及皮革机械、皮革化工、皮革五金、辅料等配套行业,上下游关联度高(制革是基础,科技是灵魂,皮革机械、皮革化工是双翼,制鞋、皮衣、皮件、毛皮服装等皮革制品是拉动力),才能形成完整的皮革产业链。要实现皮革产业结构的全面优化升级,不仅要做到各各主体全方位坚定不移的转化,更需要从研发、设计、管理、营销等不断展开,并走出一条属于皮革行业的一条新型工业道路。

调整产业结构还要提高自主创新能力。皮革制品不论是鞋、皮衣还是箱包等都是流行的产品。它的消费群多为年轻人,其消费群的总体特征是追求挑战、个性独特、消费超前、推崇时尚。创新是时尚之源,创新才能带来飞跃。一个企业只有依靠自主创新,不断充当时尚的创造者,才能引领时尚,创造市场。 向多元化皮革行业目标转变 加快转变发展的步伐,当然不能单独靠产值的增长而说,更要用多元化体系来运行考量。皮革行业,作为传统的劳动密集型产业,经过30多年的发展,我国已经成为世界上名副其实的皮革生产大国,可以说,过去的30年,我国皮革产业是凭借低成本、出口数量增长拉动了产业的快速发展,在自主品牌、产品创新和营销方面尚缺乏竞争能力。随着经济的发展,这种低水平的竞争优势也逐渐丧失。当国际金融危机袭来时,行业发展就遭遇了前所未有的挑战,出口下降、生产增速下滑,许多企业关门歇业,全行业抵御风险的能力亟待提高。

人工智能技术及其发展趋势

人工智能技术及其发展趋势 1.()是通过建立人工神经网络,用层次化机制来表示客观世界,并解释所获取的知识,例如图像、声音和文本。(3.0分) A.深度学习 B.机器学习 C.人机交互 D.智能芯片 我的答案:A√答对 2.(),中共中央政治局就人工智能发展现状和趋势举行第九次集体学习。( 3.0分) A.2018年3月15日 B.2018年10月31日 C.2018年12月31日 D.2019年1月31日 我的答案:B√答对 3.下列选项中,不属于生物特征识别技术的是()。(3.0分) A.步态识别 B.声纹识别 C.文本识别

D.虹膜识别 我的答案:C√答对 4.立体视觉是()领域的一个重要课题,它的目的在于重构场景的三维几何信息。(3.0分) A.人机交互 B.虚拟现实 C.自然语言处理 D.计算机视觉 我的答案:D√答对 5.生物特征识别技术不包括()。(3.0分) A.体感交互 B.指纹识别 C.人脸识别 D.虹膜识别 我的答案:A√答对 6.关于专用人工智能与通用人工智能,下列表述不当的是()。(3.0分) A.人工智能的近期进展主要集中在专用智能领域 B.专用人工智能形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能 C.通用人工智能可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题

D.真正意义上完备的人工智能系统应该是一个专用的智能系统 我的答案:D√答对 7.()是指直接通过肢体动作与周边数字设备和环境进行交互。(3.0分) A.体感交互 B.指纹识别 C.人脸识别 D.虹膜识别 我的答案:A√答对 8.下列对人工智能芯片的表述,不正确的是()。(3.0分) A.一种专门用于处理人工智能应用中大量计算任务的芯片 B.能够更好地适应人工智能中大量矩阵运算 C.目前处于成熟高速发展阶段 D.相对于传统的CPU处理器,智能芯片具有很好的并行计算性能 我的答案:C√答对 9.()是人工智能的核心,是使计算机具有智能的主要方法,其应用遍及人工智能的各个领域。(3.0分) A.深度学习 B.机器学习 C.人机交互 D.智能芯片

