当前位置:文档之家› PCB板级设计之电磁兼容性概论

PCB板级设计之电磁兼容性概论

PCB电磁兼容性设计报告样本

PCB电磁兼容性设计报告 学科专业: 测控技术与仪器 本科生: 张亚新 学号: 1002445 班号: 232121 指导教师: 宋恒力

中国地质大学( 武汉) 自动化学院 10月24号

PCB电磁兼容性设计 摘要: 随着信息化社会的发展, 电子设备已被广泛应用于各个领域。各种电了产品趋向于小型化、智能化, 电子元器件也趋向于体积更小、速度更高、集成度更大, 这也导致了她们在其周围空间产生的电磁场点评的不断增加。由此带来的电磁兼容问题也日益严重。因此, 电磁兼容问题也就成为一个电工系统能否正常工作的关键。同样, 随着电子技术的飞速发展, 印刷电路板( PCB) 的密度越来越高, 其设计的好坏对电路的干扰及抗干扰能力影响很大。因此, 对PCB进行电磁兼容性(EMC)设计是非常重要的, 保证PCB的电磁兼容性是整个系统设计的关键。本文就EMC的历史发展及其在未来电子信息时代中的应用进行分析, 介绍电磁干扰的产生机理和 原因, 并提出了相应抗干扰设计的措施。 关键词: 信息化; 电磁兼容( EMC) ; 电磁兼容性; PCB;

一: 引言 .......................................................................... 错误!未定义书签。二: 电磁干扰与电磁兼容概述. (4) 1、早期历史概述 (5) 2、EMC 技术是随着干扰问题的日趋严重而发展的 (6) 3、电磁干扰对电子计算机等系统设施的危害 (6) 4、EMC在军事领域的发展状况 (7) 三: 电磁兼容学科的发展历史 (5) 四: 中国EMC技术的发展状况 (8) 五: 抗干扰措施与电磁兼容性研究 (8) 1、电路板设计的一般规则 (9) 2、电路板及电路抗干扰措施 (9) 六: 电磁兼容学科发展趋势 (10) 七: 小结 (12) 参考文献 (13) 一、引言 电磁干扰是现代电路工业面正确一个主要问题, 为了克服干扰, 电路设计者不得不赶走干扰源, 或者是设法保护电路不受到干扰源的干扰, 其目的都是为了让电路按照预期的目标开工作——

芯片级电磁兼容性的设计

芯片级电磁兼容性的设计 日期:2005年10月29日人气:0 查看:[大字体中字体小字体] 芯片级电磁兼容性的设计 殷和国,杨银堂,付俊兴,李雯 (西安电子科技大学微电子研究所陕西西安710071) 摘要:介绍了电磁兼容性的基本概念、原理及其在集成电路设计中的重要性,对电磁兼容性设计的基本方法作了介绍,其中着重论述了芯片级电磁兼容性的设计方法。最后给出了芯片级电磁兼容性研究中存在的问题及未来的研究重点。 关键词:集成电路;电磁兼容;设计方法;芯片 随着现代科学技术的发展,电子、电气设备及系统获得了越来越广泛的应用。然而运行中的电子、电气设备大多伴随着电磁能量的转换,对通信系统、控制系统和计算机系统为主干的电子系统(尤其在集成电路方面)产生了巨大的副面影响。这主要是因为集成电路极易受射频影响并可能会以有害的方式影响检波信号,通常会导致原设计的功能失效,并且可能会危及安全。另外,在集成电路设计中要求具有低的电磁能量辐射及高的敏感度。因此,提高集成电路的电磁兼容性已成为当今的研究重点之一。 本文介绍了一些电磁兼容性设计的基本方法,重点分析了芯片级电磁兼容性的设计方法及其应用,并讨论了芯片级电磁兼容性研究中存在的问题及未来的研究重点。 1 分析和解决电磁兼容性的一般方法 随着科学技术的发展,系统越来越复杂,使用的频谱越来越宽,根据电磁兼容性学科中多年的研究可知,分析和解决设备、子系统或系统间的电磁兼容性问题一般有3种方法,他们分别为问题解决法(ProblemSolving Approach)[1]、规范法(SpecificationApproach)[1]和系统法(Systems Approach)[1]。 1.1 问题解决法 问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决

