当前位置:文档之家› 钢筋混凝土桁架拱桥动载试验分析

钢筋混凝土桁架拱桥动载试验分析

钢筋混凝土桁架拱桥动载试验分析
钢筋混凝土桁架拱桥动载试验分析

桁架拱桥的常见病害与维修加固

桁架拱桥的常见病害与维修加固 阜阳市于20世纪70年代初开始引进钢筋混凝土桁架拱桥,至今已建成使用的桁架拱桥达30多座。随着时间的推移,经济的发展带来交通流量的大幅增长,特别是超载运输车辆的通行,早期修建的荷载标准低的桁架拱桥出现了不同程度的病害和损伤。为适应公路交通运输的需要,阜阳市公路局近几年来先后对出现病害的几座大型桁架拱桥,如临泉泉河大桥(7X30m)、界首颍河大桥(6X30m)、阜阳茨淮新河大桥(6X54m)、太和颖河二桥(6X50m)、临泉人民大桥(3X30m)等进行了维修加固工作,积累了一定的经验,现介绍如下。1桁架拱桥的常见病害及产生原因(1)下弦杆拱脚处横向裂缝。主要原因是桥台、墩基础出现不均匀沉降,使拱脚处出现竖向剪切应力,导致拱脚下弦杆件出现裂缝。(2)弦杆端部节点裂缝。主要原因是桥台、墩基础出现不均匀沉降,造成上弦杆端部凸杆与桥台、墩柱搭接扣死,使该节点出现竖向剪切应力,导致节点出现裂缝。(3)横系梁、横拉杆、横隔板竖向开裂。主要原因是由于原行架拱桥设计标准较低,横向联系较薄弱,而近10年来交通量大而且超载车辆比例大,造成桁架竖向变形量大,使横向联系的梁、杆、板出现竖向裂缝,甚至断裂。(4)桥面板裂缝、破碎。主要原因是桥面板设计标准低,微弯板或拱波厚度不足,混凝土强度低,桥面铺装层薄弱,造成桥面刚度不足,随着交通量的大幅增加,特别是超载车辆的破坏作用,致使桥面铺装层和微弯板开裂,如不及时维修,部分微弯板发生破碎,形成桥面坑洞而影响行车安全。(5)伸缩缝损坏。主要原因是桁架拱桥设计时不设伸缩装置或仅设置简易伸缩缝,混凝土强度设计较低,桥面接缝处混凝土损坏严重,逐渐开裂、破碎,使接缝处面积逐渐扩大而影响桥梁的安全使用。(6)人行道变形、下垂。主要原因是桁架拱桥的人行道设计一般采用在边桁片上弦杆上置挑梁承托人行道板的方法。随着人群荷载的增加,挑梁受超载而弯矩过大,致使下垂变形,如不及时进行加固,可能发生人行道垮塌事故。(7)位于两跨接缝处人行道和拉杆横向裂缝。主要原因是设计时在该处未考虑断开,并设置伸缩缝装置,桥两跨的振动破坏形成裂缝。2维修加固方法2.1上弦杆端部节点和下弦杆拱脚处裂缝的维修加固方法因桥梁台、墩不均匀沉降产生的桁架上、下弦桥节点处的裂缝已基本稳定,

