当前位置:文档之家› (完整word版)分式不等式与一元高次不等式的解法训练.doc

(完整word版)分式不等式与一元高次不等式的解法训练.doc

(完整word版)分式不等式与一元高次不等式的解法训练.doc
(完整word版)分式不等式与一元高次不等式的解法训练.doc

【知识点梳理】

一、可解的一元高次不等式的标准形式

(x x1)( x x2 )L ( x x n ) 0(0)

(1)左边是关于 x 的一次因式的积;

(2)右边是 0;

(3)各因式最高次项系数为正。

二、一元高次不等式的解法

数轴标根法:

1、将高次不等式变形为标准形式;

2、求根x1, x2,L , x n,画数轴,标出根;使等号成立的根, 标为实点 , 等号不成立的根

要标虚点 .

3、从数轴右上角开始穿根,穿根时的原则是“奇穿偶回”

数轴上方曲线对应区域使“ >”成立 , 下方曲线对应区域使“ <”成立 .

二、分式不等式

方法 1:利用符号法则转化为一元一次不等式组,进而进行比较。

方法 2:在分母不为0 的前提下,两边同乘以分母的平方。

通过例 1,得出解分式不等式的基本思路:等价转化为整式不等式(组):

(1)f x

0 f x g x 0

f x f x

g x 0

( 2)

x

x 0

g x g g

解题方法:数轴标根法。

解题步骤:( 1)首项系数化为“正” ;( 2)移项通分,不等号右侧化为“ 0”;( 3)因式分解,化为几个一次因式积的形式;( 4)数轴标根。

x a1 x a2 x a m

0 或0 ,再用数轴标根法归纳:分式不等式主要是转化为

x b n

x b1 x b2

求解。

【典型例题】

例 1、解不等式

(1)2x 3-x 2-15x >0;

(2)(x+4)(x+5)2(2-x)4<0.

例 2、解下列不等式:

⑴ (x+1)(x-1)(x-2)(x-3)>0 ;⑵ (x+2)(x 2+x+1)>0 ;

⑶ (x+2) 2(x+1)<0 ;(4) (x+2) 2(x+1) 0;

2 2

(5) (x -1)(x -5x-6)> 0

例 3、解不等式:

x2 3x 2

x 2 7x 0

12

例 4、解不等式:x

2

9x 11 7 x2 2x 1

例 5、解不等式:

x2 5x 6

x2 3x 0

2

例 6、解不等式:

2 3x

x2 3

x 1

【巩固练习】

1、解下列不等式:

⑴ (x+1) 2(x-1)(x-4)>0;⑵ (x+2)(x+1)2(x-1)3(x-3)>0;

⑶(x+2)(x+1)2(x-1)3(3-x))0⑷ (x2-1)(x-1)(x2-x-2)0;

⑸x+1 4 ⑹ 3x 2 14x 14 1;

x 1 x 2 6x 8

(7)

( x 1) 2

( x 2) 0; (x 3)( x

4)

2:解不等式:

1、

x 3

2

、 2x 1

1

2 x

x 3

3、 x

2

3x 2 0

4

、 x

2

2x 1 0 x 2 2x 3

x 2

3

x

2

x 6

x 1

6

、 x x

3 0

5、

3

x 2

9 x 2

高考数学 高次分式不等式解法

课 题:分式不等式 高次不等式的解法 ⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析一:利用前节的方法求解; 分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等 式的解集是下面两个不等式组:???<+>-0401x x 与???>+<-0401x x 的解集的并集,即{x|? ??<+>-040 1x x } ∪?? ?>+<-0 40 1|{x x x }=φ∪{x|-4-0401x x 或? ??>+<-040 1x x ?x ∈φ或-40; 解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3; ③列表如下: ④由上表可知,原不等式的解集为:{x|-23}. 小结:此法叫列表法,解题步骤是:

①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)… (x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……; ②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的 因式开始依次自上而下排列); ③计算各区间内各因式的符号,下面是乘积的符号; ④看下面积的符号写出不等式的解集. 练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-13}. {x|-10(<0)形式,并将各因式x的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来; ③由右上方穿线,经过数轴上表示各根的点(为什么?); ④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”, 则找“线”在x轴下方的区间. 注意:奇过偶不过 例3解不等式:(x-2)2(x-3)3(x+1)<0. 解:①检查各因式中x的符号均正; ②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根); ③在数轴上表示各根并穿线,每个根穿一次(自右上方开始奇过偶不过),如下图: ④∴原不等式的解集为:{x|-1

