当前位置:文档之家› 水平井压裂裂缝起裂与扩展

水平井压裂裂缝起裂与扩展

水平井压裂裂缝起裂与扩展
水平井压裂裂缝起裂与扩展

水平井压裂裂缝起裂与扩展

引言:

通过国内外研究人员实践表明:由于水平井具有单井产量高、穿透度大、泄油面积大、油气储量利用率高及能避开障碍与环境复杂的区域等特点。对于低渗透油藏、薄差储层油藏、储量较小的边际油藏以及稠油油气藏等,水平井压裂是这类油藏最佳的开采方式。最近一段时期,随着学者们的不断研究以及钻井完井等工艺技术水平的提高,水平井开发技术成为人们开发低渗透油田的研究重点并被广泛应用。

水平井与垂直井、普通定向井的裂缝起裂机理都有明显区别。水平井自身存在复杂性与特殊性,钻遇地层环境比较复杂,水力裂缝在发生破裂时所需的起裂压力比垂直井的破裂压力高得多,通常会发生裂缝不张开,导致压裂失败。深入研究水平井裂缝起裂机理,找出合理的起裂规律是水平井压裂施工成功前提保障。

第1章水平井井壁上的应力状态

水力压裂时裂缝的形成主要是决定于井壁的应力状态。一般认为:当井壁上出现有一个超过岩石抗拉强度的拉伸应力时,井壁便开始破裂。

1.1 由于地应力所产生的井壁应力

地应力是由地壳岩层的重力场或即上覆地层压力及地质构造应力场所组成的。一般可认为, 地应力中的一个主应力是垂直于地壳表面的,其余两个主应力则是水平的。如果只考虑上覆地层载荷引起的重力作用(即不存在地质构造运动力),且认为地下岩石处于纯弹性状态,可将初始的地应力分解为垂道方向的正主应力σz和两个相等的水平方向的正主应力σx入和σy。

式中

h-底层的埋藏深度;

ρ-上覆岩层的平均容重,其理论值可取。00231kg/cm3;

μ-岩石的泊松比。

在有些构造运动活跃的地区会出现异常大的侧应力(水平应力) , 井且在通常的情况下三个原地主应力是不相等的。设取压应力的符号为正, 拉应力为负, 三个主应力分别表示为σ1,σ2和σ3 (σ1>σ2>σ3>0) , 根据地质构造形成时的受力特点, 正断层、逆断层和平推断层发育的区域里, 三个主应力的方向是不相同的(图1)。

图1 不同断层发育地区的顶应力分布情况

休伯特考虑到多数岩石的内摩擦角都接近于30°这个事实, 认为在正断层发育地区, 最大主应力σ1等于有效的上覆压力,最小水平主应力σ3最大的可能是等于1/3上覆压力;在逆断层发育的地区,最小主应力σ3等于有效的上覆压力, 而最大水平主应力σ1顶多会等于3倍的上覆压力; 而在平推断层活跃的区域里, 有效的上覆压力则为中一间主应力。

由于地壳中的岩层可视为弹性半无限体, 井壁上的应力状态可简化为平面向题来分析。如果两个水平方向的压缩地应力不相等(设为σ1>σ2> o ),可把井眼看成是在互相垂道的方向上分别作用有σ1和σ2两个压缩外应力的弹性平板中的一个小圆孔(图2 ),孔壁上的应力就相当于井壁上的水平应力。而井壁上的垂直应力分量仍可视为σz=ρh,为上覆岩层的压力。

图2 矩形平板圆孔周围的应力

根据弹性力学,图2所示的矩形平板小孔周围的应力解为:

由于井壁周围存在有应力集中现象拜在井壁上应力达到最大值, 令r =r i,由上得井壁上的应力为:

井壁上的σ

θ是随θ角而变化的,当θ=0和180°时,σθ达到最小,此时

σθ=3σ2-σ1

当产生垂道裂缝时, 此处是井壁应力首先降为负值(变为拉伸),即首先开始破裂的部位。

1.2 井眼内压所引起的井壁应力

在单独考虑井眼内压的影响时, 可设想井眼周围的岩层为一个具有无限壁厚的厚壁圆筒,井设圆筒的外边界上的压力为零。根据拉梅的厚壁圆筒应力的弹性解可以得到内压P i所产生的井壁上的应力分量为:

1.3 压裂液渗流入地层在升壁止产生的增大应力量

由于井眼里的液压Pi和地层孔隙中液体压力P0间的差值将引起压裂液自井眼向外的径向滤失(设压裂液与岩石孔隙液体具有相类似的性质),而流体流经多孔介质将引起材料中应力和位移的增大,或即增大井壁周围岩石中的应力。亨姆松和费尔赫斯特的提出可以借助热弹性力学理论的已知结果以求解多孔弹性材料的问题,应用厚壁圆筒热弹性应力的解得到了径向渗流所引起的井壁上切向应力的增大值为:

1.4 井壁上总的应力

当考虑形成水平裂缝时我们威兴趣的是垂直应力σz=ρh 的数值, 对于形成垂直裂缝, 我们只注视导致井壁岩石破裂的切向应力,其余的应力分量将不作讨论。显然, 井壁上总的切向应力应是上述地应力、井眼内压以及液体径向滤失单独作用时所产生的切向应力分量的总和。

为了计人地层孔隙压力的影响, 引人“有效应力”的概念, 岩石力学在研究岩石孔隙压力对岩石强度性质的影响时得到结论: 当岩石的孔隙中含有压力为P0的液体时, 它将减小外应力(正应力) 的作用效果。如岩石中的孔隙液体是化学惰性的, 岩石的渗透性又足以保证液体在孔隙中流通形成一致的压力且孔隙空间的形状能使孔隙压力全部传给岩石的骨架时, 各外应力(正应力)的作用效果均将减小一个P0值(但孔隙压力对剪应力不起影响)。

对于我们所讨论的情况, 因为地层中具有孔隙压力P0,所以有效的水平地应力是:

井壁上的有效切向应力为:

因为有液体滤失时, 在井壁上可近似地认为P0≈P i,故

所以

第2章水平井水力裂缝起裂

目前我国对水平井的裂缝起裂的研究主要包括两种完井:裸眼完井与射孔完井。而射孔井井筒周围的应力分布相对于裸眼井要复杂得多,因此射孔井起裂的

研究具有必要性。射孔井主要受地应力分布和射孔参数的影响,裂缝起裂压力与水平井井筒周围、射孔孔眼周围的应力分布、地应力分布、井筒方位角、射孔条件参数等密切相关。

裂缝起裂规律己有大量的理论与试验研究成果,一般采用解析法与数值法,解析法通过二维模型解决地层最大水平主应力、最小水平主应力以及垂向应力的相关问题。根据弹性力学知识中无边界平面钻有一孔时的计算原理来进行井壁应力分析,往往忽略了存在于孔隙中流体与岩石骨架稱合作用对井筒壁起裂影响。由于大多采取数学编程软件的方法,这种方法在编程过程中比较繁琐,得出的结果也不精确。尤其是射孔井的射孔地层在各种载荷作用下表现出材料非线性,射孔眼相对于岩石面积较小存在应力集中现象,并且起裂为动态瞬时效应,所以为了得出准确解析解,本文将采用有限元软件模拟分析水平井裂缝起裂规律。2.1 基本条件假设