大跨度钢桁架拱桥施工技术.aspx

万方数据

万方数据

大跨度钢桁架拱桥施工技术 作者:李阿特, 苏赠来 作者单位:湖南省岳阳市公路桥梁基建总公司 刊名: 黑龙江交通科技 英文刊名:COMMUNICATIONS SCIENCE AND TECHNOLOGY HEILONGJIANG 年,卷(期):2008,31(11) 被引用次数:0次 参考文献(5条) 1.周远棣.徐君兰钢桥 1991 2.岳丽娜.陈思甜钢桁梁桥施工架设方法研究综述[期刊论文]-公路交通科技 2006(03) 3.李跃.罗申生广州新光大桥主跨主拱中段大段整体提升架设[期刊论文]-中外公路 4.阪神高速道路公团.铁道部基建总局编译组日本港大桥 1981 5.邓新安重庆朝天门长江大桥盯方总体施工措施的选择和优化[会议论文] 2006 相似文献(9条) 1.学位论文孙海涛大跨度钢桁架拱桥关键问题研究2006 本文是在高等学校博士学科点专项科研基金项目“桥梁空间分析设计理论基础研究” (编号20050247029)资助下进行的,所做的主要工作有: (1)在查阅大量国内外文献的基础上,对钢桁架拱桥的发展历史做了系统的回顾和总结,并概括了钢桁架拱桥的结构形式及力学特点。 (2)对钢桁架拱桥总体设计中的拱肋桁架的布置形式、拱轴线的选取、矢跨比、拱顶和拱脚高度的选择、不同的边界条件、杆件截面形式的选取、杆件截面面积的初步确定等七个方面进行了分析探讨;并对桁架节点的选择做了详细的比对;同时通过对桁架桥中的特殊力学问题~节点刚性引起的二次应力的研究,在节点构造方面提出建议。 (3)综合介绍了钢桁架拱桥适宜的几种施工方法,并对拱上吊机和缆索吊机的特点进行了比较。结合朝天门大桥的施工过程,对大跨度钢桁架拱桥的施工特点和施工计算进行探讨,并对旌工计算方法提出参考建议。 (4)本文利用板壳单元,考虑几何初始缺陷和残余应力影响,对厚板焊接箱形压杆和带有加劲肋的箱形压杆的极限承载力进行了研究,并给出了建议的稳定安全系数取值。 (5)本文通过朝天门大桥和大宁河大桥的极限承载能力分析,确定了钢桁架拱桥体系的破坏路径和破坏机理。 (6)本文从边界条件、初始缺陷、荷载布置形式、结构设计参数等方面对背景工程进行了参数分析,确定影响钢桁架拱桥极限承载力的关键因素。2.期刊论文程斌.吴斌暄.庄冬利.肖汝诚.CHENG Bin.WU Bin-xuan.ZHUANG Dong-li.XIAO Ru-cheng大跨度中承式钢桁架拱桥初步设计的体系优化-公路工程2007,32(6) 以天津国泰桥为工程背景,重点介绍了大跨度中承式钢桁架拱桥在初步设计阶段进行体系优化的关键问题,并就优化方案的支承约束布置、构造措施以及施工方法进行了探讨.对于中承式钢桁架拱桥,三跨连续铰支的无推力体系比单跨固支的有推力体系在基础、拱肋、桥面系等方面均具有力学性能优势和经济优势,是中承式钢桁架拱桥的首选. 3.期刊论文王和欢.吴军国膺架法安装钢桁架拱桥关键施工技术-铁道标准设计2008,""(6) 通过常州新龙大桥的实际施工情况,介绍膺架法安装中承式三跨连续钢桁架拱桥的施工方法,包括桁架拱膺架、拼装、合龙及高强度螺栓施拧等关键技术. 4.学位论文彭小明大跨度钢桁架拱桥仿真计算分析2008 近几年,随着桥梁建设的发展和钢材产量及质量的提高,我国钢拱桥的建设已进入了一个崭新的时期,大跨度连续钢桁架拱桥迅速在国内兴起。本论文采用理论与工程实践相结合的技术路线,以重庆朝天门大桥作为工程背景,探讨了大跨度钢桁架拱桥的空间受力特性、施工过程仿真模拟计算和静风稳定性,为同类桥梁的设计、施工和计算分析提供参考。 本论文主要的研究内容包括: (1)叙述了国内外大跨度钢桁架拱桥的发展状况,针对钢桁架拱桥的结构特点,对其设计理论和结构性能进行了分析。 (2)论述了大跨度拱桥的挠度理论和空间分析的有限元基本理论,对桥梁结构有限元分析的步骤进行了归纳,给出了有关的刚度矩阵、荷载列阵和计算公式等。 (3)以重庆朝天门大桥作为工程实例,建立了有限元计算模型,计算了钢桁拱成桥状态结构的效应和运营阶段中恒载、活载、温度荷载对结构的影响,对比分析了恒活载作用的影响程度,并按最不利荷载组合验算了结构应力与变形,同时分析了吊杆损伤对结构静内力的影响。 (4)介绍了大跨度拱桥的施工方法和施工过程仿真模拟计算方法,并进行了对比分析。根据钢桁拱的施工特点和施工工艺,采用倒拆-正装法对朝天门大桥进行施工全过程仿真计算分析,并对大跨度钢桁架拱桥的施工计算结果进行了探讨研究。 (5)通过不同的加载方式和荷载组合,分析了大跨钢桁架拱桥成桥运营状态和施工期间的静风稳定性,得出横向静风荷载对钢桁拱的稳定性影响较小,钢桁拱的抗风性能较好,符合抗风设计规范要求。这对确保该世界第一大跨钢桁拱桥的顺利施工与成桥安全运营起到了技术支撑的作用。 5.期刊论文胡永.HU Yong常州新龙大桥主桥钢桁拱-梁安装施工技术-中国市政工程2007,""(5) 常州新龙大桥主桥为30.7 m+100.0 m+30.7 m三跨连续中承式钢桁架拱桥,是国内首座该类型的公路桥梁.介绍该主桥采用满樘膺架法安装钢桁拱-梁的施工方法.阐述了满樘膺架支承体系搭设、钢桁拱-梁安装、拱肋合龙及高强度螺栓施拧等施工工艺.工程实践表明,该施工方法合理,也为同类工程施工提供了借鉴. 6.学位论文颜毅大跨度钢桁架拱桥受力特性分析2008 钢桁架拱桥具有外形雄伟壮观、跨越能力大、承载能力高等优点。在国外这种桥型在工程实践中的采用已经有近百年历史,而我国由于受到经济水平的限制,直到80年代才开始在工程实践中采用。在建的重庆朝天门长江大桥主桥跨径布置为190+552+190m,该桥为目前世界上最大跨度的钢桁架拱桥,对钢桁架拱桥这一结构体系具有历史性的突破。但是,对于大跨度钢桁架拱桥的研究,目前可检索到的文献资料很少,人们对钢桁架拱桥在理论和实践上的认识还不够全面。 本文以在建的重庆朝天门长江大桥为工程背景,对其结构的整体受力特性、施工过程中的受力特性和节点板的受力特性进行了分析研究。文中首先

浅谈钢管桁架拱桥施工几项技术要点

浅谈钢管桁架拱桥施工几项技术要点 发表时间:2019-09-18T13:41:48.040Z 来源:《建筑细部》2019年第4期作者:刘建忠 [导读] 近年来,随着社会经济的发展,建筑结构形式也呈现出多样化特点,尤其桥梁工程,不在是以简单的拱、简支等简单形式,为美化造型、节能环保,钢管桁架拱桥不断在工程中出现。 刘建忠 宁波高新区开发投资有限公司浙江省宁波市 315800 摘要:近年来,随着社会经济的发展,建筑结构形式也呈现出多样化特点,尤其桥梁工程,不在是以简单的拱、简支等简单形式,为美化造型、节能环保,钢管桁架拱桥不断在工程中出现。本文通过工程实例论述钢管桁架拱桥在施工中注意的几点,确保整体施工质量。 关键词:钢管桁架拱桥,钢管焊接,支架搭设,施工技术 1、工程概况 本工程为宁波高新区某大跨度桥梁,桥梁部分的主要内容为:本桥为钢管桁架拱桥,拱桥跨径为59.56米,桁架横断面呈倒三角形,主要由上弦杆、下弦杆、腹杆、横撑、横梁等构件组成。 上弦杆:全桥由三根上弦杆组成上拱圈,上弦杆规格为φ406×12mm;端部锚入钢筋砼重力式桥台。下弦杆:一根下弦杆组成下拱圈,下弦杆规格为φ820×16mm;端部锚入钢筋砼重力式桥台。腹杆:腹杆连接上下弦杆,腹杆规格为φ219.1×8mm。横撑:横撑将三根上弦杆连接成上拱圈,横撑规格为φ219.1×8mm。横梁:横梁采用14号热轧普通工字形钢,支撑上弦杆上的槽钢垫块上。 1、总体方案 1.1节段预拼 桁架在钢结构加工厂分段加工,到现场拼装的施工形式,在不受日照影响的条件下,精确调整和测量线形、长度、端口尺寸等,检验合格后按制造长度配切余量端坡口。组焊工地临时连接件,经监理工程师签认后,节段出胎。出胎的节段按施工图规定的编号喷涂标记。 (1)预拼装主要要点: ①接口的匹配精度,包括接口平面度的对位和端面密贴检测。 ②高度及线形的调整。 ③划桥位安装用的接口对位线。 ④测量线形偏差值和趋势,为后续节段加工提供依据。 (2)钢结构焊接工艺 焊接工艺依据焊接工艺评定试验结果制定。焊接工艺评定试验报告按规定程序批准后,根据焊接工艺评定试验报告编写焊接工艺指导书。焊接工艺指导书经监理工程师批准后,根据焊接工艺指导书的内容组织焊接施工。 ①焊接操作要求: ◆焊接施工时必须注意焊缝的始端、终端和焊缝接头处不得产生缺陷; ◆角焊和对接焊时角变形应≤1/100; ◆施焊时母材的非焊接部位严禁焊接引弧,应在引弧板、引出板或焊缝的焊接起点部位引弧、熄弧; ◆多层、多道焊时,每一道或每一层的接头尽量错开,至少20mm以上; ◆构件的焊接顺序使焊缝能够处于自由收缩的状态,接头部位有对接焊缝和角接焊缝时,先焊接对接焊缝,然后焊接角接焊缝;先焊接横向对接焊缝,后焊接纵向对接焊缝; ◆同一构件的焊接方向尽量保持一致,焊缝较长时采取分中、分段、对称的方法焊接,焊接方向从中间向两端进行; ◆埋板自动焊和CO2自动焊时,原则上中途不得断弧,不得已断弧时,焊缝端部(断弧处)应用碳弧气刨和砂轮打磨成50mm长的斜坡后再进行焊接;所有构件的角焊缝端部应围焊密封,不能实施者应用连续定位焊密封,以免现场连接时造成根部无法清除。 ②焊缝检验: ◆所有焊缝均应在冷却后进行外观检查,并填写检查记录。所有焊缝不得有裂纹、未熔合、焊瘤、夹渣、未填满弧坑及漏焊等缺陷。 ◆无损检验在焊缝的外观检验合格之后进行,并且探伤时间与焊缝焊完时间间隔不小于24小时,板厚≥30mm时,探伤时间与焊缝焊完时间间隔不小于24小时。 ◆Ⅰ级焊缝应进行100%的检验,Ⅱ级焊缝的抽检比例按图纸要求和招标文件相关条款执行。 ◆焊缝检验按照设计文件和相关标准的要求,对探伤焊缝进行编号,然后根据焊缝编号编制相应的《焊缝探伤清册》。 1.2节段运输与工地节段组拼 制作好的节段,采用运梁车运输至施工场地。运输前应事先进行运输线路的探明和交通管理部门对接、手续办理工作,确保钢梁节段能顺利运输至施工现场。 1.3钢拱桥安装 在用20t压路机的塘渣上浇筑50cm钢筋混凝土基础,钢筋采用双层双向Φ16钢筋间距20cm,并预埋50x50x1cm铁板,铁板设置Φ16钢筋,钢筋采用Φ16并在预埋铁板下设置2根Φ16抗拉钢筋。 支架搭设,在浇筑好的混凝土地基上搭设钢管支架,支架钢管与预埋铁板焊接,Φ300钢管之间采用10#槽钢连接,钢管上放置300x300工字钢并与钢管焊接。