电磁兼容性原理与设计

第一章电磁兼容性原理与设计 1.电磁兼容性的基本概念 电磁兼容性是一个新概念,它是抗干扰概念的扩展和延伸。从最初的设法防止射频频段内的电磁噪声、电磁干扰,发展到防止和对抗各种电磁干扰。进一步在认识上产生了质的飞跃,把主动采取措施抑制电磁干扰贯穿于设备或系统的设计、生产和使用的整个过程中。这样才能保证电子、电气设备和系统实现电磁兼容性。 1. 1电磁兼容性的概念 A、电磁噪声与电磁干扰 电磁噪声是指不带任何信息,即与任何信号都无关的一种电磁现象。 在射频频段内的电磁噪声,称为无线电噪声。 由机电或其他人为装置产生的电磁现象,称为人为噪声。 来源于自然现象的电磁噪声,称为自然噪声。 电磁干扰则是指任何能中断、阻碍,降低或限制通信电子设备有效性能的电磁能量。 由大气无线电噪声引起的,称为天线干扰。 由银河系的电磁辐射引起的,称为宇宙干扰。 由输电线、电网以及各种电子和电气设备工作时引起的,称为工业干扰。 B、电磁兼容 电磁兼容性是指电子、电气设备或系统在预期的电磁环境中,按设计要求正常工作的能力。它是电子、电气设备或系统的一种重要的技术性能。其包括两方面的含义: ①设备或系统应具有抵抗给定电磁干扰的能力,并且有一定的安全余量。 ②设备或系统不产生超过规定限度的电磁干扰。 从电磁兼容性的观点出发,电子设备或系统可分为兼容、不兼容和临界状态三种状态:IM=Pi-Ps(dB) 式中:IM -------电磁干扰余量 Pi-------干扰电平 Ps-------敏感度门限电平 当Pi>Ps即干扰电平高于敏感度门限电平时,IM>0, 表示有潜在干扰,设备或系统处于不兼容状态 当Pi

PCB的电磁兼容性设计

PCB的电磁兼容性设计 印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则: 布局 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。应留出印制板定位孔及固定支架所占用的位置。根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则: 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。 布线 布线的原则如下: 输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为1 ~ 15mm 时.通过2A的电流,温度不会高于3℃,因此.导线宽度为 1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生胀和脱落现?。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。印刷线路板的布线要注意以下问题:专用零伏线,电源线的走线宽度≥1mm;电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡;要为模拟电路专门提供一根零伏线;为减少线间串扰,必要时可增加印刷线条间距离,在意;

印制电路板PCB的电磁兼容设计

线路板(PCB )级的电磁兼容设计 1.引言 印制线路板(PCB )是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,它是各种电子设备最基本的组成部分,它的性能直接关系到电子设备质量的好坏。随着信息化社会的发展,各种电子产品经常在一起工作,它们之间的干扰越来越严重,所以,电磁兼容问题也就成为一个电子系统能否正常工作的关键。同样,随着电于技术的发展,PCB 的密度越来越高,PCB 设计的好坏对电路的干扰及抗干扰能力影响很大。要使电子电路获得最佳性能,除了元器件的选择和电路设计之外,良好的PCB 布线在电磁兼容性中也是一个非常重要的因素。 既然PCB 是系统的固有成分,在PCB 布线中增强电磁兼容性不会给产品的最终完成带来附加费用。但是,在印制线路板设计中,产品设计师往往只注重提高密度,减小占用空间,制作简单,或追求美观,布局均匀,忽视了线路布局对电磁兼容性的影响,使大量的信号辐射到空间形成骚扰。一个拙劣的PCB 布线能导致更多的电磁兼容问题,而不是消除这些问题。在很多例子中,就算加上滤波器和元器件也不能解决这些问题。到最后,不得不对整个板子重新布线。因此,在开始时养成良好的PCB 布线习惯是最省钱的办法。 有一点需要注意,PCB 布线没有严格的规定,也没有能覆盖所有PCB 布线的专门的规则。大多数PCB 布线受限于线路板的大小和覆铜板的层数。一些布线技术可以应用于一种电路,却不能用于另外一种,这便主要依赖于布线工程师的经验。然而还是有一些普遍的规则存在,下面将对其进行探讨。 为了设计质量好、造价低的PCB ,应遵循以下一般原则: 2.PCB 上元器件布局 首先,要考虑PCB 尺寸 大小。PCB 尺寸过大时,印 制线条长,阻抗增加,抗噪 声能力下降,成本也增加; 过小,则散热不好,且邻近 线条易受干扰。在确定PCB 尺寸后.再确定特殊元件的 位置。最后,根据电路的功 能单元,对电路的全部元器 件进行布局。 电子设备中数字电路、模拟电路以及电源电路的元件布局和布线其特点各不相同,它们产生的干扰以及抑制干扰的方法不相同。此外高频、低频电路由于频率不同,其干扰以及抑制干扰的方法也不相同。所以在元件布局时,应该将数字电路、模拟电路以及电源电路分别放置,将高频电路与低频电路分开。有条件的应使之各自隔离或单独做成一块电路板。此外,布局中还应特别注意强、弱信号的器件分布及信号传输方向途径等问题。 在印制板布置高速、中速和低速逻辑电路时,应按照图1-①的方式排列元器件。 在元器件布置方面与其它逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题。原则之一是各部件之间的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。如图1-②所示。 时钟发生器、晶振和CPU 的时钟输入端都易产生噪声,要相互靠近些。易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路。如有可能,应另做电路板,这一点十分重要。 2.1 在确定特殊元件的位置时要遵守以下原则: (1) 尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2) 某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。 (3) 重量超过15g 的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 (4) 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。 图1:印制板元器件布置图

