当前位置:文档之家› 基因工程技术在生产实践中的应用

基因工程技术在生产实践中的应用

基因工程技术在生产实践中的应用
基因工程技术在生产实践中的应用

基因工程技术在生产实

践中的应用

集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

基因工程技术在生产实践中的应用

姓名

学号

专业

基因工程技术在生产实践中的应用

随着科技的发展,人类在为自己生产出越来越多的生活资料的同时,也向

大自然排放了越来越多的有害和难降解物质。如农药、塑料和各种芳香烃类化

合物,这些物质正严重破坏环境和危害着人类的身体健康。因此,有意识地利

用生物界中存在的净化能力进行生物治理,已渐渐成为环境治理的主要手段。

自然界中的生物,往往在有毒物质的选择压力下经过基因突变、基因重组、物种

间基因的交流,进化出代谢这些有毒物质的能力。利用基因工程技术提高微生

物净化环境的能力是现代生物技术用于环境治理的一项关键技术。20世纪50

年代初,由于分子生物学和生物化学的发展,对生物细胞核中存在的脱氧核糖核酸(DNA)的结构和功能有了比较清晰的阐述。20世纪70年代初实现了DNA重组技术,逐步形成了以基因工程为核心内容,包括细胞工程、酶工程、发酵工程的生物技术。这一技术发展到今天,正形成产业化品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力,将为世界面临的环境保护等问题的解决提供广阔的应用前景。

基因工程技术是一项极为复杂的高新生物技术,它利用现代遗传学与分子生物学的理论和方法,按照人类的需要,用DNA重组技术对生物基因组的结构或组成进行人为修饰或改造,从而改变生物的结构和功能,使之有效表达出人类所需要的蛋白质或对人类有益的生物性状。首先该技术高效、经济,这是传统产业工程无法比拟的。它能按人类需要来设计和改造生物的结构和功能,生产出优良的动物、植物和微生物品种。在低投入的情况下,能够高效生产出所需商品。而且外源基因只要进入受体细胞的基因组中就可以遗传给后代,育出的优良品种,可持久利用。其次,该技术具有清洁、低耗和可持续发展的特点。现代基因工程所利用的原料是可再生及可循环使用的,不需消耗大量的不可再生资源,所以极少产生对生态环境有害的废物。再次,该技术应用于疾病的诊断与治疗方面也具有优势。基因诊断更具预见性和准确性,而且基因治疗可从基因水平上纠正疾病,从而使疾病得以根治。

环境污染主要是指有害物质对大气、水体、土壤和动植物的污染。20世纪50年代以来,随着工业的迅速发展,环境污染的问题日趋严重,尤其是在一些工业发达的资本主义国家,相继出现了一系列公害事件。因此,研究污染物质在环境中的运动规律以及防治污染的原理和方法,已成为世界各国重点探索

的课题之一。

20世纪70年代以来,发现许多具有特殊降解能力的细菌其降解途径所需要

的酶,不是由染色体基因编码,而是由染色体外的质粒基因编码。这类质粒叫

降解质粒或代谢质粒。他们的分子量一般都比较大,大多具有接合转移能力,即通过两个细菌的相互接触,可以把质粒从一个细菌传递到另一个细菌中去,提供质粒

的细菌通过复制作用仍能保持这种质粒,这样,能使降解基因在微生物群体中广泛扩散。含有这类质粒的细菌,在某些环境污染物的降解过程中起着重要的作用。

到目前为止,共发现了四类降解质粒。第一类是发现于假单细胞菌属中的石

油降解质粒,这些质粒所编码的酶能降解各种石油组分或他们的衍生物,如

樟脑、辛烷、萘、水杨酸盐、甲苯和二甲苯降解质粒等。第二类是农药降解质粒,这些质粒上的基因决定除草剂2,4一D、杀虫剂“666”和烟碱等农药的降解

(这些农药大部分都被严禁使用)。第三类是工业污染物降解质粒,如对氯联苯

降解质粒、尼龙低聚体降解质粒和洗涤剂降解质粒等。第四类是抗金属离子的

质粒,如抗汞、砷、镍、钴、镉、铅和铜等的质粒。

通过天然质粒的转移实现微生物育种的一个例子是,组建了一种能同时降解

石油中大多数烃类物质的超级细菌。组建的过程是:首先,通过接合作用使

菌株1的樟脑质粒(CAM)转移到含辛烷质粒(OCT)的菌株2中,形成杂种质粒,

同时使菌株3的萘质粒(NAH)转移到二甲苯质粒(XYL)的菌株4中;然后,再使新产生的两个菌株进行接合转移,产生含4种质粒的菌株。多质粒细菌降解石油的速度快、效率高,是第一个获得专利的经过遗传操作的微生物。在上述降解质粒中,对石油降解质粒研究得较为深人。人们研究这些质粒的分子特性、遗传结构、降解途径和进化关系等理论问题,同时,试图通过质粒转移和重组DNA技术,把不同的降