钢筋混凝土桁架拱桥主拱圈钢筋的布置

工程技术 摘要:本文仅对钢筋混凝土桁架拱桥的配筋作了阐述,主拱圈的配筋要从力学的角度进行详细而细致的分析,配筋和受力分析紧密结合,对各种受力要进行精确地反复地验算,同时要准确分析各部位的受力情况,确保正确地配筋,从而保证工程产品地顺利生产。 关键词:配筋主拱圈 桁架拱桥的上部结构一般是由桁架拱片、横向联接系和桥面三部分组成,其主要承重结构是桁架拱片。桁架拱桥是由拱和桁架两种结构体系组合而成,因此兼具有桁架和拱的受力特点。桁架拱桥一般由上、下弦杆、腹杆、实腹断组成的桁架拱片,横向联接系和桥面系三部分组成。桁架拱片是桁架拱桥的主要承重结构,承受上部结构的自重,并与桥面结构一起承受活载,把活载和恒载传到墩台上去。桁架拱片各部位配筋情况,按各部位受力性质和大小,大致如下: 1一般配筋 下弦杆为受压杆件,一般以靠近支点的一段受压最大,向跨中逐渐减小。下弦杆所受压力考虑全由混凝土承受,故下弦杆一般按构造配筋,不另配受力钢筋。纵向钢筋的直径不宜小于12mm,纵向钢筋与混凝土侧面的净距不小于2.5cm,箍筋直径不小于6mmi,箍筋间距应不大于纵向受力钢筋直径的15倍,或构件横截面的较小尺寸,并不大于40cm。 上弦杆一般也为受压杆件,但因在局部荷载下要受弯,故应按压弯构件考虑。其中端节间上弦杆尚可能出现受拉,加以局部受弯又最大,故这根长度最大的上弦杆常是控制设计的。偏心受压构件纵向受力钢筋的含筋率不宜小于0.15%,同时不少于2根,而上弦杆的受力钢筋应布置在上弦截面(不计桥面)的截面重心线以下,受力钢筋和箍筋的直径、间距及保护层厚度等规定,同受压杆件。 腹杆中的受压杆件,也仅按构造配筋。受拉杆件按轴心受拉杆件配筋,考虑拉力全由钢筋承受,钢筋应沿轴线或对称于轴线布置。 实腹为压弯杆件,按所计算的几个截面的内力配筋。 要加强靠实腹段节间内短腹杆两端侧面的局部配筋,因此此处次应力较大。在桁架拱片的拱脚支承端和吊梁的支承牛腿内,也应注意配置局部受力钢筋。 在配置钢筋时,对于中小跨径的桁架拱桥,上、下弦杆的配筋一般是连续的,其数量根据受力最大端部节间的一根来确定。受拉腹杆的配筋,可在受力最大和最小的两根确定钢筋数量后,其余各杆取中间值,也可简单地统一按受拉最大的一根配置。受压腹杆一般采用同样的构造配筋。实腹段按各计算截面配筋,尽量做到通长连续。各部件所配钢筋,力求减少规格和钢种。对于较大跨径的桁架拱桥,则应按各部位内力大小分别考虑配筋,以免用钢过多。 在布置钢筋时,注意受拉腹杆的受力钢筋在两端应伸过桁架结点中心,并在轴线交点以外留有足够的锚固长度。在结点包块边缘的杆件交汇处,应配以斜角钢筋或包络钢筋,这种钢筋也应有足够的锚固长度,并注意尽量靠近混凝土边缘以引起应有的防裂作用。采用分段预制的桁架拱片,在接头端必须预埋足够的连续钢筋或预埋件,并注意要保证受力钢筋在接头处的传力性能。 桁架拱的横向联结系构件,一般按构造配筋。 板面板如为双边支承连续板,须另外单独进行配筋计算;如为微弯板,一般按构造配筋。预制微弯板应考虑吊装过程中的受力要求,预防吊运时破裂损坏。 在现浇桥面混凝土中应适当布置防收缩和温度钢筋,一般是在面层混凝土内布置以钢筋网。 2配筋和应力计算相结合 设计桁架拱桥时,须根据施工阶段和使用阶段的受力情况,对各部分最不利内力组合下的应力验算。配筋与验算相结合地进行。各项验算均能通过时,设计和配筋才能最后确定。在验算过程中,有时可能需要修改结构尺寸,如下弦杆和受压腹杆中出现压应力过大、超过容许值时,就得适当放大截面尺寸。这时一般不采用增强配筋的办法来降低最大压应力,因为较不经济。 验算桁架拱片在运营阶段(使用阶段)的应力时,按各部位的受力性质不同进行相应的验算。下弦杆和受压腹杆按轴向受压杆件验算。计算时应按不同的长细比考虑各自的纵向弯曲影响,可不考虑所配纵向构造钢筋的作用。受拉腹杆按轴心受拉杆件计算,计算时考虑拉力均由钢筋承受。弯压兼受的实腹段和上弦杆(上弦杆在局部荷载下受弯,桁架拱整体作用中受压),按偏心受压构件计算。但对实腹段可先按弹性材料验算截面上、下缘应力。 验算中,在每一段验算杆件中只取一个截面(杆件中部截面)进行验算。实腹段则是对所选计算截面进行验算。对于上弦杆,尚需检验局部荷载引起的剪力和结点负弯矩应力是否过大。 3预应力配筋及验算 钢筋混凝土的桁架拱桥在受拉腹杆及受压弯的实腹段等部位,难免出现裂缝,对这些部位施加以预应力就可克服上述现象。沿桥的横向也施加以预应力,可使桥的整体性更好。施加预应力的桁架拱片预制构件,在运输吊装过程中具有较好抗裂安全度。此外,预应力还可能减低结构内的此应力。预应力桁架拱结构具有较高的承载能力和较轻的结构重量,在较大跨径的桁架拱桥中获得越来越多的采用。 桁架拱片上施加预应力的部位,一般为受拉腹杆、上弦杆和实腹段,这些部位施加预应力后,可不出现拉应力或出现较低的拉应力。桁架拱片上的预应力筋一般在预制场地上张拉。但当桁架构件在地面平卧时自重不起作用,那时预应力引起的结点次应力可能过大,因此有时对腹杆预应力筋只做部分张拉,待桁架拱片安装就位后再行补张拉。 预应力筋的布置,在受拉腹杆中须使预加力的合力通过杆件轴线,使腹杆在预加力作用下中心受压。在上弦杆和实腹段内,预应力筋的布置须适当的偏心,以抵抗受弯。上弦杆和实腹段的预应力筋尽量作直线的、通长的布置。如因施工方法需要桁架段采用分段预制然后悬拼吊装,则预应力筋可作为吊装索的一部分,并采用专门接头作必要的接长。 根据桁架拱片的铰接假定,对各部的预应力筋的配筋,同普通钢筋混凝土桁架拱的配筋一样,也把各部位作为单独构件分别进行。配筋时先根据最大和最不利的内力主要组合和估计的预应力总损失,选定预应力筋数量和布筋位置。 预应力桁架拱桥上采用的预应力筋可以是高强度钢丝束或低合金钢粗钢筋,相应的锚具有镦头锚和轧丝锚等。桁架拱上所用的锚具,要求锚固可靠、结构紧密并能重复张拉。腹杆的预应力筋一般不长,锚具内的滑移会引起过大的应力损失,使预应力作用不能充分发挥,故锚具须有较好的锚固性能。 在进行预应力配筋计算时须先根据具体条件选定合适的预应力体系(预应力筋、锚具、相应的张拉千斤顶及孔道的形成和压浆方式)。布置锚头位置时须验算锚头下的局部承压强度。 桥面部位的横向预应力,能将横向各片桁架拱片连同桥面更牢固地连接成一体,加强结构整体性,并提高桥面板的承载力。横向预应力筋的布置方式,一般是每隔一定纵向距离沿桥的横向通长地布置一道,使每道预应力筋正好在预制桥面板间的横向拼接缝中通过。预应力的大小视需要的横向加强程度而定,但目前一般不作具体计算,而是采用与桁架拱片上同样的预应力筋和锚具型式,可能适当变小规格,降低预加力吨位。 钢筋混凝土桁架拱桥主拱圈钢筋的布置 邓小忠(忠县交通勘察设计室) 246