压裂施工力学环境和井筒周围岩石介质对水平井井筒的应力分布情况存在影响。在进行水力压裂时,井壁周围岩石的实际受力情况十分复杂,液柱压力作用于井眼内部,外部存在原有地应力、压裂液由于压差向地层渗滤引起的附加应力、岩石内部的孔隙压力等。在复杂应力状态下井壁岩石可能发生塑性变形,而且受地层的非均质性与各向异性等因素的影响,使得对井筒周围应力场的分析非常复杂,为了便于今后的模拟与研究,因此假设:

(1)地层岩石为均匀且各向同性的介质;

(2)岩石线弹性状态不受内部产生的微裂纹影响;

(3)不考虑岩石和压裂液发生物理化学作用;,

(4)射孔孔眼与井筒垂直相交且孔眼与井筒间有良好的连通性;‘

(5)液体作用在井筒和射孔内的压力相等。

2.2 水平井力学模型与有限元模型

2.2.1 水平井力学分析模型

为了使数值模拟更具有条理性,可先建立三维流固稱合力学模型,描述出模型的受力分析。取岩石为长宽高均设定为的模型,水平井筒直径为,射孔长度为0.5m,射孔直径为0.01m,下图为水平井裸眼完井力学模型示意图,图4.2为水平井射孔完井力学模型示意图。

图3 水平井裸眼完井力学模型

图4 水平井射孔完井力学模型

作用在模型上的载荷与边界条件为:(1)地层岩石的上覆压力P;(2)地层自重G;(3)井筒内部受到的压裂液压力P f;(4)射孔内部受到的压裂液压力P f;(5)岩石受到的最大水平主应力σH、最小水平主应力σh及垂向应力σz;(6)在下表面施加Z方向的位移约束,不允许存在刚性位移;(7)在外表面施加X 方向与Y方向位移约束,模拟地层对模型横向约束;(8)上下表面及周表面上施加渗透压力P s。

2.2.2 水平井有限元分析模型

在射孔井中,当载荷作用到地层上时材料状态为非线性。由于在起裂过程中表现为瞬时动态效应,地层远比射孔眼大得多,射孔眼处会发生应力集中问题,因此对地层射孔后的地应力分布规律,难以得到精确的结果。目前国内外研究人员开始釆用有限元方法解决这类问题。将岩石划分为有限个空间六面体的实体单元,并以此单元为研究对象。依据虚功原理推出平衡方程,通过对坐标变动与合并的过程,得出全部单元所组成整体平衡方程,对方程求解能够计算出岩石某个节点处的位移与单元力。对上述力学模型建立有限元模型,岩石模型釆用实体单

元,为了达到计算准确度,在井筒、射孔处进行网格细分来提局精度。

图5 整体岩石三维有限元模型示意图

图6 局部井筒示意图

图7 局部射孔示意图

图8 整体岩石模型边界条件示意图

根据前述的理论及方法,建立钻井后地应力分析有限元模型,按照前面力学分析所描述施加载荷与边界条件。在分析过程中考虑岩石的弹塑性变形,以及流固锅合效应,采用动态分析方法,模拟整个地层钻井中从井筒形成到井筒壁面加载的全过程,使模拟更真实的反映实际状态。

由于地应力状态与初始状态有关,而且与改造过程有关,因此在分析射孔后地层的应力状态时,需要考虑实际的施工过程。

采用有限元软件模拟时,将进行四个分析步:(1)施加重力及边界条件,形成初始地应力场;(2)去除井筒处的岩体,模拟钻井过程,得到钻井后的地应力场,也就是裸眼井的地应力场;(3)去除射孔处的岩体,模拟射孔过程,得到射孔完井后的地应力场;(4)在射孔眼表面以及井筒表面施加水力压裂的施工压力,得到压裂瞬时孔眼周围的地应力分布场,此应力场决定了裂缝的起裂位置。2.3 裂缝破裂准则

进行水力压裂时,裂缝起裂的过程实质上是一个拉伸破坏的行为。压裂时不断有液体作用在井筒,当所作用的力达到某个定值时就会对井壁产生拉应力。当其最大值达到岩石的抗拉强度时,此时裂缝就会发生起裂。即当作用在岩石上拉伸应力达到抗拉强度时,岩石将发生破裂,出现初始裂缝。在地层受到地应力分析中,一般设压力为负,拉力为正,因此,计算结果得出的最大主应力可作为岩石受力时是否发生破裂判断标准。

式中,σmax为岩石受到最大主应力,MPa;P s为岩石抗拉强度,MPa。

若满足上式,岩石即会发生破裂,否则,不会破裂。

本文采用试算法计算水平井压裂的地层破裂压力,就是保持一个边界条件和射孔参数不变,在井筒和孔壁处施加压力,计算该压力下的井眼周围的最大主应力,将该最大主应力与井壁岩石的抗拉强度进行比较,如果该最大主应力刚好等于邦擘岩石的抗拉强度,则所施加压力就是地层的破裂压力;否则,改变施加的压力,重新计算井眼周围的最大主应力,直到使最大主应力等于井壁岩石的抗拉强度为止,从而得到地层的破裂压力。

第3章水力压裂裂缝的扩展

水力压裂过程中,裂缝延伸的范围主要由注入进岩石内部压裂液的体积与性质决定。在水平井压裂过程中,由于受到地应力不同,根据裂缝与井筒的方位关系不同,一般可能会产生两种裂缝:即垂直于井筒轴线的横向裂缝和平行于井筒轴向的纵向裂缝,如下图所示。

图9 水平井垂直裂缝示意图

当地层处于一定深度时,最小主应力是一个水平应力,压裂处理后形成的裂缝将在一个垂直的平面内。因此,井筒轴线方向与地层最小主应力方向的关系决定裂缝产生的类型。如果水平井筒方向与最小主应力方向一致,在沿着最小主应力的轴线上会出现相间的垂直裂缝。如图9(a)所示。

裂缝的起裂压力和起裂方向主要由井眼周围的应力集中所决定的。当裂缝扩展远离井壁之后是否仍将保持起裂时的原有方向继续延伸,水平井裂缝在扩展过程中受簇间距、岩石脆性指数和水平地应力场影响较大。

3.1 簇间距对裂缝扩展的影响

目前国内外学者经过大量文献调研以及现场施工得出结论:拟体积砂体切割压裂的簇间距会受工程因素的影响,选取簇间距一般要大于预置人工裂缝高度倍

以上,反之裂缝之间会产生很大的影响。

3.2 脆性指数对裂缝延伸的影响

岩石的脆性指数一般被认定为弹性模量与泊松比综合指标参数,当弹性模量越大,泊松比越小时,岩石脆性越好,越容易形成裂缝。因此,在水力压裂过程中,脆性指数的大小对裂缝延伸会产生影响。