解基因转移到同一菌株中,创造出具有非凡降解能力的超级微生物,以用于环境污染物的降解。

由于多质粒菌株不够稳定,所以人们正在研究用重组DNA技术把质粒中的

石油降解基因连接在一起,形成重组质粒,以便获得遗传性更加稳定的新菌

株。近年来,已经把甲苯质粒中的部分甲苯降解基因和萘质粒中的大部分萘降

解基因在大肠杆菌中克隆,并使之获得表达。人们构建能高效降解石油的细菌,是指望用这些”超级拖布”去清除因油船失事和排放压舱水而污染海洋的石油。

此外,有人提出用基因工程技术构建对重金属有特别亲和力的菌株,用于分离和纯化各种重金属。比如通过质粒转移或重组DNA技术来构建能把有毒

的有机汞转变成金属汞的细菌,以用于处理含有机汞的废水,同时回收金属

汞,从而化害为利,变废为宝。

细菌浸矿已在采铜和采铀工业中得到应用。人们希望通过对这类细菌进行遗

传操作,从而提高它们对金属的亲和力,耐酸、耐热能力和抗金属毒性的能力,以便降低细菌浸矿的生产成本,使之更具有竞争能力。

(1)基因工程技术应用于降解石油污水

美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基

因链接,转移到某一菌体中构建出可同时降解4种有机物的/超级细菌0,用

之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解。在石油开采过程中,采出的原油含有大量的水分,原油脱下的废水中,含有大量的石油污染物。全向春引入现代生物技术,从一般的筛选工作,转入到降解代谢途径、降解酶系组成及其遗传的控制机制上来,在此基础上,实现定向育种,定向构建具

有高效生物降解能力的基因工程菌。基因工程菌降解效率高、底物范围广、表达稳定,比自然环境中的降解性微生物更具竞争力,例如PCP103菌株的构建。

基因工程菌的构建和应用对于美化环境、保护人类健康提供了一系列可行的途径。现代科学工作者把PCR技术用于基因工程菌的构建并已取得了一些成绩,国内外正在进行这方面的研究。随着生物技术的发展,基因工程菌在含油污水处理中的应用将会进一步完善,为人类造福。

(2)基因工程技术应用于降解农药

农田长期过量施用农药,严重破坏了生态平衡,造成土壤水质及食品中残

留毒性增加,给人畜带来潜在危害。如何消除农药污染、保护环境已成为当今世界的一个迫切问题。由于微生物在物质循环中的重要作用,它在环境修复中一直扮演着重要的角色;然而受微生物对农药(特别是难降解农药)降解能力的

限制,生物修复具有周期长的明显特点,阻碍了这一技术在现实中的发展和

应用。应用基因工程原理与技术,对微生物进行改造,是环境科学工作者向更

深更广的研究领域拓展时必不可少的途径。构建高效的基因工程菌可以显着提

高农药降解效率。环境微生物尤其是细菌中的农药降解基因、降解途径等许多

农药降解机制的阐明为构建具有高效降解性能的工程菌提供了可能。现已开发

出有净化农药(如DDT),降解水中染料以及环境中有机氯苯类和氯酚类、多氯

联苯的基因工程菌。Horne等人将从农杆菌得到的OpdA(编码有机磷降解基

因)和黄杆菌(Flavobacteiumsp.)中得到的Opd(有机磷降解酶基因)分别构建了原核表达质粒,并分别转到大肠杆菌E.coliDH10B中表达,对其表达产物进行了研究。通过其表达产物OpdAOPH(有机磷水解酶)对几种农药的酶解动力学比较,发现OpdA能作用更多底物的类似物,降解范围更广。

以下两方面的研究将对环境保护有着重要意义。

一是对基因工程菌的深入研究,如基因工程菌对污染物的代谢途径、控制目的

基因表达的启动子基因序列、降解基因表达的调控条件的优化等方面的研究;