钢桁架拱桥施工组织设计

第一章总则 1、编制范围 本施工组织设计编制范围为新建xxxx长江大桥G0#墩~S24#墩即里程Dk992+720.140~Dk1001+993.377段的全部桥梁工程(全长9273.237m),包括该区间的京沪铁路客运专线与沪汉蓉铁路以及xx地铁合建区段的铁路桥梁工程、xx铁路客运专线与xx铁路合建区段的铁路桥梁工程以及京沪铁路客运专线铁路桥梁工程。 2、编制依据 2.1《新建xxxx长江大桥初步设计文件》、部分施工图及其说明书; 2.2标书文件及合同; 2.3国家、铁道部颁发的现行桥梁设计、施工规范、施工技术规程、质量检验评定标准及验收办法等: 《客运专线铁路桥涵施工技术指南》(TZ213-2005) 《铁路混凝土工程施工技术指南》(TZ210-2005) 《铁路钢桥制造规范》(TB10212-98) 《铁路工程基桩无损检测规程》(TB10218-99) 《客运专线铁路桥涵施工质量验收暂行标准》(铁建设[2005]160号) 《铁路混凝土工程施工质量验收补充标准》(铁建设[2005]160号) 《铁路混凝土与砌体工程施工质量验收标准》(铁建设[2005]157号) 《铁路工程结构混凝土强度检测规程》(TB10426-2004) 《铁路工程施工安全技术规程》(TB10401.1-2003) 《铁路混凝土结构耐久性设计暂行规定》(铁建设[2004]157号) 2.4施工现场考察及周边环境调查所了解的情况和收集的信息; 2.5集团公司现有资源。 3、编制原则 3.1响应和遵守业主、监理、设计要求,内容涵盖全部工程。 3.2施工组织设计编制切实可行,安全可靠,经济合理,技术先进。 3.3实施项目法管理,通过对人力、材料、机械等资源的合理配置,实现工程质量、安全、工期、成本及社会信誉的预期目标。