脆性指数计算公式为

根据调研结果显示,当其他条件保持不变的情况下,随着脆性指数的增大,裂缝张开程度也随之增大。当其他条件保持不变时,脆性指数增大,孔隙压力也随之增大,并且孔隙力与波及范围也逐渐增大。当脆性指数增大时,岩石脆性较大,当注入一定压裂液时更易发生破裂损伤,使压裂液较多流入裂缝从而使裂缝张开程度也随之增大,并导致孔隙力与波及范围也随之增大。

3.3 脆性指数对裂缝延伸的影响

在地下一定深度时,岩石会受到垂向地应力,最大水平地应力,最小水平地应力作用。当设定垂向地应力不变,只考虑水平方向地应力对裂缝延伸的影响。

(1)裂缝方向垂直于最小水平地应力,平行于最大水平地应力。

(2)对水平地应力进行变换,使裂缝平行于最小水平主应力,垂直其最大水平地应力。

通过调研可知,当裂缝方向与最大水平地应力平行时,裂缝容易扩展,损伤程度较大。当裂缝与最大水平主应力垂直时,裂缝不易扩展,但由于裂缝横向方向主应力增大,使裂缝与裂缝之间相互作用明显,导致孔隙压力与波及范围增大。

结论

1、井壁上总的切向应力应是上述地应力、井眼内压以及液体径向滤失单独作用时所产生的切向应力分量的总和。

2、在不同的地质构造条件下,合理的选择水平段井筒的方位,合适的射孔参数等可以降低水力裂缝的起裂压力。

3、在相同条件下,随着簇间距的增大,裂缝与裂缝之间相互作用随之减小,当达到一定距离时,裂缝之间基本不存在相互影响,各自同时进行延伸。

4、在相同条件下,随着脆性指数增大,岩石损伤程度、孔隙压力裂缝张开程度也随之增大。

5、在相同条件下,当裂缝与最大水平主应力平行时,裂缝易发生延伸,损伤程度较大。当裂缝与最大水平主应力垂直时,限制裂缝延伸且损伤程度较小,但横向方向地应力较大导致裂缝与裂缝之间影响增大,孔隙压力与波及范围增大。

参考文献

[1] 黄荣撙. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发, 1982(5):65-77.

[2] 曲占庆, 田雨, 李建雄,等. 水平井多段分簇压裂裂缝扩展形态数值模拟[J]. 中国石油大学学报:自然科学版, 2017, 41(1):102-109.

[3] 张一鸣. 水平井水力裂缝起裂与延伸规律研究[D]. 东北石油大学, 2014.

[4] 李兆敏, 蔡文斌, 张琪,等. 水平井压裂裂缝起裂及裂缝延伸规律研究[J]. 西安石油大学学报(自然科学版), 2008, 23(5):46-48.

[5] 那志强. 水平井压裂起裂机理及裂缝延伸模型研究[D]. 中国石油大学, 2009.

[6] 程万, 金衍, 陈勉,等. 页岩储层水平井分段压裂裂缝间距设计方法及影响因素分析[J]. 科学技术与工程, 2014, 14(15):43-46.

[7] 余汪根. 页岩水平井起裂及压裂缝网形成机理研究[D]. 西南石油大学, 2016.

[8] 姚同玉, 朱维耀, 李继山,等. 压裂气藏裂缝扩展和裂缝干扰对水平井产能影响[J]. 中南大学学报(自然科学版), 2013, 44(4):1487-1492.

[9] 魏波. 页岩气藏水平井高能气体压裂裂缝起裂与扩展研究[D]. 西安石油大学, 2016.

[10] 何青, 董光. 水平井分段多簇压裂裂缝起裂和扩展影响因素分析[J]. 科学技术与工程, 2016, 16(2):52-57.

[11] 包劲青, 刘合, 张广明,等. 分段压裂裂缝扩展规律及其对导流能力的影响[J]. 石油勘探与开发, 2017, 44(2):281-288.

水力压裂安全技术要求

水力压裂安全技术要求 SY/T6566-2003 国家经济贸易委员会2003-03-18批准 2003-08-01实施 前言 本标准由石油工业安全专业标准化技术委员会提出并归口。 本标准起草单位:吉林石油集团有限责任公司质量安全环保部、井下作业工程公司。 本标准主要起草人:宋泽明、宫长利、朱占华、毛杰民、付新冬、崔伟。 引言 水力压裂施工是油田开发、评价和增产的重要技术措施,也是一项风险较大的作业。由于压裂施工应用高压技术,野外作业,流动性大,涉及其它相关作业,经常接触石油、天然气等易燃易爆和其它有毒有害物质,易发生人员伤亡、环境污染等事故。为加强井下压裂施工安全管理,规范操作,搞好全过程施工作业,最大限度地避免发生事故,促进油田开发,提高经济效益,特制定本标准。 1 范围 本标准规定了水力压裂安全施工方法和技术要求。 本标准适用于水力压裂及相关施工作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 150 钢制压力容器 SY 5727 井下作业井场用电安全要求 SY/T 5836 中深井压裂设计施工方法 SY 5858 石油企业工业动火安全规程 SY/T 6194 套管和油管 SY 6355 石油天然气生产专用安全标志 3 压裂选井和设计及施工队伍要求 3.1 压裂选井和设计应按SY/T 5836执行,并符合下列安全要求: a)套管升高短节组配与油层套管材质、壁厚相符; b)使用无毒或低毒物质; c)下井工具、连接方式应能保证正常压裂施工,并有利于压裂前后的其它作业; d)通往井场的道路能够保证施工车辆安全通行; e)场地满足施工布车要求。 3.2 压裂设计中应包括下列与安全有关的内容: a)存在可能影响压裂施工的问题; b)施工井场、施工车辆行驶路线说明及要求; c)地面流程连接、施工设备检查要求; d)试压、试挤要求; e)施工交接、检查要求;

水力压裂技术

第四章水力压裂技术 水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产增注的目的。 水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和 改变了流体的渗流状态,使原来的径向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒间的单向流 动,消除了径向节流损失,大大降低了能量消耗。因而油气井产量或注水井注入量就会大幅 度提高。 第一节造缝机理 在水力压裂中,了解裂缝形成条件、裂缝的形态和方位等,对有效地发挥压裂在增产、 增注中的作用都是很重要的。在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确 定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以 提高开采速度,而且还可以提高最终采收率。 造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压 裂液的渗滤性质及注入方式有密切关系。图4一l是压裂施工过程中井底压力随时间的变化曲 线。P是地层破裂压力,P是裂缝延伸压力,P是地层压力。SEF

压裂过程井底压力变化曲线图4一l —微缝高渗岩石致密岩石; ba—在致密地层内,当井底压力达到破裂压力P后,地层发生破裂(图4—1中的a点),F然后在较低的延伸压力P下,裂缝向前延伸。对高渗或微裂缝发育地层,压裂过程中无明E显的破裂显示,破裂压力与延伸压力相近(图4—1中的b点)。 一、油井应力状况 一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向 主应力σ和水平主应力σ(σ又可分为两个相互垂直的主应力σ,σ)。YHHxZ (一)地应力 作用在单元体上的垂向应力来自上覆地层的岩石质量,其大小可以根据密度测井资料计 算,一般为: ????gdz?1)(4— s?0式中σ——垂向主应力,Pa;Z H——地层垂深,m; 2);.81 m/s g——重力加速度(93。——上覆层岩石密度,ρkg/m s 1 由于油气层中有一定的孔隙压力Ps,故有效垂向应力可表示为: ??(4—2)P??szz如果岩石处于弹性状态,考虑到构造应力等因素的影响,可以得到最大水平主应力为: ???????P?2EE1??S???124—3)P????(?? SH????11?21???式中σ——最大水平主应力,Pa;H ξ,ξ——水平应力构造系数,可由室内测试试验结果推算,无因次;21?——