二是对环境中微生物的习性及基因工程菌与环境中微生物和污染物之间的相

互作用进行研究,从而使基因工程菌在治理有机物污染方面的实际应用成为

可能。目前的研究主要是利用单一的基因工程菌对污染物进行处理,随着研究

的不断深入,利用多种基因工程菌相结合对污染物进行处理,将对环境保护起到更为重要的作用。

基因工程技术与应用知识点

v1.0 可编辑可修改 基因工程的定义:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造, 将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。 基因工程的基本过程:切、接、转、增、检 基因工程理论依据:a) 生物的遗传物质是DNA。b) DNA的双螺旋结构和半保留复制机理。 c) 遗传信息的传递方式(中心法则)和三联体密码子系统的建立 遗传工程:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。包括细胞工程和基因工程等不同的技术层次。 克隆。指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。 限制性核酸内切酶。是一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。 限制性内切酶由三个基因位点所控制:hsd R---限制性内切酶, hsd M---限制性甲基化酶, hsd S---控制两个系统的表达。Hsd S -识别特定DNA序列,Hsd M-甲基化,Hsd R -限制性内切酶功能。 命名法:例如Haemophilus influenzue)d 株中分离的第三个酶:Hin d III 同裂酶:不同来源的限制酶具有相同的识别位点和切割位点。同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶 粘性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称之。 酶活性单位。在合适的温度和缓冲液中,在50μl反应体系中,1小时内完全切割1微克DNA所需的酶量为1个酶活性单位U。 星活性:指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。引起星活性原因:若使用buffer不当, 会有star activity,而star activity是指限制酶对所作用的DNA及序列失去专一性, 当酶辨认切割位置的能力降低,导致相似的序列或是错误的辨认序列长度也会作用,而产生错误的结果。 连杆:化学合成的8~12个核苷酸组成的寡核苷酸片段。以中线为轴两边对称,其上有一种或几种限制性核酸内切酶的识别序列,酶切后

基因工程简答题总结

基因工程原理复习题思考题 5、简单叙述同尾酶和同裂酶的差别。 同尾酶:来源不同,识别的序列不同,但能切出相同的粘性末端,连接后不能被相关的酶同时切割。 同裂酶:识别序列相同,切割位点有些相同,有些不同。分完全同裂酶和不完全同裂酶(PS:完全同裂酶:识别位点和切点完全相同。 不完全同裂酶:识别位点相同,但切点不同。) 6、连接酶主要有哪些类型?有何异同点?影响连接酶连接效果的因素主要有哪些? 类型:DNA连接酶和RNA连接酶 异同点: 相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。 不同点:DNA聚合酶识别脱氧核糖核苷酸,在DNA复制中起作用;而RNA聚合酶聚合的是核糖核苷酸,在转录中起作用。 7、试分析提高平端DNA连接效率的可能方法。(传说中的网上答案) 1、低温下长时间的连接效率比室温下短时间连接的好。 2、在体系中加一点切载体的酶,只要连接后原来的酶切位点消失。这样可避免载体自连,应该可以大大提高平端连接的效率。 3、足够多的载体和插入片段是最重要的。 4、平端的连接对于离子浓度很敏感 5、尽可能缩小连接反应的体积 6、建议放在四度冰箱连接两天效率更高比14度好 8、基因工程中常用的DNA聚合酶主要有哪些? 1)大肠杆菌DNA聚合酶 2)Klenow fragment 3)T7 DNA聚合酶 4)T4 DNA聚合酶 5)修饰过的T7 DNA聚合酶 6)逆转录酶 7)Taq DNA聚合酶 第四章基因克隆的载体系统 1、作为基因工程载体,其应具备哪些条件? 具有针对受体细胞的亲缘性或亲和性(可转移性); 具有合适的筛选标记; 具有较高的外源DNA的载装能力; 具有多克隆位点(MCS); 具有与特定受体细胞相适应的复制位点或整合位点。 3、载体的类型主要有哪些?在基因工程操作中如何选择载体? 基因工程中常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。 4、质粒转化原理,影响转化率的因素有哪些?

高中生物 第一章 基因工程 第2课时 基因工程的原理和技术学案 浙科版选修3

第2课时基因工程的原理和技术 知识内容要求考情解读 基因工程的原 理和技术 b 1.简述基因工程的原理。 2.概述基因工程基本操作的几个步 骤。 一、基因工程的原理 1.基本原理 让人们感兴趣的基因(即目的基因)在宿主细胞中稳定和高效地表达。 2.变异类型 基因工程属于可遗传变异中的基因重组。 归纳总结(1)在基因工程中,不同DNA链的断裂和连接产生DNA片段的交换和重新组合,形成了新的DNA分子,在这个操作中交换了DNA片段,故属于基因重组。 (2)基因工程中的基因重组不同于减数分裂过程中的基因重组。前者属于无性生殖中的重组,并发生在不同种生物间,打破了物种间的界线,可以定向地改造生物的遗传特性,此操作均在细胞外进行。 例1科学家用纳米技术制造出一种“生物导弹”,可以携带DNA分子。把它注射入组织中,可以通过细胞的内吞作用进入细胞内,DNA被释放出来,进入到细胞核内,最终整合到细胞染色体上,成为细胞基因组的一部分,DNA整合到细胞染色体中的过程属于( ) A.基因突变B.基因重组 C.基因互换D.染色体畸变 答案 B 解析基因突变是基因内部结构的改变;染色体畸变是以染色体作为研究对象,探讨染色体结构和数目的变化;基因工程是将外源基因导入受体细胞,得到人们所需要的产物,属于基因重组。 例2下列叙述符合基因工程基本原理的是( ) A.B淋巴细胞与肿瘤细胞融合,杂交瘤细胞中含有B淋巴细胞中的抗体基因 B.将人的干扰素基因重组到质粒后导入大肠杆菌,获得能产生人干扰素的菌株 C.用紫外线照射青霉菌,使其DNA发生改变,通过筛选获得青霉素高产菌株 D.自然界中天然存在的噬菌体自行感染细菌后其DNA整合到细菌DNA上 答案 B 解析基因工程是在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基