中水深度处理

污水深度处理定义:在传统的二级处理后,对悬浮物,胶体以及溶解的物质进行深度处理的过程。其中,溶解的成分包括相对简单的无机离子,如钙离子,钾离子,硫酸根离子,硝酸根离子,磷酸根离子以及日益增加的较复杂的合成有机化合物。近年来,这些物质的环境影响越来越来明显。深度处理技术的进一步研究能够知道废水中生物活性物质的潜在毒性的环境影响,以及这些物质怎么利用传统的和高级的废水处理方法将其去除。这样一来,废水处理技术就显得非常必要,不仅是由于出水的浓度受限制,还有出水的毒性限制,具体说明见第二章。为了满足这些新的要求,现在许多二级处理装置都要更新,新的高级处理装置将要建立。因此,本部分的内容主要是对高级废水处理进行介绍,另外进一步对深度处理的要求,以及在第二章对处理这些成分的技术进行整体介绍,以及对具体的物质的去除技术的介绍。对深度处理过的残留物质的最终处理将在第十四章讨论。 11-1 废水深度处理技术的必要性 1,传统的二级处理技术对有机物质和总悬浮物的去除不能满足严格的排放和回用要求。 2,对残留的总悬浮颗粒物的处理需要更好的消毒措施。 3,传统的二级处理技术对营养物质的去除不能降低到水体的富营养化水平以下。 4,对特殊的无机物(如重金属离子)和有机物不能满足地表水的排放和再利用要求。 5,工业回用水中的无机物和有机物的去除要求。

随着实验室研究方法和环境监测技术的飞快发展,现在的先进,高级的技术在5-10年后也将会变得过时。 从20世纪60年代中期,含氮,磷的化合物就收到了重视。最初,它们受到重视是因为湖泊的富营养化。为了降低氨的浓度,减少河口中氧化物质的影响,因此更多的关注营养物质的去除方法,因此,营养物质的用生物方法去除氮磷将会在第8,9章讨论,用化学法对磷的去除将会在第六章讲到。 11-2 深度处理技术介绍 1.处理过废水中的残留物质 国内废水的典型成分在表3-15中讨论过,另外,国内许多废水包括许多痕量物质和元素,虽然它们没作为常规检测项目。这些物质的影响如表11-1所示,而且表明许多物质都应该作为废水排放的要求的检测指标。 2.技术的分类 深度废水处理系统主要根据操作单元的类型或者根据主要的去除效果进行分类,如表11-2所示,其中许多操作能够处理不同种类的物质,表11-2中的单个成分能够整合为四个大的范畴,即:a,残留的有机和无机胶体及悬浮物;b,溶解的有机物;c,溶解的无机物;d,生物成分。典型的深度处理技术包括很多个表11-2所示的单个操作单元,具体流程图见图11-1。

深度剖析服装行业未来发展的五大趋势

深度剖析服装行业未来发展的五大趋势! 商圈小秘书好订单网管理员2016-3-10 13:29:59 如今,科技创新深刻改变着人们的生活方式,而排在“衣食住行”首位的“衣”,其发展也必须适应甚至引领科技发展带来的变化。服装作为社会经济文化发展的重要载体,也是时尚创新要素的主要体现,目前科技创新在服装产业发展中的作用更加突出,未来服装产业发展蓝图将深刻受科技创新的影响。 服装作为传统制造行业的代表,一直沿着传统的生产模式轨道发展,密集型劳动力、高强度作业、生产效率低等因素一直制约着服装行业的发展。随着服装技术的不断进步,越来越多的智能软件与自动服装设备的应用,将解决服装行业的发展难题,不断助力企业生产效率高效化。新软件、新技术、新服装设备的革新,为服装行业大发展提供了强大的技术保障。 数字化是未来服装的生产方式

利用机械设备进行流水作业是当下服装行业的主流生产模式,而面对如今招工、成本以及效率等问题,服装行业企业必须借助服装科技来武装自己,提高企业的核心竞争力,加快转变生产模式。 随着服装科技设备的深入研究与发展,越来越多高效率、自动化、人性化服装设备代替了传统型服装设备应用,例如:智能拉布与电脑裁床改变了人工进行拉布、裁剪作业方式,效率飞速提升;特种缝制服装设备的应用改变了车间生产效率;周边科技服装设备的发展;绣花、印花、家纺服装设备的高速发展,也在不断改变服装产业现状??但这些设备对员工技术要求高、不同工艺要求差别大、作业效率不同步等因素严重制约了车间生产高效化进程,如今新型技术服装模板的应用解决了这一难题。服装模板结合服装工艺与服装样板技术,通过设定不同模板类型改变工艺作业模式,提高了生产效率,降低了工人技术要求,促进了车间生产标准化、流水化、现代化。 未来服装生产将走向数字化时代,智能化软件、自动化机械服装设备、新型技术、新奇材料应用,诸如3D技术、机器人作业、自动化技术应用这样的新工艺以及整套流水化、现代化、数字化解决方案服务,数字时代生产模式将颠覆传统促进服装行业大发展。 如加拿大基因科技公司将RFID识别技术运用到服装吊挂生产线管理领域,改写了全球现行吊挂生产线不能同时生产小批量、多品种、各类复杂服装的历史,解决了传统服装行业从缝制到后道等各工序在生产过程中管理的“瓶颈”。 与此同时,美国佐治亚洲的一家服装技术公司即将推出“机器人裁缝”,其开发者宣称“由于机器人不用睡觉、休假、分心,也不会要求加薪,最终机器人将会比人力劳动成本便宜”。 可见,智能化、数字化、自动化、人性化的新型技术与产品的不断进步,对于企业以及员工都有着绝对的价值体现,前所未有地改变了传统服装行业的作业方式,提升了企业发展现代化进程步伐,服装行业转型升级真正迎来数字化时代