高煤级煤储层水力压裂裂缝扩展模型研究_张小东

第42卷第4期 中国矿业大学学报 Vol.42No.42013年7月 Journal of China University of Mining &Technology Jul.2013高煤级煤储层水力压裂裂缝扩展模型研究 张小东1,2,张 鹏1,刘 浩1,苗书雷1 (1.河南理工大学能源科学与工程学院,河南焦作 454003; 2.中国矿业大学煤炭资源与安全开采国家重点实验室,北京 100083) 摘要:为了研究煤层气井水力压裂后的裂缝扩展规律,以沁水盆地南部煤层气井为例,基于区内煤储层的物性特征和水力压裂工程实践,根据水力压裂原理,采用数值分析的方法,探讨了研究区的煤层气井水力压裂后的裂缝形态与裂缝展布规律,提出了研究区煤层气井压裂过程中的综合滤失系数计算方法,构建了高煤级煤储层水力压裂的裂缝扩展模型,并进行了验证.研究结果表明:区内煤层气井压裂后形成的裂缝一般扩展到顶底板的泥岩中,且以垂直缝为主,裂缝形态符合KGD模型.区内常规压裂井的裂缝长为47.8~177.0m,平均90.6m.裂缝缝宽为0.013~0.049m,平均0.028m.模型计算结果与实测值、生产实践较为吻合. 关键词:高煤级煤;水力压裂;滤失系数;裂缝扩展模型 中图分类号:P 618.1文献标志码:A文章编号:1000-1964(2013)04-0573-07 Fracture extended model under hydraulic fracturing engineering for high rank coal reservoirs ZHANG Xiao-dong1,2,ZHANG Peng1,LIU Hao1,MIAO Shu-lei 1 (1.School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo 454003,China; 2.State Key Laboratory of Coal Resource and Safety Mining, China University of Mining &Technology,Beijing 100083,China) Abstract:In order to study the extended law of coal-bed gas well after hydraulic fracturing,this study took coal-bed gas well of Qinshui basin as a case in point.Based on the physics char-acteristics of coal reservoirs as well as the engineering practice of hydraulic fracturing,this re-search used the hydraulic fracturing principle and numerical analysis to investigate the fracturemorphology and fracture extended law of coal-bed gas well after hydraulic fracturing,and pro-pose the computing method of comprehensive filtration coefficient in the process of fracturing.Besides,this study also established fracture extended model for high rank coal reservoirs dur-ing hydraulic fracturing practice,and this model was further verified.The results show that:the fractures formed by hydraulic fracturing often extend to mudstone located in the roof andthe floor of coal seam,and the fractures are mainly vertical ones;the shapes of fractures con-form to KGD model;the fractures’lengths of normal hydraulic fracturing well vary from 47.8m to 177.0m,with an average of 90.6m;and the fractures’widths range from 0.013mto0.049m,and with an average of 0.028m.By the comparison,the calculation results obtainedin the paper fit well with the field measured value and the actual production practice. Key words:high rank coal reservoir;hydraulic fracturing;filtration coefficient;fracture exten- 收稿日期:2012-08-21 基金项目:国家自然科学基金项目(41072113);中国矿业大学煤炭资源与安全开采国家重点实验室开放基金项目(SKLCRSM10KFB01) 通信作者:张小东(1971-),男,河南省温县人,副教授,工学博士,从事煤地球化学、煤层气地质与工程方面的研究. E-mail:z_wenfeng@163.com Tel:0391-3987901

煤矿井下水力压裂技术的发展现状与前景

龙源期刊网 https://www.doczj.com/doc/9e9730927.html, 煤矿井下水力压裂技术的发展现状与前景 作者:郭晨 来源:《科学与财富》2016年第07期 摘要:我国煤炭安全生产形势依然严峻,增加煤层透气性、进行有效瓦斯抽放迫在眉 睫。水力压裂技术是目前增加煤层透气性最有效的方法之一,文章从水力压裂机理、封孔技术、工艺设备发展三方面,综述了我国井下煤层水力压裂技术的发展和应用前景。 关键词:水力压裂;煤层;增透;发展现状 基金项目:重庆科技学院研究生科技创新计划项目,编号:YKJCX2014047 目前我国煤炭行业的安全形势依然严峻,由于煤层透气性低、瓦斯难以有效抽放导致的瓦斯突出、爆炸等事故屡见不鲜,造成了巨大的人员伤亡和经济损失,因此,加强瓦斯抽放、增加煤层透气性势在必行。水力压裂技术已成为增加煤层透气性最有效方法之一,本文通过介绍水力压裂机理、封孔技术及工艺设备的研究现状,指出水力压裂技术研究的必要性与可行性,以期为工程应用提供参考。 1.水力压裂机理研究 水力压裂技术1947年始于美国,起初主要用于低渗透油、气田的开发中,在地面水力压裂方面的研究仅仅局限在石油、油气藏以及地热资源的地面钻井开采过程中[1]。前苏联科学 家在20世纪60年代开始在卡拉甘达和顿巴斯矿区进行井下水力压裂的试验研究[2]。目前针对井下煤层水力压裂增透技术的研究已取得了明显发展,国内学者郭启文、张文勇等经过试验与现场应用研究了煤层的压裂分解机理,指出水力压裂技术只能够在煤层内产生很少的裂缝,并会在裂缝周围产生应力集中区[3],存在一定局限性。李安启等将理论与实践相结合,研究了 煤层性质对水力裂缝的影响,还在煤层压裂裂缝监测基础上提出了煤层水力裂缝的几何模型。 在水力压裂机理方面的研究,国内外学者对水力压裂在油气系统地面钻井压裂、煤炭行业井下增加煤层透气性方面都进行了较为深入的研究,但其压裂机理方面仍存在一定分歧,不能很好的控制水力压裂的效果。随着我国煤炭安全生产逐步发展和穿煤隧道等工程的逐步建设,水力压裂技术将大范围推广应用,因此加强水力压裂技术理论研究势在必行。 2.压裂钻孔封孔技术研究 煤层水力压裂钻孔封孔是有效实施水力压裂技术的关键,而封孔质量的好坏取决于两个主要因素:①封孔材料,需要选择性能良好、价格适中、易于操作的材料;②封孔的长度,封孔长度太短会导致高压水的渗漏,太长会造成人力、材料、时间的浪费。因此,要使水力压裂技术能够有效开展,必须在选取“物美价廉”的封孔材料的同时,研究材料承载能力与封孔长度之