基因工程原理与技术思考题

Chapter I Introduction 1)什么是基因?基因有哪些主要特点? 基因是一段可以编码具有某种生物学功能物质的核苷酸序列。 ①不同基因具有相同的物质基础.②基因是可以切割的。③基因是可以转移的。④多肽与基因之间存在 对应关系。⑤遗传密码是通用的。⑥基因可以通过复制把遗传信息传递给下一代。 2)翻译并解释下列名词 genetic engineering遗传工程 gene engineering基因工程:通过基因操作,将目的基因或DNA片段与合适的载体连接转入目标生物获得新的遗传性状的操作。 gene manipulation基因操作:对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。 recombinant DNA technique重组DNA技术 gene cloning基因克隆:是指对基因进行分离和扩大繁殖等操作过程,其目的在于获得大量的基因拷贝,在技术上主要包括载体构建、大肠杆菌遗传转化、重组子筛选和扩大繁殖等环节。 molecular cloning分子克隆 3)什么是基因工程?简述基因工程的基本过程?p2 p4 4)简述基因工程研究的主要内容?p5 5)简述基因工程诞生理论基础p2和技术准备有哪些p3? 6)基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 否,密码子简并性 7)举例说明基因工程技术在医学、农业、工业等领域的应用。 医学:人胰岛素和疫苗 农业:抗虫BT农药 工业:工程酿酒酵母

Chapter ⅡThe tools of trade 1)什么是限制性核酸内切酶?简述其主要类型和特点? 是一种核酸水解酶,主要从细菌中分离得到。类型特点p11 2)II型核酸内切酶的基本特点有哪些p12-14?简述影响核酸内切酶活性的因素有哪些 p14? 3)解释限制酶的信号活性?抑制星号活性的方法有哪些? 4)什么是DNA连接酶p15?有哪几类p16?有何不同p16? 5)什么叫同尾酶、同裂酶p12?在基因工程中有何应用价值? 同裂酶:识别位点、切割位点均相同,来源不同。在载体构建方面往往可以取得巧妙的应用。应用较多的同裂酶比如Sma1和Xma1,它们均识别CCCGGG,但前者切后产生钝末 同尾酶:来源各异,识别序列各不相同,但切割后产生相同的粘性末端。由同尾酶(isocaudomer)产生的DNA片段,是能够通过其粘性末端之间的互补作用彼此连接起来的。 6)什么是DNA聚合酶?根据DNA聚合酶使用的模板不同,可将其分为哪两类?各有什么活 性?p17-18 聚合酶:在引物和模板的存在下,把脱氧核苷酸连续地加到双链DNA分子引物链的3‘-OH 末端,催化核苷酸的聚合作用。 ①依赖于DNA的DNA聚合酶 ②依赖于RNA的DNA聚合酶 7)Taq DNA聚合酶:是一种从水生嗜热菌中分离得到的一种耐热的dna聚合酶,具有5-3聚 合酶活性和3-5外切酶活性,在分子中主要用于PCR。 逆转录酶:RNA指导的DNA聚合酶, 8)Klenow片段的特性和用途有哪些?举例说明。p17 9)名词解释:S1核酸酶、核酸外切酶、磷酸化酶激酶、 甲基化酶

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。?在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。?随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。? 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。?目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