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

分式不等式的解法

一 不等式的解法 1 含绝对值不等式的解法(关键是去掉绝对值) 利用绝对值的定义:(零点分段法) 利用绝对值的几何意义:||x 表示x 到原点的距离 ||(0){|}x a a x x a =>=±的解集为 }|{)0(||a x a x a a x <<-><的解集为 }|{)0(||a x a x x a a x -<>>>或的解集为 公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 2 整式不等式的解法 根轴法(零点分段法) 1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正); 2) 分解因式; 3) 标根(令每个因式为0,求出相应的根,并将此根标在数轴上。注意:能取 的根打实心点,不能去的打空心); 4) 穿线写解集(从右到左,从上到下依次穿线。注意:偶次重根不能穿过); 一元二次不等式解法步骤: 1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正); 2) 首先考虑分解因式;不易分解则判断?,当0?≥时解方程(利用求根公式) 3) 画图写解集(能取的根打实心点,不能去的打空心) 3 分式不等式的解法 1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0() f x g x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠?; 4 指数、对数不等式的解法 ①当1a >时 ()()()()f x g x a a f x g x >?> log ()log ()()()0a a f x g x f x g x >?>> ②当01a <<时 ()()()()f x g x a a f x g x >?< log ()log ()0()()a a f x g x f x g x >?<< x = 0x x ≥ 0x x -<

一元高次方程的求解

一元高次方程 一元三次方程求解 320x ax bx c +++= 其中,,a b c 是任意复数 ② 若令3 a x y =- ,则三次方程简化为 3 0y py q ++= ③ 其中33a p b =-,3 2327 ab a q c =-+ , 设123,,y y y 表示简化方程③的根,则据根与方程系数的关系,得1230y y y ++=。 若令3242712u p q v ?=--? ?=-??,2 11232 2123 z y v y vy z y vy v y ?=++??=++??。 对于适当确定的立方根,卡当公式是1z = 2z = 求解线性方程组123212312 12320y y y y v y vy z y vy v y z ++=??++=??++=?,得到11221 21212 3121() 31()31()3y z z y v z v z y v z v z ----?=+?? ?=+???=+?? , 于是,原三次方程的三个根为1y = 2y ω= ,3y ω= 其中23 427 q p ?=+ ,12ω=- (i =。 C 、一元四次方程求解 3. x 4 +bx 3+cx 2+dx+e =0. 设方程为x 4 +bx 3 +cx 2 +dx+e =0. (4)

移项,得x 4+bx 3=-cx 2-dx -e , 右边为x 的二次三项式,若判别式为0,则可配成x 的完全平方. 解这个三次方程,设它的一个根为y 0,代入(5),由于两边都是x 的完全平方形式,取平方根,即得 解这两个关于x 的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的. 高中阶段对于三次四次方程的求解很少涉及,我们遇到的一般是比较有规律的高次方程。当高次不等式 数学家们当然应当给出完美的理论来解决高次方程的求解问题。有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 1 01100,0,n n n n a x a x a x a a --++???++=≠ 而1 011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a

元高次不等式的解法

元高次不等式的解法 The manuscript was revised on the evening of 2021

一元高次不等式的解法 步骤:正化,求根,标轴,穿线(奇过偶不过),定解 穿根法(零点分段法)(高次不等式:数轴穿根法: 奇穿,偶不穿)解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” (2)移项通分,不等号右侧化为“0” (3)因式分解,化为几个一次因式积的形式 (4)数轴标根。 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 解法:①将不等式化为0123()()()()0n a x x x x x x x x ---->形式,并将各因式中的x 系数化“+”(为了统一方便) ②求根,并将根按从小到大的在数轴上从左到右的表示出来; ③由右上方穿线,经过数轴上表示各根的点。(即从右向左、从上往下:看x 的次数:偶次根穿而不过,奇次根一穿而过)。注意:奇穿偶不穿。 ④若不等式(x 系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间: 注意:“≤或≥”标根时,分子实心,分母空心。 例1: 求不等式223680x x x --+>的解集。 解:将原不等式因式分解为:(2)(1)(4)0x x x +--> 由方程:(2)(1)(4)0x x x +--=解得1232,1,4x x x =-==,将这三个根按从小到大顺序在数轴上标出来,如图 由图可看出不等式223680x x x --+>的解集为:{}|21,4x x x -<<>或 (1)()()()()00,f x f x g x g x >??> ()() ()()(2)00;f x f x g x g x

(完整word版)高中解分式不等式和高次不等式练习题(有详细答案)