产品的电磁兼容性设计

产品的电磁兼容性设计 * 造成设备性能降低或失败的电磁干扰必须同时具备三个要素: 即存在一个电磁骚扰源、存在一条骚扰传输的途径、存在一个对骚扰敏感的设备。 * 为解决设备间的电磁兼容问题,说来很简单,只要在上述三个要素中的任何一个环节上取得突破,都能取得满意的结果。事实上,国际和国内的电磁兼容标准已为每个设备至少应具备的自身电磁骚扰抑制要求及最起码的抗扰度要求都已作出明确规定,设计人员应当根据这些要求采取适当的措施,使产品的电磁兼容性能达标。 第一章产品骚扰的抑制方法 * 产品的骚扰抑制主要有三种主要措施:接地、屏蔽、滤波。这几个措施既有独立性,又有相互关连。例如,良好的接地可降低设备对屏蔽和滤波的要求。又由于滤波技术有它的两面性,产品骚扰的抑制要用它,在产品抗扰度提高时也要用它,故在下一章(产品抗扰度性能提高)再谈。1--接地 *“接地”用在不同场合中有不同理解:一个是真正意义上的接地(接大地);另一个是接参考地(接参考电位)。 * 设备的接大地不是必须的,例如:飞机、卫星、移动电话、电子手表

等都没有接大地,但它们照样工作得很好。实际上设备的接大地,更多地是和人体的安全、设备的安全、设备安装中的安全联系在一起。* 设备接参考地则是必须的,以便给设备的工作提供一个稳定的基准电位。参考地可以是一个点,也可以是一个面,但在实际设备中往往是取一个大面积的导体作为基准电位面,如用设备的底板、专用接地铜排、甚至是设备的框架等等。 * 理想的接地平面是一个零电位,零阻抗的物理实体,任何电流通过它时都不会产生压降,这个理想平面可为设备的任何信号提供公共的参考电位,而不必担心各接地点是否存在电位差。事实上这样的平面并不存在,即使是电阻率接近为零的超导体,也会由于电子在两个点之间运动时的延迟而呈现某种电抗效应,因此所谓理想的接地平面也只是近似的,即使如此,上述概念对设备考虑电磁兼容性仍有着重要的影响。 2--基本的信号接地方式 * 实用中有三种基本信号接地方式:浮地、单点接地和多点接地。2.1浮地 * 采用浮地的目的是将设备或电路与公共地或者可能引起环流的公共导体隔离开来。浮地还可以使不同电位的电路之间(通过光耦或隔离变