《基因工程原理与技术》标准答案及评分标准.0001

精品文档 《基因工程原理与技术》标准答案及评分标准 一、名词解释(本大题共5小题,每题2分,总计10分) 限制性内切酶的Star活性:限制性内切酶的识别和酶切活性一般在一定的温度、离子强度、pH 等条件下才表现最佳切割能力和位点的专一性。如果改变反应条件就会影响酶的专一性和切割效率,称为星号(*)活性。 受体细胞:又称为宿主细胞或寄主细胞等,从试验技术上讲是能摄取外源DNA并使其稳定维持的细胞;从试验目的讲是有应用价值和理论研究价值的细胞 T-DNA是农杆菌侵染植物细胞时,从Ti质粒上切割下来转移到植物细胞的一段DNA 该DNA片段上的基因与肿瘤的形成有关。 克隆基因的表达:指储存遗传信息的基因经过一系列步骤表现出其生物功能的整个过 程。典型的基因表达是基因经过转录、翻译,产生有生物活性的蛋白质的过程。 a -互补:3 -半乳糖苷酶(B -gal)是大肠杆菌lacZ基因的产物,当培养基中的一种色素元(X-gal )被3 -gal切割后,即产生兰色。大肠杆菌的3一半乳糖苷酶由1021个氨基酸构成,只有在四聚体状态下才有活性。大肠杆菌lacZ基因由于a区域缺失,只能编码一种在氨基端截短的多肽,形成无活性的不完全酶,称为a受体;如果载体的lacZ 基因在相反方向缺失,产生在羧基端截短的多肽,这种部分3 -半乳乳糖苷酶也无活性。 但是这种蛋白质可作为a供体。受体一旦接受了供体(在体内或体外),即可恢复3 -半乳糖苷酶的活性,这种现象称为a互补. 由载体产生的a供体能够与寄主细胞产生 的无活性的a受体互作形成一种八聚体,从而恢复3 -半乳糖苷酶的活性。如果培养基 中含有X-gal的诱导物IPTG时,凡是包含有3 -半乳糖苷酶活性的细胞将转变为蓝色,反之不含有这种酶活性的细胞将保持白色。 、填空题(本大题共7小题,每空1分,总计20 分) 1、质粒按自我转移的能力可分为—接合型—质粒和—非接合型—质粒;按复制类型可分为松 弛性质粒和严紧型质粒。 2、为了防止DNA的自身环化,可用碱性磷酸酶除去双链DNA 5'—端的磷酸基团 。 3、人工感受态的大肠杆菌细胞在温度为_0匸—时吸附DNA在温度为_42乜__ 时摄人 DNA 4、仅克隆基因(DNA片段)用途而言,最简单的质粒载体也必需包括三个组成部分: 复制区:含有复制起点__、选择标记:主要是抗性基因 ________ 、__克隆位点:便于外源_ DNA的插入_。另外,一个理想的质粒载体必须具有低分子量。 5、Southern blotting 杂交能够检测外源基因是否整合进受体细胞基因组;外源基 因的转录表达需要通过—northern_杂交或_ RT-PCR_来揭示;而外源基因_____ 翻 译—水平的表达则需通过免疫学检测或Western杂交才能揭示,其使用的探针是 —蛋白质____ 。 6、外源蛋白在大肠杆菌中的表达部位有—细胞质_、_ —周质_、一细胞外 _。 7、Vir区基因的激活信号有三类,它们是—酚类化合物_、_中性糖和酸性糖_、— _ pH 值_。 简答题(本大题共7 小题,总计50 分) 1欢迎下载

基因工程原理练习题及答案

基因工程原理练习题及其答案 一、填空题 1.基因工程是_________年代发展起来的遗传学的一个分支学科。 2.基因工程的两个基本特点是:(1)____________,(2)___________。 3.基因克隆中三个基本要点是:___________;_________和__________。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可以构建显示该区域各限制性内切核酸酶切点相互位置的___________。 5.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自_______,第二、三两个字母取自_________,第四个字母则用___________表示。 6.部分酶切可采取的措施有:(1)____________(2)___________ (3)___________等。 7.第一个分离的限制性内切核酸酶是___________;而第一个用于构建重组体的限制性内切核酸酶是_____________。8.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是_________,它们属于_____________。 9.DNA聚合酶I的Klenow大片段是用_____________切割DNA聚合酶I得到的分子量为76kDa的大片段,具有两种酶活性:(1)____________;(2)________________的活性。 10.为了防止DNA的自身环化,可用_____________去双链DNA__________________。 11.EDTA是____________离子螯合剂。 12.测序酶是修饰了的T7 DNA聚合酶,它只有_____________酶的活性,而没有_______酶的活性。 13.切口移位(nick translation)法标记DNA的基本原理在于利用_________的_______和______的作用。 14.欲将某一具有突出单链末端的双链DNA分子转变成平末端的双链形式,通常可采用_________或_______________。15.反转录酶除了催化DNA的合成外,还具有____________的作用,可以将DNA- RNA杂种双链中的___________水解掉。 16.基因工程中有3种主要类型的载体:_______________、_____________、______________。 17.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:_______________、_____________、______________。另外,一个理想的质粒载体必须具有低分子量。 18.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测 不出质粒,这种现象叫。 19.pBR322是一种改造型的质粒,它的复制子来源于,它的四环素抗性基因来自于,它的氨苄青霉素抗性基因来自于。 20.Y AC的最大容载能力是,BAC载体的最大容载能力是。 21.pSCl01是一种复制的质粒。 22.pUCl8质粒是目前使用较为广泛的载体。pUC系列的载体是通过 和两种质粒改造而来。它的复制子来自,Amp 抗性基因则是来自。 23.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。 24.野生型的M13不适合用作基因工程载体,主要原因是 和。 25.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS位点序列来自,最大的克隆片段达到kb。 26.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1) (2) (3) 。 27.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。 28.λ噬菌体载体由于受到包装的限制,插入外源DNA片段后,总的长度应在噬菌体基 因组的的范围内。 29.在分离DNA时要使用金属离子螯合剂,如EDTA和柠檬酸钠等,其目的是 。 30.用乙醇沉淀DNA时,通常要在DNA溶液中加人单价的阳离子,如NaCl和NaAc, 其目的是。 31.引物在基因工程中至少有4个方面的用途:(1) (2) (3) (4) 。 32.Clark发现用Taq DNA聚合酶得到的PCR反应产物不是平末端,而是有一个突出 碱基末端的双链DNA分子。根据这一发现设计了克隆PCR产物的。 33.在cDNA的合成中要用到S1核酸酶,其作用是切除在 。 34.乙醇沉淀DNA的原理是。 35.假定克隆一个编码某种蛋白质的基因,必须考虑其表达的三个基本条件:

基因工程在医药工业中的的应用

基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用 摘要: 作为生物工程技术的核心,及新工程的发展与应用,在医学方面有着非同凡响的影响。本文首先回顾了基因工程的发展简史,然后在基因工程制药,抗病毒疫苗,疾病治疗及基因诊病等方面综述了基因工程在医学中的应用。基因工程将给医药方面带来更美好的前景。关键词关键词关键词关键词: 基因工程医学应用1 前言前言前言前言:分子生物学主要是从分子水平上阐述生命现象和本质的科学,是现代生命科学的“共同语言”。分子生物学又是生命科学中进展迅速的前沿学科,它的理论和技术已经渗透到其他基础生物学科的各个领域,它的主要核心内容是通过生物的物质基础---核酸、蛋白、酶等生物大分子的结构、功能及其相互作用的运动规律的研究来阐明生命分子基础,从而探讨生命的奥秘。这门课与基因工程关系很大,主要讲了核酸、蛋白、酶等生物大分子的结构、功能以及它们之间的相互作用。近年来,随着生物技术的飞速发展,分子生物学在较多领域得以应用。其中在核酸,基因方面医学中的发展迅猛。基因工程在制药,抗病菌疫苗发展前景较广,在疾病治疗及诊断对人们生活影响较大。本文将对基因工程的发展及其在医学中的应用作简单的阐述。2 基因工程的发展基因工程的发展基因工程的发展基因工程的发展基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学方法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。1857年至1864年,孟德尔通过豌豆杂交试验,提出了生物体的性状是由遗传基因子控制的。1909年,丹麦生物学家约翰生首先提出基因一词代替孟德尔的遗传因子。1910年至1915年,美国遗传学家摩尔根通过果蝇实验,首次将代表某一性状的基因同特定的染色体联系起来,创建了基因学说。直到1944年,美国微生物学家埃弗里等通过细菌转化研究,证明基因的载体是DNA 而不是蛋白质,从而确立了遗传的物质基础。1953年,美国的遗传学家华生和英国的生物学家克里克揭示了DNA分子双螺旋模型和半保留复制机理,解决了积阴德自我复制和传递问题。开辟了分子生物学的研究时代。之后,1958年克里克确立了中心法则。1961年雅各和莫诺德提出的操纵子学说以及说有64种密码子的破译,成功的揭示了遗传信息的流向和表达问题,为基因工程的发展奠定了坚实的基础。DNA分子的切除与连接,基因的转化技术,还有诸如核酸分子杂交,凝胶电泳,DNA序列结构分析等分子生物学试验方法的进步为基因的创立和发展奠定了强有力的技术基础。1972年,美国斯坦福大学的P.Berg构建了世界上第一个重组分子,发展了DNA重组技术,并因此获得了1980年的诺贝尔学奖。1983年,美国斯坦福大学的S.Chen等人也成功的进行了另一个体外DNA重组试验并发现了细菌间性状的转移。这是基因工程发展史上第一次成功实现重组转化成功的例子,基因工程从此诞生了。基因工程问世近30年,不论是基因理论研究领域,还是在生产实践中的应用,均已取得了惊人的成绩。给国民经济的发展和人类社会的发展带来了深远而广泛的影响。3 基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用运用基因工程技术对基因的转导和整合来获取新的抗体,及新药的制取及研究都具有较高效益;基因技术在诊断疾病及刑事案件的侦破方面发挥着不可小觑的力量,因此基因工程在药学发展有着深远影响。 3.1 基因工程制药基因工程制药基因工程制药基因工程制药基因工程制药开创了制药工业的新纪元,解决了过去不能生产或者不能经济生产的药物问题。现在,人类已经可以按照需要,通过基因工程生产出大量廉价优质的新药物和诊断试剂,诸如人生长激素、人的胰岛素、尿激酶、红细胞生成素、白细胞介素、干扰素、细胞集落刺激因子、表皮生长因子等。令人振奋的是,具有高度特异性和针对性的基因工程蛋白质多肽药物的问世,不仅改变了制药工业的产品结构,而且为治疗各种疾病如糖尿病、肾衰竭、肿瘤、侏儒症等提供了有效的药物。 3.2 基因工程抗病毒疫苗基因工程抗