解分式不等式和高次不等式练习题 班级 姓名 学号 一.选择填空 1. 使不等式x x 1>成立的x 取值范围是( ) A. )1(∞, B. )1(--∞, C. )1()01(∞-,,Y D. )1()1(∞--∞,,Y 2. 不等式 11 <-x ax 的解集为}21|{>a B. 21>b a ,,则不等式b x a ->>1的解是( ) A. 01<<-x b 或a x 10<< B. 01<<-x a 或b x 10<< C. b x 1-<或a x 1> D. b x a 11<<- 4. 不等式01 33≤-+x x x 的解集为( ) A }10{<≤x x B }1{>b a 则不等式a x b <<-1等价于( ) A .a x 1-<或b x 1> B .b x 1-<或a x 1> C . 01<<-x a 或b x 10<< D .01<<-x b 或a x 10<< 6. 关于x 的不等式)0(0<+<-+b a x b x a 的解集是( ) (A){}a x x -<| (B){}b x a x x >-<或| (C){}a x b x x -><或| (D){}a x b x -<<| 7. 不等式01 33≤-+x x x 的解集为( ) A }10{<≤x x B }1{-≤x x x 或 D. {}25|≥-≤x x x 或 9. 不等式2601 x x x --->的解集为( ) A.{}2,3x x x -<或> B.{}213x x x -<,或<< C.{}213x x x -<<,或> D.{}2113x x x -<<,或<<

分式不等式的解法基础测试题回顾.doc

分式不等式的解法 一.学习目标: 1.会解简单的分式不等式。 二.学习过程 (一)基础自测 1.解下列不等式 (1)43107x x -<+ (2)-x 2+7x >6 (3)()()015<+-x x . (二)尝试学习 2.解下列不等式 (1)121 >+-x x (2)2x +11-x <0. (3)41 2+-x x ≥0 (4) x +5(x -1)2≥2

(三)巩固练习题 1.不等式 02 1<+-x x 的解集是 . 2.不等式 01 312>+-x x 的解集是( ) .A }2131|{>-x x .D }31|{->x x (四)归纳总结 1.解分式不等式的基本方法是将其转化为与之同解的整式不等式或不等式组. 2.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解;若不等式含有等号时,分母不为零.即: (1)f (x )g (x )>0?()()0>?x g x f (f (x )g (x ) <0?()()0

1.不等式 23--x x ≥0的解集是 . 2.不等式 0121≤+-x x 的解集是 3.不等式 042>+-x x 的解集是 4.不等式1x x -≥2的解集为( ) .A [1,0)- .B [1,)-+∞ .C (,1]-∞- .D (,1](0,)-∞-+∞ 5.解下列不等式 (1)2x +11-x <0 (2)x +12x -3≤1 四.作业 解不等式:(1) 0324≤+-x x (2)321≥-+x x

一元三次方程及解法简介

一元三次方程 一元三次方程的标准型为02 3 =+++d cx bx ax )0,,,(≠∈a R d c b a 且。一元三次方 程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于卡尔丹公式解题存在复杂性,对比之下,盛金公式解题更为直观,效率更高。 在一个等式中,只含有一个未知数,且未知数的最高次数是3次的整式方程叫做一元三次方程。 【盛金公式】 一元三次方程02 3 =+++d cx bx ax )0,,,(≠∈a R d c b a 且 重根判别式:bd c C ad bc B ac b A 3:9;32 2 -=-=-=,总判别式:Δ=AC B 22 -。 当A=B=0时,盛金公式①: c d b c a b x x x 33321- =-=- ===,当Δ=AC B 22 ->0时,盛金公式②:a y y b x 33 123 111---= ; i a y y a y y b x 63623 12 3 113 223 1 13,2-±++-=;其中 2 )4(322 ,1AC B B a Ab y -±-+=,12-=i .当Δ=AC B 22 -=0时,盛金公式③: K a b x +- =1;232K x x -==,其中)0(≠=A A B K .当Δ= AC B 22-<0时,盛金公式④:a Cos a b x 3321θ --= ,a Sin Cos A b x 3)333(3 ,2θ θ±+-= ; 其中arcCosT =θ,)11,0(),232( <<->-=T A A aB Ab T . 【盛金判别法】 ①:当A=B=0时,方程有一个三重实根; ②:当Δ=AC B 22 ->0时,方程有一个实根和一对共轭虚根; ③:当Δ=AC B 22 -=0时,方程有三个实根, 其中有一个两重根; ④:当Δ=AC B 22 -<0时,方程有三个不相等的实根。 【盛金定理】 当0,0==c b 时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A ≤0时,盛金公式④无意义;当T <-1或T >1时,盛金公式④无意义。当0,0==c b 时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A ≤0的值?盛金公式④是否存在T <-1或T >1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b ≠0,则必定有c ≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。

最新高一数学暑假预科讲义 第2讲 一元二次不等式解法 基础教师版

第二讲 一元二次不等式解法 考点1:一元二次不等式及其解集 1.只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程2 0(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式 20ax bx c ++>的解集为{} 21x x x x x ><或,不等式20ax bx c ++<的解集为 {}21 x x x x << 2.对于一元二次方程2 0(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设 ac b 42-=?,它的解按照0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来 讨论一元二次不等式2 0ax bx c ++>(0)a >或2 0ax bx c ++<(0)a >的解集. 24b ac ?=- 0>? 0=? 0a )的图象 20(0)ax bx c a ++=>的根 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集 )0(02>>++a c bx ax {}2 1 x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ?