页岩储层水力压裂裂缝扩展模拟进展_潘林华 (1)

收稿日期:20131204;改回日期:20140519 基金项目:国家自然科学基金“页岩气储层低频脉冲水力压裂增渗机理研究”(51304258);“863计划”页岩气勘探开发新技术“页岩气压裂裂缝微地震监测技术研究” (2013AA064503)作者简介:潘林华(1982-), 男,工程师,2006年毕业于中国石油大学(北京)土木工程专业,2013年毕业于该校油气田开发工程专业,获博士学位,现主要从事岩石力学、地应力和压裂裂缝起裂和扩展等方面的研究工作。 DOI :10.3969/j.issn.1006-6535.2014.04.001 页岩储层水力压裂裂缝扩展模拟进展 潘林华 1,2,3 ,程礼军1,2,3,陆朝晖1,2,3 ,岳 锋 1,2,3 (1.国土资源部页岩气资源勘查重点实验室重庆地质矿产研究院,重庆400042;2.重庆市页岩气资源与勘查工程技术研究中心 重庆地质矿产研究院,重庆400042; 3.油气资源与探测国家重点实验室 重庆页岩气研究中心,重庆400042) 摘要:页岩储层低孔低渗,水平井多级压裂、重复压裂和多井同步压裂为主要的增产措施,压裂缝扩展和展布对于页岩压裂设计和施工、裂缝监测、产能评价至关重要。对大量相关文献进行了调研和分析,得出以下结论:①水力压裂室内实验是评价页岩复杂裂缝形态最直接的方法,但难以真实地模拟实际储层条件下的水力压裂过程;②扩展有限元、边界元、非常规裂缝扩展模型、离散化缝网模型、混合有限元法及解析和半解析模型为页岩气常用的复杂裂缝扩展模拟方法,但各种方法都有其优缺点和适用性,需要进一步改进和完善才能真实地模拟页岩复杂裂缝扩展;③天然裂缝分布和水平主应力差共同决定页岩复杂裂缝网络的形成,天然裂缝与水平最大主应力方向角度越小、水平主应力差越大,复杂裂缝网络形成难度越大;天然裂缝与水平最大主应力方向的角度越大、水平主应力差越小,越容易形成复杂裂缝网络。研究结果可以为页岩储层缝网压裂裂缝扩展模拟和水力压裂优化设计提供借鉴。 关键词:页岩气;水平井;水力压裂;压裂技术;裂缝扩展;室内实验;数值模拟中图分类号:TE357 文献标识码:A 文章编号:1006-6535(2014)04-0001-06 引言 页岩储层孔隙度、 渗透率极低,给页岩气的经济高效开发带来了极大的困难和挑战,长水平井段钻井和多段大排量水力压裂施工是页岩气开发的关键和核心技术 [1-2] ,能最大程度地增加压裂裂缝 的改造体积和表面积,最终达到提高产量和采收率的目的。页岩储层脆性大,天然裂缝和水平层理发育,压裂过程中容易发生剪切滑移和张性破坏 [3] , 压裂裂缝不再是单一对称的两翼缝,可能形成复杂的网状裂缝,给页岩水力压裂设计、裂缝监测及解释、压后产能预测等带来诸多不便。压裂裂缝的展布特征和裂缝形态可以通过室内实验和数值模拟方法进行评价。笔者广泛调研了目前页岩储层水平井压裂技术、复杂裂缝室内实验模拟和数值模拟方法的现状,分析了各种页岩水力压裂技术及压裂裂缝模拟方法的优缺点,对后续页岩储层水平井水 力压裂技术的选择以及压裂设计具有指导意义。 1页岩储层水力压裂技术 页岩储层水力压裂是个复杂的系统工程,用液 量大、施工车组多、耗时长、资金耗费量大。页岩储层水力压裂涉及压裂设计、压裂工艺选择、压裂液选择与配置、压裂设备和井下工具选择、压裂裂缝监测等问题,需要进行系统的考虑和处理。1.1 页岩储层水平井多级压裂技术 水平井多级压裂技术是页岩储层开发的关键技术,长水平井段、多级水力压裂使页岩储层能够形成多条压裂裂缝,可以增大页岩储层与井筒的渗流通道[4] 。目前常见的页岩水平井压裂主要有4 种。 (1)水平井多级可钻式桥塞封隔分段压裂技术 [5-6] 。该技术是国内外常用的页岩储层水力压

体积压裂形成复杂网络裂缝的影响因素

体积压裂 体积压裂是在水力压裂的过程中,通过在主裂缝上形成多条分支缝或者沟通天然裂缝,最终形成不同于常规压裂的复杂裂缝网络,增加井筒与储集层接触体积,改善储集层的渗流特征及整体渗流能力,从而提高压裂增产效果和增产有效期。其主要特点有以下几点。 (1) 复杂网络裂缝扩展形态 常规压裂以形成双翼对称裂缝为目的,在致密油藏中垂直于裂缝面方向的基质渗流能力并未得到改善。体积压裂的裂缝是在三维方向卜形成相互交错的网状裂缝或者树状裂缝,在缝网区域形成一定的改造体积,增大了泄油体积。 (2) 复杂渗流机理 油气在复杂缝网中的渗流机理至今仍没有理想的研究成果。文献[7」研究了页岩基质向复杂缝网中的渗流,考虑裂缝中达西流和基质中扩散流的双机理渗流以及压敏性对渗透率的影响,建立了天然裂缝发育的双重孔隙度模型,但求解用拟压力的方法进行了标准简化。目前比较主流的观点是采用分形理论来精确刻画缝网内的渗流特性,利用缝网中主裂缝与次裂缝的自相似性,建v.油气在复杂缝网中的渗流模型。 (3) 裂缝发生错断、滑移、剪切破坏 剪切缝是岩石在外力作用下破裂并产生滑动位移,在岩层表面形成不规则或凹凸不平的几何形状,具有自我支撑特性的裂缝。体积压裂过程中裂缝的扩展形式不是单一的张开型裂缝,当压力低于最小水平主应力时,产生剪切断裂。(4) 诱导应力和多缝应力干扰裂缝发生转向 当裂缝延伸净压力大于2个水平主应力的差值与岩石的抗张强度之和时,容易在主裂缝卜产生分叉缝,分叉缝延伸到一定距离后又恢复到原来的裂缝方位,最终多个分叉缝便形成复杂的裂缝网络。 体积压裂能否形成复杂网络裂缝,取决于储集层地质和压裂施工工艺两方面因素。 1.1地质因素 (1)储集层岩石的矿物成分储集层岩石的矿物成分会影响岩石的力学性质,从