现浇钢筋混凝土拱桥施工方案

现浇钢筋混凝土拱桥 一、工程概况 滹沱河大桥是新城大道工程的一部分,桥梁设计起点为K0+260.5,本桥平面位于直线上,与滹沱河交角90°。桥梁全长2414.06m、分为17联,其中跨滹沱河主桥采用9×66米跨径的上承式钢筋混凝土板拱。全桥下部结构采用钻孔灌注桩基础,主桥桥墩基础采用φ1800mm的钻孔桩,矩形承台(承台高度分为2.5米与3.5米两种)。 桥梁横断面为双向8车道,两侧设置人行道,标准断面总宽度49米:2×(6.0米人行道+15.0米机动车道+0.5米防撞护栏+3米中空带),桥面铺装为10cm厚的沥青混凝土。 二、编制依据 (1)、合同文件; (2)、施工设计图纸; (3)、国家、交通部、建设部、河北省现行设计、施工规范、验收评定标准及有关文件; (4)、项目办及总监办下发的有关文件; (5)、现场实际情况及施工条件; (6)、我公司积累的成熟技术、科技成果、施工工艺及同类工程的施工经验;可调用到本合同段工程的各类资源。 三、主要工程数量 主拱圈采用钢筋混凝土板拱,截面高1.0m、宽221.5m,采用C40混凝土,一个主拱圈混凝土理论数量1435.3m3,全桥左右幅18个主拱圈共计25835.4m3. 四、现浇拱桥施工方案 (1)、基底处理 1、地基处理 根据桥位处水文地质情况,滹沱河河道内地下水位较高,且基本上为砂层,因此承台开挖需要采取1:1.5的边坡并采取防水措施,河

道内有水的承台采用施打钢板桩防水、开挖。 现浇拱桥在施工过程中荷载较大,因此在搭设支架前对地基进行全面处理,首先把施工区域内的淤泥、杂物及泥浆池中的泥浆清理干净,换填砂层(采用水压)。整体整平后再填筑30cm厚以上砂砾层,分层碾压成型,并做出单向横坡。处理后测试地基承载力,地基符合要求后,浇筑15cm厚C20混凝土垫层。在混凝土浇筑完成后,要进行收面、压光、必须保证砼面的平整度。在收完面以后进行洒水,并用塑料薄膜覆盖养护。 2、排水沟挖设 地基范围一米外两边挖设60×80cm的排水沟,排水沟要做防渗处理,防止雨水浸泡地基,避免地基沉陷,碗扣支架产生不均匀沉降。(2)、支架搭设 支撑方式采用满堂式碗扣支架。碗扣支架采用WDJ式支架,架杆外径4.8cm,壁厚0.35cm,内径4.1cm。支架要求钢管表面无锈、光滑、无裂纹,具有出厂合格证,所用钢材符合有关规定。根据主拱圈混凝土的重量,支架纵桥向间距0.6m,横桥向间距0.6m,横杆间距0.6m。考虑支架的整体稳定性,支架顶部及底部设置水平剪力撑,中部剪力撑设置间距小于4.8米;在支架的四周及中间的纵横向,由底到顶连续设置竖向剪力撑,其间距不大于4.5米,剪力撑斜杆与地面的夹角在45°—60°之间。 斜杆每步与立杆扣接,扣接点距碗扣节点的距离≤150mm;当出现不能与立杆扣接的情况时可采取横杆扣接,扣接点牢固。斜杆的搭接长度不小于1m,搭接处设2个扣件,两端扣件位置距端头不小于 10cm。 1、测量放样 测量人员用全站仪放样出现浇拱桥在地基上的竖向投影线,并用白灰撒上标志线,现场技术员根据投影线由中心线向两侧对称布设碗

桁架拱桥的维修加固方案

桁架拱桥的维修加固方案 阜阳市于20世纪70年代初开始引进钢筋混凝土桁架拱桥,至今已建成使用的桁架拱桥达30多座。随着时间的推移,经济的发展带来交通流量的大幅增长,特别是超载运输车辆的通行,早期修建的荷载标准低的桁架拱桥出现了不同程度的病害和损伤。为适应公路交通运输的需要,阜阳市公路局近几年来先后对出现病害的几座大型桁架拱桥,如临泉泉河大桥(7×30 m)、界首颍河大桥(6×30 m)、阜阳茨淮新河大桥(6×54 m)、太和颖河二桥(6×50 m)、临泉人民大桥(3×30 m)等进行了维修加固工作,积累了一定的经验,现介绍如下。  1、桁架拱桥的常见病害及产生原因 (1)下弦杆拱脚处横向裂缝。主要原因是桥台、墩基础出现不均匀沉降,使拱脚处出现竖向剪切应力,导致拱脚下弦杆件出现裂缝。 (2)弦杆端部节点裂缝。主要原因是桥台、墩基础出现不均匀沉降,造成上弦杆端部凸杆与桥台、墩柱搭接扣死,使该节点出现竖向剪切应力,导致节点出现裂缝。 (3)横系梁、横拉杆、横隔板竖向开裂。主要原因是由于原行架拱桥设计标准较低,横向联系较薄弱,而近10年来交通量大而且超载车辆比例大,造成桁架竖向变形量大,使横向联系的梁、杆、板出现竖向裂缝,甚至断裂。

(4)桥面板裂缝、破碎。主要原因是桥面板设计标准低,微弯板或拱波厚度不足,混凝土强度低,桥面铺装层薄弱,造成桥面刚度不足,随着交通量的大幅增加,特别是超载车辆的破坏作用,致使桥面铺装层和微弯板开裂,如不及时维修,部分微弯板发生破碎,形成桥面坑洞而影响行车安全。 (5)伸缩缝损坏。主要原因是桁架拱桥设计时不设伸缩装置或仅设置简易伸缩缝,混凝土强度设计较低,桥面接缝处混凝土损坏严重,逐渐开裂、破碎,使接缝处面积逐渐扩大而影响桥梁的安全使用。 (6)人行道变形、下垂。主要原因是桁架拱桥的人行道设计一般采用在边桁片上弦杆上置挑梁承托人行道板的方法。随着人群荷载的增加,挑梁受超载而弯矩过大,致使下垂变形,如不及时进行加固,可能发生人行道垮塌事故。 (7)位于两跨接缝处人行道和拉杆横向裂缝。主要原因是设计时在该处未考虑断开,并设置伸缩缝装置,桥两跨的振动破坏形成裂缝。 2、维修加固方法 2.1 上弦杆端部节点和下弦杆拱脚处裂缝的维修加固方法 因桥梁台、墩不均匀沉降产生的桁架上、下弦桥节点处的裂缝