《基因工程原理》期末复习思考题教案资料

《医用基因工程》复习思考题 第一章基因和基因组及基因工程的概念 一、名词概念 ①移动基因(插入序列;转位子);②断裂基因;③RNA剪辑; ④内含子(间隔序列)与表达子;⑤重叠基因;⑥重复序列;⑦假基因;⑧启动子与终止子;⑨起始位点、终止位点。 二、讨论题 1.什么叫基因?何谓基因的新概念?基因的主要功能是什么? 2.一种基因一种酶的提法妥否? 3.基因密码子三联体间是否存在着逗号? 4.基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 5.何谓转位子和转位作用?转位的后果如何? 6.基因中最小的突变单位和重组单位是什么? 7.基因工程应包括哪些内容?何谓基因工程的四大里程碑和三大技术发明? 8.真核细胞基因组中常有内含子存在,能否在原核细胞获得表达?能,为什么?不能,为什么? 第二章基因工程中常用的工具酶 1.什么是限制性核酸内切酶? 2.什么是R/M现象?如何解释? 3.II型核酸内切酶的基本特点有哪些? 4.影响II型核酸内切酶活性的因素有哪些?如何克服和避免这

些不利因素? 5.DNA连接酶有哪两类?有何不同? 6.甲基化酶有哪两类?有何应用价值? 7.什么叫同尾酶、同裂酶?在基因工程中有何应用价值? 8.平末端连接的方法有哪些?(图示) 9.Klenow酶的特性和用途有哪些?举例说明。 10.反转录酶的特性有哪些?有何应用价值? 11.列举碱性磷酸酶BAP/CAP的应用之一。 12.列举末端核苷酸序列转移酶的应用之一。 13.质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率? 14.基因片段与载体的平末端连接的方法有哪些? 15.用寡核苷酸和衔接物DNA的短片段连接时为使基因内部的切点保护,常用何种办法解决? 第三章基因克隆载体 1.基因工程常用的载体有哪5种?其共同特性如何? 2.什么是质粒?质粒分哪几种?有哪两种复制类型,质粒的分子生物学特性有哪些? 3.质粒存在的三种形式是什么? 4.分离质粒的基本步骤有哪些? 5.分离纯化质粒的方法有哪几种?简述CsCl密度梯度(浮密度)分离法、碱变性法的原理,如何选择合适的分离方法? 6.作为理想质粒载体的基本条件有哪些? 7.什么叫插入失活,举例说明之。 8.构建pBR322质粒载体的亲本质粒有哪些? 9.什么叫插入型和替换型噬菌体载体?插入型和替换型入噬菌体

基因工程原理与应用题库

名词解释 生物技术、RAPD、酶单位、载体、质粒、基因工程,退火,基因组文库,cDNA文库,PCR,转化,DNA甲基化,RFLP,ISSR,植物基因工程,感受态细胞,受体细胞,工具酶、YAC、探针、AFLP、基因芯片、质粒、基因治疗、基因打靶、基因疗法、原位杂交、分子标记、核酸分子杂交 选择题(单选和多选) 1、第一个作为重组DNA载体的质粒是( ) (a)pBR322 (b)ColEl (c)pSCl01 (d)pUCl8 2、Ⅱ型限制性内切核酸酶( ) (a)有内切核酸酶和甲基化酶活性且经常识别回文序列 (b)仅有内切核酸酶活性,甲基化酶活性由另外一种酶提供 (c)限制性识别非甲基化的核苷酸序列(d)有外切核酸酶和甲基化酶活性 (e)仅有外切核酸酶活性,甲基化酶活性由另外一种酶提供 3、在下列试剂中,那一种可以螯合Ca2+离子( ) (a)EDTA (b)柠檬酸钠(c)SDS (d)EGTA 4、同一种质粒DNA,以三种不同的形式存在,电泳时,它们的迁移速率是( ) (a)OCDNA>SCDNA>LDNA (b)SCDNA>LDNA>OCDNA (c)LDNA>OCDNA>SCDNA (d)SCDNA>OCDNA>LDNA 5、黏粒(cosmid)是一种人工建造的载体( ) (a)它具有COS位点,因而可进行体外包装(b)它具有质粒DNA的复制特性 (c)进入受体细胞后,可引起裂解反应(d)进入受体细胞后,可引起溶源化反应 6、用碱法分离质粒DNA时,染色体DNA之所以可以被除去,是因为( ) (a)染色体DNA断成了碎片(b)染色体DNA分子量大,而不能释放 (c)染色体变性后来不及复性(d)染色体未同蛋白质分开而沉淀 7、根据构建方法的不同,基因文库分为基因组文库、cDNA文库等。在下列文库中 ( )属cDNA文库 (a) YAC文库(b) MAC文库(c) 扣减文库(d) BAC文库 8、关于感受态细胞性质的描述,下面哪一种说法不正确( ) (a)具有可诱导性(b)具有可转移性 (c)细菌生长的任何时期都可以出现(d)不同细菌出现感受态的比例是不同的 9、在利用lacZ失活的显色反应筛选法中,IPTG的作用是( ) (a)诱导宿主的α肽的合成(b)诱导宿主的ω肽的合成 (c)作为酶的作用底物(d)作为显色反应的指示剂 10、基因工程发展史上理论上的三个重要发现是()