电磁兼容PCB

PCB的EMC设计 PCB是构成电子设备的基础,保证PCB的电磁兼容性是整个系统设计的关键, 合理正确的PCB的布线和设计应该使得: (l)板上的各部分电路相互间无干扰,都能正常工作; (2)PcB对外的传导发射和辐射发射尽可能降低,达到有关标准要求; (3)外部传导干扰和辐射干扰对PCB上的电路基本无影响。 1.1 PCB设计理论基础 1.电磁兼容设计的带宽 在数字电路系统中,电磁兼容设计的带宽与数字电路的工作频率是两个不同的概念,数字系统的工作频率是由信号的重复周期决定的,而电磁兼容性设计的带宽是由信号的上升沿、下降沿决定。器件对电磁辐射的贡献不是取决于系统的工作频率,而是取决于边沿速率。理论研究表明,在进行电磁兼容设计时,主要考虑信号上升沿的十倍频,如公式4一1所示。 式中fmax为谐波频率,fr为需要考虑的电磁兼容性的带宽。 快速的信号切换时间(边沿速率)将导致回流、串扰、阻尼振荡(振铃)及反射等问题的增加。信号的边沿速率与信号的工作频率是两个不同的概念,高的边沿速率不一定是高的频率。例如在实际的应用中,可能系统的工作频率并不高。但如果信号的上升速率过快的话,将会产生较大振铃现象,同样会带来信号完整性的问题。当振铃信号达到器件所能容忍的极限值时会使器件内部的半导体 特性发生变化(电子迁移)、器件发热及功耗加大等现象,造成系统的可靠性降低,并且较快的边沿速率其功耗也越大。 信号的边沿速率与器件的输出强度(输出驱动电流)有直接的关系,过强的输出驱动电流除了能够提高信号的边沿速率之外,还会对周围的器件及传输线造成干扰(Crosstalk)。因此对电磁兼容性(EMI)非常敏感的系统,信号边沿速率是重点需要考虑的,而系统的时钟频率反而放在第二位考虑。 2.器件的分布参数 系统工作在低频情况下,电阻、电感、电容主要表现为集总参数,但当系统的工作频率较高时,元器件特性就较为复杂,这时候的元件就有很大的分布参数存在,比如分布电感、分布电容、分布互感、分布互电容等。在高频情况下电阻、电感、电容的等效电路如表4一1所示:

PCB电磁兼容性设计报告

PCB电磁兼容性设计报告 学科专业:测控技术与仪器 本科生:张亚新 学号:445 班号:232121 指导教师:宋恒力 中国地质大学(武汉)自动化学院 2014年10月24号

综述: PCB电磁兼容性设计 摘要:随着信息化社会的发展,电子设备已被广泛应用于各个领域。各种电了产品趋向于小型化、智能化,电子元器件也趋向于体积更小、速度更高、集成度更大,这也导致了他们在其周围空间产生的电磁场点评的不断增加。由此带来的电磁兼容问题也日益严重。所以,电磁兼容问题也就成为一个电工系统能否正常工作的关键。同样,随着电子技术的飞速发展,印刷电路板(PCB)的密度越来越高,其设计的好坏对电路的干扰及抗干扰能力影响很大。因此,对PCB进行电磁兼容性(EMC)设计是非常重要的,保证PCB的电磁兼容性是整个系统设计的关键。本文就EMC的历史发展及其在未来电子信息时代中的应用进行分析,介绍电磁干扰的产生机理和原因,并提出了相应抗干扰设计的措施。 关键词:信息化;电磁兼容(EMC);电磁兼容性;PCB; 目录 一:引言.................................................... 错误!未定义书签。二:电磁干扰与电磁兼容概述 . (4) 1、早期历史概述 (5) 2、EMC 技术是随着干扰问题的日趋严重而发展的 (6) 3、电磁干扰对电子计算机等系统设施的危害 (6) 4、EMC在军事领域的发展状况 (7) 三:电磁兼容学科的发展历史 (5) 四:我国EMC技术的发展状况 (8) 五:抗干扰措施与电磁兼容性研究 (8) 1、电路板设计的一般规则 (9) 2、电路板及电路抗干扰措施 (9) 六:电磁兼容学科发展趋势 (10) 七:小结 (12) 参考文献 (13)