3.解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程2 0ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法); ②0?=时,求根a b x x 221-==; ③0?<时,方程无解 (3)根据不等式,写出解集. 题型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)250x x -<; (2)2440x x -+>; (3)2 450x x -+-> 【解析】(1)方法一:因为2 (5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x =函数2 5y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >???,即05x <<或x ∈?.因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一:因为0?=,方程2 440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为:

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点, 等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿 透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使 “<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或 (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图

不等式解集为 {x x< 1 3 或 1 2 ≤x ≤1或x>2}. 【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2).. ..

高中数学必修常考题型一元二次不等式及其解法

一元二次不等式及其解法 【知识梳理】 1.一元二次不等式 我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax 2+bx +c >0(≥0)或ax 2+bx +c <0(≤0)(其中a ≠0)的不等式叫做一元二次不等式. 2.一元二次不等式的解与解集 使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集. 3.一元二次不等式与相应的二次函数及一元二次方程的关系如表 题型一、一元二次不等式的解法 【例1】 解下列不等式: (1)2x 2+7x +3>0; (2)x 2-4x -5≤0; (3)-4x 2+18x -814 ≥0; (4)-12 x 2+3x -5>0; (5)-2x 2+3x -2<0. [解] (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为{x |x >-12 ,或x <

-3}. (2)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x |-1≤x ≤5}. (3)原不等式可化为????2x -922≤0,所以原不等式的解集为???? ??x |x =94. (4)原不等式可化为x 2-6x +10<0,Δ=(-6)2-40=-4<0,所以方程x 2-6x +10=0无实根,又二次函数y =x 2-6x +10的图象开口向上,所以原不等式的解集为?. (5)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图象开口向上,所以原不等式的解集为R . 【类题通法】 解一元二次不等式的一般步骤 (1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式; (3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x 轴的相关位置写出不等式的解集. 【对点训练】 1.解下列不等式: (1)x 2-5x -6>0;(2)-x 2+7x >6. (3)(2-x )(x +3)<0;(4)4(2x 2-2x +1)>x (4-x ). 解:(1)方程x 2-5x -6=0的两根为x 1=-1, x 2=6. 结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为x 2-7x +6<0. 解方程x 2-7x +6=0得,x 1=1,x 2=6. 结合二次函数y =x 2-7x +6的图象知,原不等式的解集为 {x |10.

高次不等式的解法

高次不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4 (2) 变形为 (2x-1)(x-1) ≥0 根据穿根法如图

不等式解集为 {x x<1 3 或 1 2 ≤x≤1或x>2}. 【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿根法”解不等式时应注意:①各一次项中 .....................x.的系 .. 数必为正;②对于偶次或奇次重根可参照..................(2) ...的解法转化为不含重根 .......... 的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿” ........其法如 ....图.(5..-.2)....

高中数学不等式的分类、解法(教资材料)

高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式,分式不等式,高次不等式,指数、对数不等式,三角不等式,含参不等式,函数不等式,绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首项系数大于0的一般形式,再求根、结合图像写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()() (x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; )()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式(有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)2 3440x x -++>解集为 (2 23x - << ) (一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式 0)(>x f 的解集为)3,1(-,则不等式0)2(<-x f 的 解集为 ),2 1()23,(+∞--∞ 解法一:由根与系数关系求出3,1-=-=b a ,得 32)(2++-=x x x f ,再得出新不等式,求解 解法二:由二次不等式0)(>x f 的解集为)3,1(-得 0)(+n mx 的解集为 (m, n )=(-4,-5),解集为)4 5 ,(--∞ 例2:不等式 22 32 x x x -++≥0的解集是_____. 答案:(-2,-1)∪[2,+∞) 法一:化为不等式组 法二:数轴标根法 法三:化为整式不等式(注意等价性) 变式2:不等式0332 3<+--x x x 的解集为 . 答案:)1,()3,1(--∞ 例3:解关于x 的不等式ax x ax -≥-222 分析:化为02)2(2 ≥--+x a ax ,考虑分类标准:①a 与0的关系② a 2 与-1的关系 变式3:①解关于x 的不等式ax 2-(a +1)x +1<0 解:原不等式可化为(ax-1)(x-1)<0 当a<0时,原不等式解集为),1()1 ,(+∞-∞ a 当a=0时,x-1>0, 原不等式解集为(1,+ ∞) 当0