水力压裂技术

水力压裂水力压裂:: 一项一项经久不衰的技术经久不衰的技术经久不衰的技术 自从Stanolind 石油公司于1949年首次采用水力压裂技术以来,到今天全球范围内的压裂施工作业量将近有250万次。目前大约百分之六十新钻的井都要经过压裂改造。压裂增产改造不但增加油井产量,而且由于这项技术使得以前没有经济开采价值的储量被开采了出来(仅美国自1949年以来就约有90亿桶的石油和超过700万亿立方英尺的天然气因压裂改造而额外被开采出来)。另外,通过促进生产,油气储量的静现值也提高了。 压裂技术可以追溯到十八世纪六十年代,当时在美国的宾夕法尼亚州、纽约、肯塔基州和西弗吉尼亚州,人们使用液态的硝化甘油压浅层的、坚硬地层的油井。目的是使含油的地层破裂,增加初始产量和最终的采收率。虽然使用具有爆炸性的硝化甘油进行压裂是危险并且很多时候是违法的,但操作后效果显著。因此这种操作原理很快就被应用到了注水井和气井。 在十九世纪三十年代,人们开始尝试向地层注入非爆炸性的流体(酸)用以压裂改造。在酸化井的过程中,出现了一种“压力从逢中分离出来”现象。这是由于酸的蚀刻会在地层生成不能完全闭合的裂缝,进而形成一条从地层到井的流动通道,从而大大提高了产量。这种“压力从逢中分离出来”的现象不但在酸化的施工现场,在注水和注水泥固井的作业中也有发生。 但人们就酸化、注水和注水泥固井的作业中形成地层破裂这一问题一直没有很好的理解,直到Farris 石油公司(后来的Amoco 石油)针对观察井产量与改造压力关系进行了深入的研究。通过此次研究,Farris 石油萌生出了通过水力压裂地层从而实现油气井增产的设想。 第一次实验性的水力压裂改造作 业由Stanolind 石油于1947年在 堪萨斯州的Hugoton 气田完成(图 1)。首先注入注入1000加仑的粘 稠的环烷酸和凝稠的汽油,随后是 破胶剂,用以改造地下2400英尺 的石灰岩产气层。虽然当时那口作 业井的产量并没有因此得到较大 的改善,但这仅仅是个开始。在 1948年 Stanolind 石油公司的 J.B.Clark 发表了一篇文章向石油 工业界介绍了水力压裂的施工改造过程。1949年哈里伯顿固井公司(Howco)申请了水力压裂施工的专利权。 哈里伯顿固井公司最初的两次水力压裂施工作业于1949年3月17日,一次在奥克拉荷马州的史蒂芬郡,总花费900美元;另一次在位于得克萨斯州的射手郡,总花费1000美元,使用的是租来的原油或原油与汽油的混合油与100到150磅的砂子(图2)。在第一年中,332口井被压裂改造成功,平均增加了75%的产量。压裂施工被大量应用,也始料未及地加强了美国的石油供应。十九世纪五十年代中期,压裂施工达到了每月3000口井的作业量。第一个过五十万英镑的压裂施工作业是由美国的Pan 石油公司(后来的Amoco 石油,现在的BP 石油)于1968年10月在奥克拉荷马州的史蒂芬郡完成的。在2008年世界范围内单级花费在1万到6百万美元之间的压裂作业超过了5万级。目前,一般的单井压裂级数为8到40

国内水力压裂技术现状

280 水力压裂技术又称水力裂解技术,是开采页岩气时普遍采用的方法,先多用于石油开采和天然气开采之中,其原理时利用水压将岩石层压裂,从而形成人工裂缝,然后让裂缝延伸到储油层或者储气层,从而提高油气层中流体流动能力,然后通过配套技术使石油天然气在采油井中流动,从而被开采出来。这项技术具有非常广泛的应用前景,可以有效的促进油气井增产。 1?水力压裂技术的出现和发展 水力压裂技术是1947年在美国堪萨斯州实验成功的一项技术,其大规模利用是出现在1998年,在美国开采页岩气的时候,作为一项新的技术使用,而这项技术的运用,使美国美国页岩气开发的进程和效率大大加快。 水力压裂技术在中国的研究和开发开始于二十世纪五十年代,而大庆油田于1973年开始大规模使用这项技术,迄今已有30年历史。而随着时代的发展,中国的压裂技术已经有了长足进步,已经非常接近国际先进水平。而在技术方面,由于不断引进和开发相关的裂缝模拟软件等,通过多次的实验研究,在很大程度上实现了裂缝的仿真模拟。而相应的技术也使用在了低渗透油气田的改造工作中,并且在中高渗透性油田也有广泛应用。这项技术在低渗透油田的应用技术已经非常接近国际水平,相比较差距非常小。 2?水力压裂技术的发展现状 随着时代的发展,水力压裂技术也随之不断发展,逐渐成为一项成熟的开采技术。而这项技术具有一定的进步性,主要表现在以下方面: (1)从单井到整体的优化。最开始的时候,由于受技术限制,水力压裂技术只能针对一口井来使用,难以考虑到整体的效益。而随着技术的逐渐成熟,这项技术可以广泛的运用到整个油藏之中,可以对整个油藏进行优化设计,实现油藏的有效合理开发。 (2)在低渗透油藏的开发运用。由于受各种因素的影响,低渗透油藏大都难以有效的开发利用,虽然在各项新技术的使用下得到了一定得好转,但是低渗透油藏的开发依旧是举步维艰。而水力压裂技术的日益成熟,很大程度上改善了这一状况。通过综合考虑水利裂缝的位置和导油能力,使用水力压裂技术使油藏的流体流动能力进一步增强,从而实现低渗透油藏的最大程度的开采利用。 (3)水力裂缝的模型逐渐从二维转变为拟三维。水力裂缝的拟三维模型可以适用于各种不同的地层,可以非常真实的模拟水力压裂的过程,可以更好的更为直观的预测和观测水力压裂的使用进度,更好的对水力压裂过程进行控制,不但提高了效率,还可以在很大程度上节约成本。 (4)水力压裂规模扩大。随着技术的成熟和配套设施的完善,水力压裂的作业规模也随之变大,从最初的几立方米到现在几十甚至上百立方米,在很大程度上提高了效率,也提高了低渗透油藏的采油率,实现了油藏的有效利用,因而成为开采作业中非常重要的技术之一。 3?水力压裂技术的发展方向和前景 水力压裂技术具有广阔的发展前景,因为随着石油资源的逐年开采,低渗透油藏广泛出现,水力压裂技术之外的技术虽然可以一定程度上改善低渗透油藏难以开采的现状,但是随着时代的发展,水力压裂技术逐渐广泛使用在低渗透油藏之中,使低渗透油藏的开采效率大大增加。 (1)在低渗透油藏重复压裂促进采油率。主要的发展研究方向主要是加强对油藏状况的研究,建立科学的压裂模型,还要做到实时监测水力裂缝,对裂缝进度进行模拟和控制,其次利用高排量和大输砂量的泵注设备,进行注入作业,从而实现低渗透油藏的有效开发。 (2)做好拟三维化模型向全三维化模型的转换,全三维化模型可以非常有效的、更为直观的模拟和观测地下裂缝的进度,可以非常有效的控制水力压裂技术的科学使用。还要做好油气藏模拟技术的研发,配合三维化模型,更好的观测和了解油藏状态,从而做出合理的高效的开采计划。 (3)针对传统的水力压裂技术会出现污染地下水的问题,可以在无水压裂液体系做出研究,实现高能气体压裂技术和高速通道压裂技术等新技术的开发和利用,实现提高开采效率和环境保护的双赢。 有水压裂到无水压裂,从直井压裂到水平井分段压裂,从常规的压裂技术到现在的体积改造技术,压裂技术不断进步的同时,为人类带来了丰富的油气资源。而随着油藏开发,大量低渗透油藏的出现,给水力压裂技术的使用带来了广阔的空间,因而水力压裂技术拥有非常好的发展前景。 4?结束语 水力压裂技术是油气开发中所需要的非常重要的配套技术,而水力压裂技术和开采开发之间的结合,很大程度上提高了采油效率,降低了成本,在很大程度上提高了开采水平,使低渗透油藏得以稳定生产。而我国在这一技术上进行了大量投入,从研究人员和设施上,为技术的发展提供了很好的支持。而这一技术的逐步发展,在很大程度上提高了我国油气的开发效率,也很大程度改善了我国的石油供应紧张的现状,为我国的可持续发展做出了重大贡献,而作为油气开发的重要技术,水力压裂技术也会进一步发展,实现更高效率的油气开采。 国内水力压裂技术现状 续震?1,2 卢鹏?1,3? 1.西安石油大学 陕西 西安 710000 2. 延长油田股份有限公司杏子川采油厂 陕西 延安 717400 3.延长油田股份有限公司下寺湾采油厂 陕西 延安 716100 摘要:最早的水力压裂技术出现于1947年,而现代使用的水力压裂技术则是1998年首次使用。这项技术的出现,是油气井增产出现了新的希望,帮助石油开采取得了很好的技术成就和经济效益,从而使这项技术在我国石油开采上广泛应用,并取得了很好的成果。本文针对我国水力压裂技术的现状和发展前景做出研究。 关键词:水力压裂?现状?前景