电磁兼容设计的一般准则

电磁兼容设计的一般准则 1.1电子线路设计准则 电子线路设计者往往只考虑产品的功能,而没有将功能和电磁兼容性综合考虑,因此产品在完成其功能的同时,也产生了大量的功能性骚扰及其它骚扰。而且,不能满足敏感度要求。电子线路的电磁兼容性设计应从以下几方面考虑: 1.1.1元件选择 在大多数情况下,电路的基本元件满足电磁特性的程度将决定着功能单元和最后的设备满足电磁兼容性的程度。选择合适的电磁元件的主要准则包括带外特性和电路装配技术。因为是否能实现电磁兼容性往往是由远离基频的元件响应特性来决定的。而在许多情况下,电路装配又决定着带外响应(例如引线长度)和不同电路元件之间互相耦合的程度。具体规则是:⑴在高频时,和引线型电容器相比,应优先进用引线电感小的穿心电容器或支座电容器来滤波。 ⑵在必须使用引线式电容时,应考虑引线电感对滤波效率的影响。 ⑶铝电解电容器可能发生几微秒的暂时性介质击穿,因而在纹波很大或有瞬变电压的电路里,应该使用固体电容器。 ⑷使用寄生电感和电容量小的电阻器。片状电阻器可用于超高频段。 ⑸大电感寄生电容大,为了提高低频部分的插损,不要使用单节滤波器,而应该使用若干小电感组成的多节滤波器。 ⑹使用磁芯电感要注意饱和特性,特别要注意高电平脉冲会降低磁芯电感的电感量和在滤波器电路中的插损。 ⑺尽量使用屏蔽的继电器并使屏蔽壳体接地。 ⑻选用有效地屏蔽、隔离的输入变压器。 ⑼用于敏感电路的电源变压器应该有静电屏蔽,屏蔽壳体和变压器壳体都应接地。 ⑽设备内部的互连信号线必须使用屏蔽线,以防它们之间的骚扰耦合。 ⑾为使每个屏蔽体都与各自的插针相连,应选用插针足够多的插头座。 1.1.2电设计 每种单元都可以描述为接收一个输入信号、并对输入信号进行加工,然后在输出端输出加工过的信号。必须考虑在输入端可能存在的不希望有的信号,也要考虑经过输入端之外的其它通路进入的无用信号。最好在输入点上处理这些无用信号。 1.1. 2.1电源 设备电源的EMI耦合涉及对供电线上的传导发射(主电源谐波、差模或共模瞬变、无线电 发射机的窄带信号)的敏感度和传导到供电线上的发射。在设备内电源广泛地同其它功能相连,一方面电源中产生的无用信号可以很容易地耦合到各功能单元中去,另一方面,一个单元中的无用信号可能通过电源的(公共阻抗)耦合到其它单元去。因此,从电磁兼容的观点出发首先要关心电源。 ⑴在可能的条件下,单独为各功能单元供电。

电磁兼容性设计探讨

電磁兼容性設計探討 電子、電氣產品電磁兼容性設計的目的,是使電子、電氣產品在預期的電磁環境中能正常工作、無性能降低或故障,而且只有對該電磁環境中的任何事物不構成電磁騷擾的能力。電子、電氣產品電磁兼容性設計的基本方法是指標分配和功能分塊設計。也就是說,首先要根据有關標準和規範,把整個產品的電磁兼容性指標要示逐級分配到各個功能塊上,細分成產品級的、模塊級的、電路級的和元器件級的指標;然后,按照各級要實現的功能和電磁兼容性指標要求分別進行設計,采取一定的防護措施等。做好電子、電氣產品電磁兼容性設計需要注意以下八個問題: 一、必須在產品研制開發的初始階段,同時進行電磁兼容性設計 經驗証明,對于一種產品,如果在開發時解決電磁兼容性問題所需的費用定為1,那麼,到定型時再解決,可能需要10倍的費用,到批量生產時需100倍,而如果到用戶使用后,發現問題時再解決,費用可能高達1000倍。這就是說,如果在產品研制開發的初始階段,同時進行電磁兼容性設計,就可以把80%~90%的電磁兼容性問題解決在設計定型之前。如果等到生產或使用階段再去解決,非但在技朮上造成很大難度,而且還會造成人力、財力的極大浪費。由此可見,對于任何一種產品,盡早解決電磁兼容性問題是非常必要的。 二、芯片等有源器件的選用和印制電路板設計是關鍵 首先,必須注意芯片等有源器件固有的敏感特性和電磁騷擾發射特性,芯片等有源器件可以分為兩類:調諧器件和基本頻帶器件。調諧器件起帶通元件作用,其頻率特性包括:中心頻率、通帶特性、抑制斜率和亂真響應。基本頻帶器件起低通元件作用,其頻率特性包括:截止頻率、通帶特性、抑制斜率和亂真響應;除頻率特性外,還有輸入阻抗特性、輸入端的平衡不平衡特性和敏感度特性。模擬器件的敏感度特性取決于靈敏度和帶寬;數字器件的敏感度特性取決

电磁兼容设计 系列(一)

电磁兼容设计系列(一) 随着电子产品向着小型化、数字化、集成化、综合化、高速化、高频化以及网络化的方向快速发展,电磁兼容问题变得越来突出,已成为制约电子产品功能实现的重要原因。因此如何有效地进行电磁兼容设计及整改已成为了当前研 究的热点。 下面先从电磁兼容的概念进行介绍。国家军用标准GJB72-85:《电磁干扰和电磁兼容性名词术语》中电磁兼容性的定义为:“设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许 的降级;它也不会使同一电磁环境中其它设备(分系统、系统)因受其电磁发射而导致或遭受不允许的降级”。 因此,满足电磁兼容性,不仅要求设备(分系统、系统)能按设计要求完成其功能,而且还要满足不产生超过规定限度的电磁发射要求,同时还要有一定的抗干扰能力。其中电磁兼容中的“发射”既包含传导发射,也包含辐射发射。辐射发射是指通过空间传播的、有用的或不希望有的电磁能量[1];传导发射是指沿电源线、控制线或信号线传输的电磁能量[1]。此外还涉及到与抗干扰能力相关的电磁兼容术语“电磁敏感性”,其是指当存在电磁骚扰的情况下,设备(分系统、