箱型拱桥

箱型拱桥,桁架拱桥和刚架拱桥。钢筋混凝土箱型拱桥具有刚度大、材料省的优点。中国第一座大跨径的箱型拱桥为一九七二年建成的四川省攀枝花市跨越金沙江的6号桥。该桥主跨146米,全长327米。拱箱系单箱3室,在钢拱架上进行浇筑施工。该桥在设计上为了节省拱架的用钢量,虽然也考虑了拱圈与钢拱架共同受力,而钢拱架仍达740吨。为了节省钢筋混凝土箱型拱桥的施工支架材料,四川省公路部门在修桥老工人甘师傅的建议下,吸取双曲拱桥集零为整、逐步组合成拱的工艺优点,提出钢筋混凝土箱型拱圈缆索吊装的施工方法。他们建议在设计时,把主拱圈改由多个U形截面拱肋组成。吊装就位后,再加预制盖板和现浇混凝土顶板,使之成为闭合的单室多箱截面。这样就比双曲拱桥更能适应无支架施工。按此建议进行模型试验后,于一九七〇年七月,在川藏公路上建成了一座跨径30米的无支架施工的箱型拱试验桥。在其吊装过程中,这种改进了的箱型主拱圈截面充分显示出它的优越性,避免了双曲拱桥在吊装中所出现的一些困难问题。随后,四川省陆续修建多座,都取得成功。由于这种改进的箱型主拱圈截面吊装安全、方便,所以在中国公路上得到广泛的应用。据不完全统计,截至一九八七年,已修建的大、中型箱型拱桥有70余座,其中有大桥、特大桥60座,总长约1.6万米。跨径在100米以上的有14座,其中跨径最大的是攀枝花市规划设计研究院设计、攀枝花市桥梁工程处施工修建的四川省攀枝花市的7号桥,主桥为单孔跨径170米。另外,还有云南省金沙江上的继红桥和金安桥,四川省攀枝花市的5号桥和宜宾市的马鸣溪桥,以及青海省的尖扎马克塘黄河大桥和甘肃省的玛曲黄河大桥。 大多数箱型拱桥都采用缆索吊装法施工,但随着跨径的增大,箱型拱桥吊装设备的用钢量剧增,吊装难度也增大,所以对大跨径桥梁的桥型和施工方案必须进行多方周密比较,不可忽视。一九八〇年,浙江省用桁架式悬臂拼装法建成单孔跨径60米、单室箱型截面的兰江大桥中洲支桥和两孔跨径各92米、单室箱型截面的曹娥江清风大桥,显示出这种主拱圈截面型式和悬臂拼装法对修建大跨径拱桥不失为一种比较成熟的、经济的设计、施工方案。 拱桥结构自身的重量偏大,在一定程度上限制了它的使用范围。为了进一步减轻拱桥结构体系的自重,实现在软弱地基上建拱的设想,中国公路桥梁工程技术人员在总结圬工(砖、石和混凝土)拱桥、双曲拱桥及钢筋混凝土拱桥的基础上,着重从改革拱桥结构型式入手,进行探索,取得了明显的成绩。从六十年代后期至八十年代中期,已创建了两种适应于这一目的的钢筋混凝土拱桥桥型,即桁架拱桥和刚架拱桥。 桁架拱是由桁架和拱组合而成的一种混合结构体系。它兼具两者的性能、优点,能充分发挥各个构件的潜力。桁架拱桥的拱上构造和拱肋组成的桁架片,既是传力结构,也是受力结构,因而用料较省,自重较轻,对软弱地基的适应性也较双曲拱桥、肋拱桥、箱型拱桥为好。 六十年代中期,上海市嘉定、金山等县修建了一些不同型式的试验性的轻型农村道路桥,并创建成功一种把主拱圈的拱肋和拱上构造联成为桁架式拱片的桁架拱。一九七〇年,第一座跨径26米的桁架拱公路桥(在上海市金山县)建成。同年,浙江省修建了多座跨径30至50米的桁架拱公路桥。由此,逐步积累了桁架拱桥在设计、施工方面的经验。随后,各省、市相继修建。到一九七九年,在全国干线公路和县乡公路上修建的大、中型桁架拱桥达140座以上,同类的小桥和农村道路桥则为数更多,其中最长的公路桁架拱桥是江苏省的墩尚沭河桥(全长684米)。经过十多年的运营考验,虽然有些桥的受拉构件出现一些裂缝,但总的来看,桁架拱桥是一种成功的桥型。预应力的引入,更使这种桥型在设计和施工工艺上有更新的发展,其整体性与耐久性都有所提高。 七十年代中期修建的预应力混凝土桁架拱公路桥,有浙江省宁海县的越溪桥和河南省的嵩县大桥。越溪桥单孔跨径75米,全长138米。嵩县大桥是9孔,跨径各50米,全长489米。这种桥在四川、江西、贵州等省也有修建。而贵州省在八十年代所修建的长岩桥、白果沱桥(跨径100米)和剑河桥(跨径150米),则是预应力混凝土悬臂桁架拱桥采用桁架悬

桁架拱桥的维修加固方案

桁架拱桥的维修加固方案 桁架拱桥的维修加固方案 阜阳市于20世纪70年代初开始引进钢筋混凝土桁架拱桥,至今已建成使用的桁架拱桥达30多座。随着时间的推移,经济的发展带来交通流量的大幅增长,特别是超载运输车辆的通行,早期修建的荷载标准低的桁架拱桥出现了不同程度的病害和损伤。为适应公路交通运输的需要,阜阳市公路局近几年来先后对出现病害的几座大型桁架拱桥,如临泉泉河大桥(730 m)、界首颍河大桥(630 m)、阜阳茨淮新河大桥(654 m)、太和颖河二桥(650 m)、临泉人民大桥(330 m)等进行了维修加固工作,积累了一定的经验,现介绍如下。 1、桁架拱桥的常见病害及产生原因 (1)下弦杆拱脚处横向裂缝。主要原因是桥台、墩基础出现不均匀沉降,使拱脚处出现竖向剪切应力,导致拱脚下弦杆件出现裂缝。 (2)弦杆端部节点裂缝。主要原因是桥台、墩基础出现不均匀沉降,造成上弦杆端部凸杆与桥台、墩柱搭接扣死,使该节点出现竖向剪切应力,导致节点出现裂缝。 (3)横系梁、横拉杆、横隔板竖向开裂。主要原因是由于原行架拱桥设计标准较低,横向联系较薄弱,而近10年来交通量大而且超载车辆比例大,造成桁架竖向变形量大,使横向联系的梁、杆、板出现竖向裂缝,甚至断裂。 (4)桥面板裂缝、破碎。主要原因是桥面板设计标准低,微弯