水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究储层改造是页岩油气、致密油气等非常规油气开发的核心技术,通过水力压裂形成复杂裂缝网络,实现体积改造是水力压裂施工的目标。当储层可压性较差或应力差较大时,难以形成复杂裂缝网络,通过暂堵逼迫裂缝转向是增强缝网扩展复杂性的重要手段。 到目前为止,虽然现场实践已取得较好成效,但裂缝暂堵转向的力学机理、扩展规律和调控方法等尚处于探索阶段,迫切需要开展人工裂缝暂堵转向机理和规律研究。本文探索了新的实验方法,发展了水力压裂数值算法,通过岩芯测试、物理模拟和数值模拟研究,对非常规储层的可压性和转向能力、转向剂对裂缝的暂堵规律、裂缝转向扩展规律进行了研究,主要取得成果如下:(1)致密储层成缝能力测试与评价。 储层成缝能力(可压性)是裂缝转向的基础和重要影响因素。实验发现:(1)页岩存在强微观非均质性,并与矿物成分、天然裂隙和TOC含量等一起,是影响页岩储层成缝能力的重要因素。 (2)流体对页岩的岩石力学性质具有显著影响,并与页岩储层的超低含水饱和度、粘土含量、TOC和微纳米孔隙有关。(3)基于基质脆性、天然裂隙密度和声发射活动性,建立了综合评价致密储层成缝能力的新方法。 油田现场应用说明此方法是可行的。(2)裂缝转向机理和规律的真三轴模拟实验研究。 利用真三轴水力压裂物模实验装置,研究了纤维暂堵裂缝的转向扩展规律,得出裂缝转向的主要控制因素为储层成缝能力及其非均质性、水平主应力差、天然裂缝分布、初级裂缝宽度、纤维浓度、粘度与排量等,得到了暂堵形成的条件

与图版,并给出了裂缝发生转向时的临界应力差;并以人工裂缝倾角、地应力差、成缝能力和缝内流压为主要参数,建立了裂缝转向能力的评价模型。(3)基于PGD 法(Proper Generalized Decomposition),针对水力压裂裂缝转向和网络化扩展数值模拟需要,建立并求解了完全耦合条件下水力压裂裂缝扩展模型,PGD算法 适合于高效、快速求解以非线性、瞬态、耦合为特征的水力压裂问题,计算速度明显快于传统的有限元方法。 (4)应用PGD算法进行了裂缝转向的模拟,结论与真三轴物理模拟结果一致。裂缝转向主要控制因素为储层性质、水平主应力差、缝间干扰、裂缝暂堵效率、粘度与排量等。 在低应力差、较短裂缝间距条件下,缝间干扰强,裂缝端部较容易发生转向;天然裂缝剪切滑移对裂缝转向具有明显影响,在剪应力和流体压力联合作用下,裂缝更易转向;在转向处裂缝宽度和净压力发生突变,缝宽变窄,净压力降低。本文研究成果将为非常规油气转向压裂改造提供理论依据和技术支持。

定向水力压裂裂隙扩展动态特征分析及其应用_徐幼平

第21卷第7期2011年7月中国安全科学学报 China Safety Science Journal Vol.21No.7 Jul.2011 定向水力压裂裂隙扩展动态特征分析及其应用* 徐幼平1,2林柏泉1,2教授翟成1,2副教授李贤忠1,2孙鑫1,2李全贵1,2(1中国矿业大学煤炭资源与安全开采国家重点实验室,江苏徐州221116 2中国矿业大学安全工程学院,江苏徐州221116) 学科分类与代码:6203070(安全系统工程)中图分类号:X936文献标志码:A 基金项目:国家自然科学基金资助(51074161);国家重点基础研究发展计划资助(2011CB201205)。 煤炭资源与安全开采国家重点实验室自主研究课题(SKLCRSM08X03); 国家科技支撑计划项目(2007BAK00168-1)。 【摘要】为减少煤矿井下水力压裂卸压盲区,扩大压裂影响范围,提高卸压增透效果,在分析水力压裂起裂机理和裂隙发展特征的基础上,提出定向水力压裂技术,分析定向水力压裂过程中煤体的裂隙发展分布规律,并利用RFPA2D-Flow软件模拟了压裂的起裂、扩展和延伸过程,对定向压裂与非定向压裂的效果进行了比较。最后将定向水力压裂技术在平煤集团十二矿己 15 -31010工作面进行了现场应用,得出在27MPa的水压下,单孔压裂有效影响半径达6m;单孔瓦斯抽放平均浓度较未压裂时提高80%,平均流量上升了382%,取得了显著的效果,具有良好的推广应用价值。 【关键词】穿层;定向水力压裂;卸压增透;RFPA2D-Flow软件;声发射 Analysis on Dynamic Characteristics of Cracks Extension in Directional Hydraulic Fracturing and Its Application XU You-ping1,2LIN Bai-quan1,2ZHAI Cheng1,2LI Xian-zhong1,2SUN Xin1,2LI Quan-gui1,2(1State Key Laboratory of Coal Resources&Mine Safety,China University of Mining&Technology,Xuzhou Jiangsu221116,China2School of Safety Engineering,China University of Mining&Technology,Xuzhou Jiangsu221116,China) Abstract:In order to reduce roof-floor blind area of hydrofracture in underground mines,expand influ-enced range of fracturing,and improve the effect of hydrofracture,a directional hydraulic fracturing tech-nique was proposed on the basis of analyzing the mechanism of crack initiation and the characteristics of fracture development.And the process of crack starting,extending and elongating was simulated with RFPA2D-Flow.The effect of directional hydraulic fracturing and the effect of non-directional hydraulic frac- turing were compared.Finally the directional hydraulic fracturing technique was applied in the F 15 -31010 mining workface of the Twelfth Coal of Pingdingshan Coal Mining Group.The results show that single drill-hole fracturing effective radius rises to6m under the pressure of27MPa,and the average concentration of single-drillhole gas drainage promotes80%,average flow up382%than that it is not fractured.All these suggest that the technology obtains remarkable effect,and has a high application value. Key words:cross layer;directional hydraulic fracturing;pressure relief and permeability increase; RFPA2D-Flow software;acoustic emission *文章编号:1003-3033(2011)07-0104-07;收稿日期:2011-04-20;修稿日期:2011-05-20