系统)不能避免性能降低的能力。实际上,电磁敏感性反映的是设备(分系统、系统)抗干扰的能力,敏感性越高,则抗扰能力越低,设备(分系统、系统)在电磁骚扰下就越容易导致或遭受不允许的降级。 按照电磁兼容研究对象可以分为:环境级、复杂系统级、设备(分系统级、系统)级、电路级、元器件级电磁兼容。需要注意的是“系统”与“分系统”的概念是相对的,因为在“系统”的定义中若排除操作人员,那么同一物理系统在某一环境中可能被认为是“分系统”,而在另一环境中也可能被认为是“系统”,例如车载通信系统可以被认为是电子战系统的分系统,然而当其单独执行通信任务时可以被认为是相对独立的系统[1]。基本概念了解之后,下面介绍电子系统的电磁兼容产生条件。一般地,电磁干扰源发出的电磁干扰能量,通过耦合通道传输至敏感系统,导致敏感系统出现响应,我们称这一作用过程及其效果称为电磁干扰效应。如果电磁干扰效应表现为敏感系统发生有限度的功能降级,就产生了电磁兼容性问题。不论复杂系统还是简单电路,任何一个电磁兼容问题的产生必须具备三个基本条件:首先应该具有电磁干扰源,即要有产生电磁能量的物体或现象,如有开关动作的继电器、汽车的点火系统、大功率雷达、雷电放电等;其次还要有传输干扰能量的路径或通道;第三有被干扰对象即敏感设备功能的有限度降级。对于任何电子系统,既可能是

电子产品结构设计中的电磁兼容性(EMC)设计

电子产品结构设计中的电磁兼容性(EMC)设计 江苏省电子信息产品质量监督检验研究院胡寅秋 1 引言 随着科学技术的迅速发展,现代各种电子、电气、信息设备及家用电器的数量和种类越来越多,性能越来越先进,其使用场合和数量密度也越来越高。这就使得电气电子系统内、设备内的相互干扰愈加严重。在这种情况下,要保证设备在各种复杂的电磁环境中正常地工作,则在结构设计阶段就必须认真考虑电磁兼容性设计。 2 电磁干扰方式 电子设备结构设计中常见的电磁干扰方式主要有: 传导干扰 传导干扰一般是指通过电源,电缆,布线系统,接地系统引起的串扰。 辐射干扰 在高频情况下,电磁能量比较容易产生辐射。通常,在MHz以上,辐射就较明显,当导线长度超过四分之一波长时,辐射功率将很大。 感应及耦合引起的干扰 3 电磁兼容(EMC)设计的主要内容及方法 电磁兼容设计的主要方法有屏蔽、滤波、接地等。 3.1屏蔽 电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。电子设备结构设计人员在着手电磁兼容性设计时,必须根据产品所提出的抗干扰要求进行有针对性的电磁屏蔽设计。 (1)静电屏蔽 静电屏蔽主要是为了抑制寄生电容的耦合,使电路由于分布电容泄漏出来的电磁能量经屏蔽接地而不致于串入其它电路,从而使干扰得到抑制。 静电屏蔽的基本方法是采用低电阻率材料作屏蔽体,在感应源与受感器之间加一块与机壳接触良好的金属隔板网、罩或盒。可用铜、铝材做屏蔽外壳,要求不高的也可用钢材。机壳必须是导电良好、稳定可靠的导电体。静电屏蔽必须保