板或拱波厚度不足,混凝土强度低,桥面铺装层薄弱,造成桥面刚度不足,随着交通量的大幅增加,特别是超载车辆的破坏作用,致使桥面铺装层和微弯板开裂,如不及时维修,部分微弯板发生破碎,形成桥面坑洞而影响行车安全。 (5)伸缩缝损坏。主要原因是桁架拱桥设计时不设伸缩装置或仅设置简易伸缩缝,混凝土强度设计较低,桥面接缝处混凝土损坏严重,逐渐开裂、破碎,使接缝处面积逐渐扩大而影响桥梁的安全使用。 (6)人行道变形、下垂。主要原因是桁架拱桥的人行道设计一般采用在边桁片上弦杆上置挑梁承托人行道板的方法。随着人群荷载的增加,挑梁受超载而弯矩过大,致使下垂变形,如不及时进行加固,可能发生人行道垮塌事故。 (7)位于两跨接缝处人行道和拉杆横向裂缝。主要原因是设计时在该处未考虑断开,并设置伸缩缝装置,桥两跨的振动破坏形成裂缝。 2、维修加固方法 2.1 上弦杆端部节点和下弦杆拱脚处裂缝的维修加固方法 因桥梁台、墩不均匀沉降产生的桁架上、下弦桥节点处的裂缝已基本稳定,不再发展。可采用环氧树脂灰浆在其两面或三面粘贴钢板的方法进行维修加固,如图1所示 加固时,首先将构件混凝土的表面凿毛,如节点处混凝土剥落严重,应将混凝土保护层凿除再粘贴钢板,粘贴钢板要进行除锈处理。其次要先处理裂缝,即对裂缝先进行灌浆(环氧灰浆)处理,然后再粘贴钢板。第三,由于拱脚处常处于水位以下,为防钢板锈蚀,粘贴钢板后

拱桥的构造和特点

第五章拱桥的构造和特点 5.1 拱桥的基本特点及其适用范围 力学特点,将桥面的竖向荷载转化为部分水平推力,使拱的弯距大大减小,拱主要承受压力,充分发挥圬工材料抗压性能; 拱桥的优点: 1、具有较大的跨越能力,充分发挥圬工及其它抗压材料的性能; 2、构造较简单,受力明确简洁; 3、形式多样、外型美观; 拱桥的缺点: 1、有水平推力的拱桥,对地基基础要求较高,多孔连续拱桥互相影响; 2、跨径较大时,自重较大,对施工工艺等要求较高; 3、建筑高度较高,对稳定不利; 5.2 拱桥的组成及主要类型 ?一、拱桥的主要组成: ?拱圈(拱背、拱腹、拱顶、拱脚)、拱上结构 ?矢跨比f/L—反映拱桥受力特性的重要指标 二、拱桥分类 ?按材料 ?圬工拱桥 ?钢拱桥 ?钢筋混凝土拱桥 ?钢管混凝土拱桥 ?型钢混凝土拱桥 ?圬工拱桥是使用圬工材料修建的的拱桥,如:石拱桥以及拱圈不配钢筋的混凝土拱桥等 拱桥分类 ?按行车道位置 上承式拱桥 中承式拱桥 下承式拱桥 ?按拱轴线型式: 圆弧拱桥 抛物线拱桥 选链线拱桥 ?按拱上结构形式: 实腹式拱桥 空腹式拱桥 按截面

板拱桥 箱型拱桥 肋拱桥 双曲拱桥 按结构受力图式: ?简单体系: 无铰拱 二铰拱 三铰拱 组合体系(有无推力): 刚架拱桥 桁架拱桥 桁式组合拱 梁拱组合桥 系杆拱桥-按拱肋及系杆的尺寸,柔性、刚性 三、拱桥的选择与布置 ?1、应根据地形、地质条件及施工的方便和可能确定拱桥类型及分孔; ?2、多孔拱桥最好选用等跨分孔;采用不等跨分孔应采取措施减少跨间的不平衡,如:不同的矢跨比,不同的拱脚标高及调整拱上建筑重量等; ?3、选则合理的矢跨比及拱轴线,一般拱桥失跨比在1/5~1/10; ?4、根据环境选择结构的造型及注意全桥的美观; 永保桥跨越澜沧江,主孔为下承式80m肋拱桥,东岸2x24m连续梁,西岸1孔18m斜梁。该桥为柔性纵梁的下承式肋拱桥,主拱圈的推力分别传至两岸桥台。 高明桥是一跨越西江的大型公路桥,主通航孔采用中承式钢管混凝土拱,引桥系钢筋混凝土肋拱。

某钢桁架拱桥下部结构施工方案、方法

下部结构施工方案、方法 1、施工总体方案 根据工程特点和总工期的要求,为尽可能少地占用长江水运航道,同时又能满足正常施工需要,确定按两个枯水期分期实施主桥三个主墩的基础施工,第一个枯水期先开工北主墩(6#墩)和南主墩(8#墩),第二个枯水期再开工中主墩(7#墩)。 附图018:主桥水上基础施工平面布置图。 6#、7#、8#主墩基础均采用双壁钢围堰+锚碇无导向船定位系统的施工方案, 其中6#墩采用双壁钢套箱围堰施工,7#、8#墩采用双壁钢吊箱围堰施工,6#、8#墩围堰分次接高,7#墩围堰整体一次接高。双壁钢围堰制作下水、浮运至墩位,利用锚碇系统实现初、精定位,插打16根定位钢护筒,围堰挂桩完成体系转换,先期进行钻孔桩施工,钻孔桩完成后,围堰内封底、抽水进行承台、墩座施工。 3#~5#、9#墩施工方案是先建立施工平台,进行钻孔桩施工,钻孔桩完成后,分节拼装或整体吊装双壁钢围堰,围堰内封底、抽水进行承台、墩身施工; 1#、2#、10#墩基础采用填土筑岛+钢板(钢管)桩围堰施工方案,钢板桩围堰取土后,安装承台模板进行混凝土浇筑;0#墩基础施工方案是先填土筑岛进行钻孔桩施工,井点降水或钢板桩支护进行基坑开挖,进行承台施工。主桥墩身采用翻模法施工,模板采用大块整体钢模,墩旁侧设置一台塔式吊机辅助施工。 北引桥及南、北岸合建区段引桥桩基施工时,一般地面原地整平硬化,遇水塘、沟壑则先筑岛或填平后再作硬化处理进行钻孔桩施工;高旺河内的桩基施工可充分利用枯水期,先填土修筑便道,设置移动式平台进行钻孔施工。承台依据地质变化主要采用明挖或钢板桩支护方法进行施工,必要时配合井点降水。墩身采用整体钢模施工,墩身四周搭设施工脚手平台,汽车吊或履带吊机配合作业。 2、主墩下部结构施工 6#、7#、8#墩是钢桁拱连续梁主桥的三个主墩,墩身为12.0×40.0m的圆端形空心墩,单箱双室截面,壁厚1.5~2.0m,在顺桥向中部设竖隔墙。三个主墩