关于水力压裂设备及技术的发展及应用

关于水力压裂设备及技术的发展及应用 【摘要】水力压裂技术经过了半个多世纪的发展,在设备和技术应用上都取得了较大的发展,在全球各地的石油开采中也发挥了关键性的作用,是目前仍在广泛应用的评价认识储层的一种重要方法,水力压裂技术也是油田煤矿等产业生产中确保安全、降低危险的重要技术。近年来,水力压裂的几部发展很快,在压裂设备材料上也有了较大突破,压裂技术在油田勘探开发应用中和其他行业的应用中的前景还是十分广阔的。 【关键词】水力压裂;发展现状;趋势 随着技术进步和应用范围的扩大,施工对压裂技术也提出了更高的要求,对压裂设备性能、压裂液等材料的要求也越来越高,不同地理环境下的压裂技术应用也有不同的需求,所以水力压裂设备和技术的研究也在不断进行,笔者在此对水力压裂技术的发展应用现状和今后的发展前景进行了展望,具体内容如下。 一、水力压裂设备技术的发展应用现状 (一)端部脱砂压裂技术 现代油气田勘探开发技术发展应用速度快,各种新技术工艺也都得到了综合运用,过去压裂设备和技术主要应用于低渗透油田,现在应用范围有了明显的扩大,在国内许多大型油田的中高渗透地层中不但应用了压裂设备和技术,且在技术上有了更大的突破。压裂技术应用于中高渗透地层时,实现短宽型的裂缝能够更好的控制油气层的开发,所以端部脱砂压裂技术应运而生,并在应用中取得了非常好的效果,近年来端部脱砂压裂技术在浅层、中深地层、高渗透以及松软地层都得到了应用,该技术的相关设备也在应用中得到了不断的改进。 (二)重复压裂技术 随着油田开发的不断深入,出现越来越多的失效井和产量下降的压裂井,二重复压裂技术正是针对该类油井改造和提高产量的有效技术措施。全球范围内各个国家对重复压裂设备和技术的研究都很重视,经过实践检验其应用效果也十分显著,重复压裂的成功率能够达到75%左右。在美国还有油田企业在应用重复压裂技术的同时还采用了先进的强制闭合技术和端部脱砂技术,取得了很好的经济效益。重复压裂技术设备能够用于改造低渗透和中渗透的油层,在直井、大斜度井以及水平井中都具有很高的应用效果,对提高产能具有很好的作用。 (三)高渗层防砂压裂技术 高渗层防砂压裂技术不但能够实现高渗透油藏的压裂,还能够同时完成充填防砂作业。传统的砾石充填防砂技术很容易造成对高渗透油层的破坏,导致导流能力下降,而高渗透防砂压裂技术是结合的端部脱砂技术,使裂缝中的支撑剂浓

SPE-167097-MS压裂液及温度对裂缝复杂指数的影响

SPE 167097 Influence of Fracturing Fluid and Reservoir Temperature on Production for Complex Hydraulic Fracture Network in Shale Gas Reservoir Charles-Edouard Cohen, Xiaowei Weng, Olga Kresse, Schlumberger Copyright 2013, Society of Petroleum Engineers This paper was prepared for presentation at the SPE Unconventional Resources Conference and Exhibition-Asia Pacific held in Brisbane, Australia, 11–13 November 2013. This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright. Abstract Production from shale reservoirs depends greatly on the efficiency of hydraulic fracturing treatments. Cumulative experience in the industry has led to several best practices in treatment design, which have improved productivity of these reservoirs. Nevertheless, shale reservoirs still bring challenges to stimulation engineers, due to the complex physics involving interactions with natural fractures, stress shadow effects and proppant transport in complex fracture network. One of the challenges regards fluid and proppant selection, in particular, the issue is how to achieve the desired fracturing fluid viscosity inside the fracture for optimum proppant placement into an expanding complex fracture network. The rheological properties of the fracturing fluid depend on its temperature history, hence understanding the temperature distribution in the hydraulic fracture network is a key consideration for a successful treatment and a more accurate fracture prediction. This paper investigates the relation between reservoir temperature, fracturing fluid properties and production through fracturing-to-production simulation workflow. The paper first presents a temperature model implemented into the UFM model, which is a comprehensive complex fracturing simulator for shale reservoirs, accounting for interaction with natural fractures, stress shadow effects, and proppant transport in a complex networks. Based on the fracture geometry, proppant placement, and reservoir properties, a semi-analytical production model UPM is used to estimate the production. This workflow is used to first understand the temperature distribution in the expanding fracture network and understand its evolution as a function of several parameters such as reservoir temperature and rheological properties of the fracturing fluid. Then the associated production forecast provides guidelines on how to achieve optimum proppant and fluid selection based on the reservoir temperature for maximizing production. Introduction One particular aspect of shale plays compared to conventional resources regards the critical role that the design and execution of the hydraulic fracturing treatments plays in well productivity. The industry has learnt through many years of trial and error several best practices regarding hydraulic fracturing of shale reservoirs. Often the learning curves begin with the past experiences on conventional reservoirs where the fracture is believed to be bi-wing. Shale reservoirs bring new challenges due to the complex physics involving interactions with natural fractures, stress shadow effects and proppant transport in complex fracture network. One important parameter to consider is the rheology of the fracturing fluid, which depends on the temperature history inside the fracture network. This will affect both the geometry of the hydraulic fracture network (HFN) and the proppant placement inside the network. Therefore, understanding the temperature distribution in the HFN is important in order to optimize fracture complexity, proppant placement, and ultimately production. The objective of this paper is to investigate the relation between the temperatures inside the HFN, the fluid and proppant selection, and the production, through a simulation workflow. The simulation workflow uses the UFM model (Weng et al., 2011) for simulating the hydraulic fracturing process. It accounts for interaction with natural fractures, stress shadow effects, and proppant transport in a complex networks. Then the workflow automatically exports the properties of the resulting HFN (geometry, conductivity, ect.) as well as the appropriate reservoir properties to the semi-analytical production model UPM to estimate the production. This workflow was previously described in Cohen et al. (2012) and a previously published parametric study by Cohen et al. (2013) illustrated how it can help understanding some of today’s best practices and be used to optimize treatment design. To simplify the analysis, this

相关主题
文本预览
相关文档 最新文档