证良好的接地,否则屏蔽效果将大大下降。 (2)磁屏蔽 磁屏蔽主要是针对一些低阻抗源。例如变压器、线圈及一些示波器、显示器就可考虑用磁屏蔽。良好的低频屏蔽必须具有合适的电导率和高磁导率。磁屏蔽的基本方法是用高磁导率材料,如铁镍合金、镍铅合金、纯铁、铜作屏蔽材料,做成屏蔽罩。磁屏蔽罩在结构上按加工工艺不同一般可分为两类:一类为用平板坯料深冲成形的,另一类为焊接成形的。 (3)电磁屏蔽 电磁屏蔽就是对高频电磁辐射的屏蔽。 电磁屏蔽的主要方法是用金属材料做成屏蔽壳体。金属材料可以是铁磁性材料,也可以是非铁磁性材料,通过对电磁场的反射和吸收损耗起到屏蔽作用,具体选用哪种材料,则应根据工作频率(f )来确定。其临界频率为 )(1067.522 0Hz t f ×= 式中,t ——材料厚度(mm ); 当f >f0时,铁磁性材料比非铁磁性材料屏蔽效果好; 当f <f0时,非铁磁材料比铁磁性材料屏蔽效果好。 一般来讲,频率大于1MHz 时,其屏蔽效能主要取决于吸收损耗。 就反射损耗而言,非铁磁材料比铁磁材料优越,反射损耗与材料厚度无关。 电磁屏蔽理论指出:电磁干扰在通过屏蔽体时,一部分被反射,未被反射的部分进入屏蔽层而被吸收转化为热能,剩余的部分则穿透屏蔽层,继续向外传播。屏蔽体所具有的这种反射和吸收电磁波能量的能力被定义为屏蔽体的屏蔽效能。假定屏蔽体是均质无缝的,则屏蔽体的屏蔽效能与干扰场的场型有关,其屏蔽效果可按下面的公式计算。 远场屏蔽效果: ))(/log(10168131.0dB f f t SE r r r r σμμσ?+=

华为电磁兼容性结构设计规范V20

DKBA 华为技术有限公司企业技术规范 DKBA0.400.0022 REV. 2.0 电磁兼容性结构设计规范

华为技术有限公司发布

前言 本规范根据国家标准GJB 1046、GJB 12190、MIL- HDBK-419、IEC TS 61587-3、IEEE299-1997以及ARP1705 等系列标准编制而成。 本规范起草单位:华为技术有限公司结构造型设计部 本规范授予解释单位:华为技术有限公司结构造型设计部 本规范起草人: 本规范审核人: 标准化审核人: 本规范批准人: 本规范在编制和审核过程中,得到了EMC特别工作组各位同仁的协助,在此表示衷心的感谢!

目录 1 范围8 2 引用标准8 3 术语9 4电磁场的基本概念10 4.1 基本概念10 4.1.1 电场10 4.1.2 磁场10 4.1.3 电磁感应定律11 4.2电磁场方程组11 4.3 电磁波的传播特性12 5 电磁兼容的基本概念14 5.1 电磁兼容的定义14 5.2 电磁兼容的三要素14 5.3 如何实现电磁兼容14 5.4 产品电磁兼容性能具体要求15 5.5 解决电磁兼容问题的手段16 6 电磁屏蔽的基本理论1 7 6.1 电磁屏蔽的概念17 6.2 连续屏蔽体的屏蔽18 6.2.1 连续屏蔽体屏蔽模型18 6.2.2 吸收损耗19 6.2.3 反射损耗19 6.2.4 多次反射修正因子20 6.2.5 薄膜连续屏蔽体的屏蔽20 6.2.6 双层屏蔽21

6.3 不连续屏蔽体的屏蔽21 6.3.1 缝隙屏蔽22 6.3.2 开孔屏蔽23 6.3.3 电缆穿透26 6.3.4 屏蔽体的综合屏蔽效能28 7 屏蔽设计29 7.1 选择屏蔽效能指标29 7.1.1 结构件屏蔽效能等级30 7.1.2 公司现有产品的RE测试结果概况30 32 7.1.3 公司现有结构件屏蔽效能测试结果 概况 7.1.4 如何选择结构件屏蔽效能指标34 7.1.5 屏蔽效能指标的默认含义35 7.1.6 关于低频磁场屏蔽35 7.1.7 关于1GHz以上的屏蔽36 7.2 选择屏蔽体方案36 7.3 屏蔽设计成本分析38 7.4 缝隙的屏蔽设计39 7.4.1 紧固点直接连接的屏蔽39 7.4.1.1 减小缝隙的最大尺寸39 7.4.1.2 增加缝隙深度40 7.4.1.3 紧固点间距的选择42 7.4.1.4 凸包的屏蔽44 7.4.2 安装屏蔽材料44 7.4.2.1 安装屏蔽材料的应用场合44 45 7.4.2.2 缝隙中安装屏蔽材料后的屏 蔽分析