一元三次方程的解法

一元三次方程的解法 邵美悦 2018年3月23日 修改:2018年4月25日 众所周知,一元二次方程的求根公式是中学代数课程必修知识,通常在初中阶段的数学教材中会进行介绍.一元三次方程和一元四次方程同样有求根公式,1而且其推导过程也是初等的.由于一元三次和四次方程的求解比起一元二次方程要困难得多,并且求根公式的具体形式也不是很实用,所以尽管在一些初等数学的书籍中有相关介绍,但大多数中学生对这些解法并不了解.本文将简要介绍一下一元三次方程的求解方法. 1配方法 一元二次方程 ax 2+bx +c =0,(a =0) 的解法一般会在在初中教材中进行介绍,通用的解法是配方法(配平方法),即利用 a (x + b 2a )2=b 2?4a c 4a 解出x =?b 2a ±√b 2?4ac 2a .当然,在初中教材中会要求a ,b ,c 都是实数,并且判别式b 2?4ac 必须非负.在高中教材引进复数之后,上述求根公式对复系数一元二次方程依然有效,开平方运算√b 2?4ac 也不再受到判别式符号的限制,只需要按照复数开方来理解.2 1值得注意的是,在代数学中可以证明,如果只用系数的有限次加,减,乘,除,以及开k 次方运算(其中k 是正整数),复系数一元五次(或更高次)方程没有求根公式.换句话说,不可能存在仅由系数的有限次加,减,乘,除,以及开k 次方运算构成的公式,使得每一个复系数一元五次方程都可以按该公式求解.这一结论通常称为Abel–Ruffini 定理.不少业余数学爱好者在没有修习过大学近世代数课程的情况下致力于推导高次方程的初等求根公式,这样的努力难免徒劳无功.2这里约定开方运算k √·只需要算出任意一个k 次方根即可. 1

高中数学必修5一元二次不等式及其解法精选题目(附答案)

高中数学必修5一元二次不等式及其解法精选题目(附答案)1.一元二次不等式 我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式. 2.一元二次不等式的解与解集 使一元二次不等式成立的x的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集. 3.一元二次不等式与相应的二次函数及一元二次方程的关系表 题型一:一元二次不等式解法 1.解下列不等式: (1)2x2+5x-3<0; (2)-3x2+6x≤2; (3)4x2+4x+1>0; (4)-x2+6x-10>0.

题型二:三个“二次”关系的应用 2.若不等式ax 2 +bx +2>0的解集是?????? ??? ?x ??? -121a B .{x |x >a } C.? ????? ??? ?x ? ?? x >a 或x <1a D.? ????? ??? ?x ??? x <1 a 3.在R 上定义运算⊙:a ⊙ b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .(0,2) B .(-2,1) C .(-∞,-2)∪(1,+∞) D .(-1,2) 4.不等式mx 2-ax -1>0(m >0)的解集可能是( ) A.?????? ??? ?x ??? x <-1或x >1 4 B .R C.?????? ????x ? ?? -13

第三章 不等式练习题(一元二次不等式、高次不等式、分式不等式解法)

一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的 解集是下面两个不等式组:???<+>-0401x x 与???>+<-0401x x 的解集的并集,即{x|???<+>-0401x x }∪???>+<-040 1|{x x x }= φ∪{x|-4-0401x x 或???>+<-040 1x x ?x ∈φ或-4++或的代数解法: 设一元二次不等式)a (c bx ax 002≠>++相应的方程)a (c bx ax 002≠=++的两根为 2121x x x x ≤且、,则00212>--?>++)x x )(x x (a c bx ax ; ①若?? ?>>???<->-???<-<->. x x , x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且. ②若?? ?>-<-?? ?>-<-<. x x , x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得?∈x . 分析二:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集. 解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②分析这三部分中原不等式左边各因式的符号 例2:解不等式:(x-1)(x+2)(x-3)>0; 解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3;③列表如下:

元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 20,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为x =. 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程.于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题.有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠.当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式.如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根. 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根. 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算.这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积.” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法. 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ② 的求解公式,如二次方程①的求根公式那样.众所周知,方程①的解早在古代的巴比伦、埃

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 )0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

相关主题
文本预览
相关文档 最新文档