水的深度处理工艺课程设计要点

《水的深度处理工艺》 系别:市政与环境工程学院 专业:环境工程 姓名:柴剑雄 学号: 021411114 指导教师:张霞

随着我国现代工农业的发展、城市化进程的加快,工农业用水、城市、农村生村和生活用水需求量激增,工农业污水、城市、农村生活污水的排放量日益增多,对于人均水资源相对匮乏的我国来说,水资源的供应量远远不能满足人们的生产、生活的需求,越来越多的城市、农村出现了用水荒,水资源供应量的不足已经成为制约社会经济发展和人们生活的重要障碍因素。为了满足现代工农业、经济发展及城市建设的需要,满足人们生活用水的需求,加强污水处理厂建设已经成为各级政府以及社会各界的共识,但是,经过污水处理厂处理过的中水还含有重金属、细菌等有害、有毒物质。这些物质的存在,在一定程度上影响污水的利用效率。因此,有必要采取技术手段在污水处理厂建设过程中对污水进行深度处理,实现水资源的可持续使用。 (一)污水深度处理技术分析 污水深度处理技术简单地说可以分为三大类,即生物处理法、膜处理法和物理化学处理法。生物处理法又可分为人工湿地深处理技术、生物接触氧化法、曝气生物滤池 (BAF) 等生物技术。人工湿地深处理技术主要适用于农村污水、工业行业废水以及城市污水处理厂二级出水,由于污水处理厂是采用传统工艺处理城市污水,因此,污水处理厂二级出水中不但含有重金属、细菌等有害、有毒物质,而且污水中的一些物质不能处理干净,一般情况下,污水处理厂二级出水 P 含量为 6—10mg/L 、NH3-N 含量为 15—25mg/L、BOD5含量为 20—30mg/L 、SS 含量为 20

—30mg/L、COD含量为 60—100mg/L。采用人工湿地深处理可以实现景观与处理效果相结合的良性循环,通过种植了美人蕉、芦苇、富贵竹、空心菜等湿地植物,通过光合作用去除氨氮等成分,通过种植凤眼莲、空心莲子草、稗草、藨草、黄菖蒲等植物去除工业废水中的有害物质等。生物接触氧化法是是在充氧的污水池中填充填料,用生物膜布满填料,污水以固定流速以埋没生物膜的方式,在微生物作用下除去有害物质的污水深处理方式,应用于农药、石油化工、纺织、印染、食品加工、轻工造纸和发酵酿造等工业废水以及二级出水、生活污水的深处理,去除铁、锰、亚硝酸盐、氨氮等物质;曝气生物滤池通过在生物滤池底部或下部加设曝气装置对污水进行处理的技术,通过该技术处理的污水基本上能够达到杂用水的标准。污水深度处理技术中的膜处理法和物理化学处理法包括混凝技术、活性炭吸附技术、臭氧法、膜分离技术、高级氧化法等。这些污水深度处理技术适用的范围不同,各有所长,又各有所短,因此,在污水深度处理过程中,要充分照顾到各种处理技术的技术特点,扬长避短,综合采用,为污水处理厂取得较好的经济效益和社会效益打下坚实的基础。(二)污水深度处理技术的应用 污水深度处理技术是在污水预处理及主处理的基础上,对二级处理水用物理化学处理法&生物处理法及膜处理法去除二级出水中存留的细菌&重金属等危害人体健康的有害及有毒物质,从而达到污水的回收和利用的一种处理技术其典型处理流程如表:

相关主题
文本预览
相关文档 最新文档