电子系统的电磁兼容性设计

电子系统的电磁兼容性设计 【摘要】:现代电子设备都是在复杂电磁环境下运行的。针对电磁干扰常导致电子设备故障甚至安全事故,探讨了电子系统的电磁兼容性设计。文中对电磁干扰源作了剖析,论述了电磁兼容性设计理念,研究了抗电磁干扰的设计机理,针对电子设备常出现的故障,提出了抗电磁干扰的技术措施。以某控制设备电磁兼容性设计采取的具体技术措施为例,验证了抗电磁干扰的良好效果,显著提高了控制设备的安全可靠性。工程实践表明,最重要的抗电磁干扰技术措施是系统的良好接地和屏蔽以及合理布线。 随着微电子技术的快速发展,电子设备应用越来越广泛,电子系统的集成度越来越高,但是在复杂电磁环境下,电子系统对电磁干扰有明显的敏感性和脆弱性。为了减少故障并杜绝事故的发生,必须对电子设备进行电磁兼容性设计。只要电子电气设备通电就会产生电磁场,电生磁,磁生电,因此电磁环境是非常复杂的,一方面要求使用电子设备时对周围的电磁环境不造成污染,另一方面也要求该电子设备在现实电磁环境应用中不至于性能下降或发生故障以致产生严重事故。因此必须对电子设备的电磁兼容性进行研究,对电磁导致的干扰进行控制与防护。基于电磁兼容性设计的重要性,以下对相关问题作某些探讨。 1 常见的电磁干扰现象及其分析电磁及其感应现象是普遍存在的,因此电子系统的电磁工作环境是非常复杂的。从工程应用角度,电磁干扰按工作频率的不同可将其进行分类。例如,一般电网中普遍存在谐波信号电压波动、电网频率变化与低频感应电压、电网电压不平衡、电网供电波动短暂下降与短时间中断等导致的低频传导干扰,磁场与电场的低频辐射干扰;由于感应连续波电压电流的振荡瞬变与单向瞬变引起的高频传导干扰,电磁场(连续波、瞬态)与磁场、电场导致的高频辐射干扰;由于材料的绝缘性能导致的静电放电干扰等。上述提及的干扰包含了工程应用中绝大多数的电磁干扰现象。 在对电子系统进行抗干扰性能分析时,必须对导致系统的固有特性及其应用环境进行综合分析。电子电路系统中可能出现的电磁干扰类型有:例如,由于存在电路回路的公共阻抗耦合,因而导致电路性的相互干扰;由于干扰源与干扰对象之间存在着变化的电场,通过电容耦合可能形成电容性干扰,因其会产生干扰电压; 空间电磁波的电、磁场强度变化,

电磁兼容性原理与设计

电磁兼容性原理与设计 电磁兼容性设计的基本原理 1.接地 接地是电子设备的一个很重要问题。接地目的有三个:(1)接地使整个电路系统中的所有单元电路都有一个公共的参考零电位,保证电路系统能稳定地干作。 (2)防止外界电磁场的干扰。机壳接地可以使得由于静电感应而积累在机壳上的大量电荷通过大地泄放,否则这些电荷形成的高压可能引起设备内部的火花放电而造成干扰。另外,对于电路的屏蔽体,若选择合适的接地,也可获得良好的屏蔽效果。 (3)保证安全工作。当发生直接雷电的电磁感应时,可避免电子设备的毁坏;当工频交流电源的输入电压因绝缘不良或其它原因直接与机壳相通时,可避免操作人员的触电事故发生。此外,很多医疗设备都与病人的人体直接相连,当机壳带有110V或220V电压时,将发生致命危险。 因此,接地是抑制噪声防止干扰的主要方法。接地可以理解为一个等电位点或等电位面,是电路或系统的基准电位,但不一定为大地电位。为了防止雷击可能造成的损坏和工作人员的人身安全,电子设备的机壳和机房的金属构件

等,必须与大地相连接,而且接地电阻一般要很小,不能超过规定值。 电路的接地方式基本上有三类,即单点接地、多点接地和混合接地。单点接地是指在一个线路中,只有一个物理点被定义为接地参考点。其它各个需要接地的点都直接接到这一点上。多点接地是指某一个系统中各个接地点都直接接到距它最近的接地平面上,以使接地引线的长度最短。接地平面,可以是设备的底板,也可以是贯通整个系统的地导线,在比较大的系统中,还可以是设备的结构框架等等。 混合接地是将那些只需高频接地点,利用旁路电容和接地平面连接起来。但应尽量防止出现旁路电容和引线电感构成的谐振现象。 2.屏面 屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。 因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能

相关主题
文本预览
相关文档 最新文档