钢桁架桥梁设计总结讲解

钢桁架桥梁设计总结 区别于混凝土梁部一般设计流程,特编写钢桥设计流程,为初次设计钢梁提供一点参考与设计思路。 一.钢桥设计最终目的: 1.确定用最少的钢材但受力最优的杆件截面 2.确定传力简洁顺畅的连接方式 二.在确定钢桥方案后,一般钢桥包括的计算: 钢桥的设计是一个迭代循环的过程,但是截面的选取顺序还是以主桁优先。 1.主桁截面的粗选(初估联结系与桥面后) 2.主桁截面的检算 3.联结系的检算 4.桥面的检算 5.主桁、联结系、桥面稳定后的主桁、联结系以及桥面的最终检算 6.连接计算(各部分杆件之间的连接方式以及节点板、拼接板、焊缝与螺栓计算) 7.预拱度计算及实现方式 8.伸缩缝的计算设计 三.主桁的粗选

3.1选取的原则:按照钢材的容许应力为屈服应力的1/1.7确定主桁需要的截面面积,从而粗选主桁截面。 以Q370为例: 对于拉杆:拉杆受强度、疲劳控制,应力为370/1.7=217.6Mpa,拉杆应力计算采用扣除螺栓消弱后的净面积,并考虑杆件由于刚接的次应力,所以拉杆杆件需要面积采用:杆件内力/150 对于压杆:压杆受强度、稳定控制,检算稳定时考虑容许应力折减,所以压杆一般由稳定控制。检算压杆,采用毛面积,粗选截面时压杆杆件需要面积采用:杆件内力/160。杆件越长截面越小,压杆容许应力折减越多,所以对于长细杆,可以采用压杆杆件需要面积:杆件内力/140。 粗选主桁后,控制大的指标,读取主桁的支反力、刚度条件是否符合规范。 3.2内力控制组合 主力:恒载+活载+支座沉降 3.3计算模型 平面一次成桥模型 建模方式:a、cad中导入主桁杆件 b、施加荷载,注意二恒的取值,平面一次成桥模型的二恒: (整体二恒+初估联结系+初估桥面)/主桁片数

桁架拱桥算例

钢筋混凝土组合桁架拱桥的检测与评价 陈秋波 (河北道桥工程检测有限公司石家庄 050011) 摘要:本文介绍了某预应力钢筋混凝土桁架拱桥的病害情况,根据结构特点采用空间梁单元和板单元建立了结构计算模型,对大桥进行了考虑多种工况作用下的内力检算,并根据计算结果分析了大桥产生病害的原因。 关键词:桁架拱桥;病害;检算 1 前言 预应力混凝土悬臂桁架拱桥为拱、梁组合体系,是我国首创的新桥型。该桥型综合考虑了桁架拱和桁架梁的特点,各取所长、结构受力合理,造型美观。该桥型特别适合于山区大跨度无支架施工,由于构件重量较轻,只需结构简单、操作方便的自制人字桅杆吊机就可以完成全桥的构件安装。结构受力合理、自重轻,对基础要求相应不高,同时安装设备简易,施工用钢仅为缆索吊机的10%左右,所以该桥型较为经济。这种桥型在我国贵州省应用最多,很适合当地的自然条件。但是这种桥型受力较为复杂,尤其是在年温差较大的北方山区应用,存在一些不同于南方地区的问题。本文以一座位于北方山区的预应力混凝土悬臂桁架拱桥的病害情况分析为例,探讨了该桥型在北方山区的应用时应充分考虑的因素。 2 工程概况 2.1 结构概况 该桥设计组合跨径为14米+138米+10米+2×8米。全长178米,主跨结构为预应力混凝土组合桁架拱桥,跨径138米。组合桁架的下弦杆为二次抛物线,矢跨比为1/6。上弦杆在两侧第二、三节间处断开,使其两边形成长为31米的悬臂桁架,中间为固结于悬臂桁架上的76米桁架。主拱跨结构如图1所示 图1 主拱跨结构 2.2 病害情况 该桥在通车后出现了一些病害,上弦顶板、底板、实腹段拱肋出现裂缝;下弦杆节点处裂缝发育严重,双竖秆下端出现裂缝,混凝土脱落,部分露出钢筋;实腹段附近的短直腹杆出现沿杆身的斜裂缝。 3 结构内力检算 3.1 结构检算模型

150米跨桁架拱桥检测

150米跨桁架拱桥检测 一、工程概况 本桥为预应力混凝土桁式组合拱桥(见图一、二),桥梁主跨150米,计算矢高f=25米,矢跨比f/L=1/6。下弦拱轴线为二次抛物线,抛物线方程为。两岸边孔为连续刚构。全桥跨径组成12+14+3×16+150+2×16+3×14米,桥梁全长306.8米。 桥面净宽7+2×1.00米(人行道),桥面全宽9.5米。桥梁上、下弦为箱型截面边箱加顶、底板组成三箱单室截面,上弦杆截面高114厘米(L/131.6),宽度712厘米;下弦杆截面高150厘米(L/100),宽度712厘米;拱顶截面高180厘米(L/83.3),顶、底板均采用加腋板,厚度12~14厘米。该桥两桁片中距5.24米(见图三)。{#fahe#}

桥梁结构材料:上部构造为500#混凝土、下部构造为400#混凝土、人行道系300#混凝土。 桥梁设计荷载:汽车—20级,挂车—100 ,人群荷载为350公斤/平方米。{#fahe#} 在2003年8月的桥梁检查中,该桥节点发现大量裂缝,全桥结构性破损比较严重,被贵州省高速公路总公司定为危桥。2004年6月8日——6月14日,在业主有关同志的大力配合下,我公司专业技术人员对该大桥进行了全面的桥梁检测。 二、检测目的 2.1、对大桥的宏观工作状况及细部健康状况进行检测,判别该桥目前存在病害及病害原因,从而对桥梁的结构质量和技术状态作出科学、客观、公正的评价。 2.2、为业主提供完整、可信的综合检测报告,给业主决策提供技术依据。为业主今后指导今后的桥梁养护、检测与维修工作提供技术资料。 三、检测内容 3.1、结构总体及细部尺寸的复核量测 范围:整个桥跨。 内容:主桥实测拱轴线,主要控制截面的尺寸、主拱圈及顶底板的厚度、拱上立柱、斜杆等结构实际尺寸。 3.2、构件混凝土强度检测 3.3、构件混凝土表面病害检查 范围:上部结构顶底板、主拱圈、拱上立柱、斜杆、拱脚及拱座等。 内容:检查下弦杆、上弦杆、竖杆、拱顶区段及杆件接头的混凝土质量(杆件编号见图五)。对照原施工图及《公路工程质量检验评定标准》、《公路养护质量检查评定标准》等规范结构表面裂缝分布、性状、形态和数量;结构混凝土表面蜂窝、麻面、剥落、层离、孔洞、

相关主题
文本预览
相关文档 最新文档