基因工程及其应用完整版

基因工程及其应用集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

第2节基因工程及其应用(第1课时) 知识链接及考试地位 本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。 知识回顾 1、DNA分子的结构特点是什么? 2、什么是基因重组? 学习目标 1、简述基因工程的诞生。 2、简述基因工程的原理及技术。要明确基因工程操作的基本步骤和最基本的工具。 重难点 1.教学重点 基因工程的基本原理。 2.教学难点 基因工程的基本原理 新知探究 传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。 一、基因工程的原理 基因工程又叫做或。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。基因工程是在DNA上进行的水平的设计施工,基因的剪刀是指,简称限制酶。其作用特点是一种限制酶只能识别一种序列。基因的针线是指。目前常用的运载体有、和等。质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。 基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。 二、基因工程的原理、操作对象各是什么? 三、限制性内切酶的分布、特点、作用部位和作用结果如何? 四、作为基因的运载体,需具备哪些条件? 五、DNA连接酶的作用对象、位置和结果如何? 六、基因工程的优点是什么?

基因工程技术在现代农业中的应用论文

基因工程技术在现代农业中的应用 摘要:我国农业生物技术在细胞工程、转基因技术等方面取得了令人瞩目的成就给现代农业带来了深刻的变化。而基因工程技术是生物技术的核心和前沿。文章从利用基因工程技术对细胞工程的应用、动植物育种、抗性育种、微生物制药进行了详细地阐述,也提出了我国在利用基因工程技术的对策。 关键词:基因工程技术农业现代化 近年来国际农业生物技术迅速发展推动了农业产业结构的改善和产量增加, 正引领着第三次农业革命已引起世界各国政府和科学家的高度重视。我国农业生物技术的研究20 世纪80年代初期开始启动并于80 年代中期列人国家高科技发展规划即“863”计划。自1983 年世界上第一例转基因植物问世以来,基因工程越来越受到世界各国的关注并得以飞速发展,育成了一大批耐除草剂、抗病、抗虫、抗病毒、抗寒的高产、优质农作物新品种和植物材料,并开始在农业生产上大面积推广应用。 一、细胞工程的应用国际上植物细胞的应用的研究以水稻基因组研究最为热门,日本、韩国均制定了水稻基因组研究计划,我国在“ 863”计划中已正式列项组织实施。如两系法杂交水稻,已经为粮食增产做出了重大贡献累计推广面积达1000 万亩在两系法品种间杂交优势利用方面已先后育成梗型和粕型光敏核不育系 5 个;两系法亚种间杂交水稻共选育出光敏核不育系23 个育成的亚种间组合已种植面积达630 万亩,一般增产10% 左右,米质提高一级;目前两系法杂交水稻育种研究已深人基因层次研究,跃居世界领先水平[1].我国的花药培养和单倍体育种技术在国际上也处于领先地位,育成的水稻、小麦等作物新品种14 个,种植面积达2300 万亩。培育的抗白粉病、抗赤霉病和抗黄矮病小麦新品种已累计推广1000 多万亩。植物快繁和脱毒种苗生产已经走向产业化,建成了香蕉、葡萄、苹果及花卉等十多条快繁脱毒生产线[1] 动植物育种 因为所有生命类型的遗传密码是通用的,所以基因工程可以将动物、植物、

基因工程原理

基因工程原理 1、典型的DNA重组实验通常包括哪些步骤?(20分) 重组DNA技术一般包括四步:①获得目的基因;②与克隆载体连接,形成新的重组DNA分子;③用重组DNA分子转 化受体细胞,并能在受体细胞中复制和遗传;④对转化子筛选和鉴定。⑤对获得外源基因的细胞或生物体通过培养, 获得所需的遗传性状或表达出所需要的产物。 2、在PCR扩增时,(1)PCR扩增后出现的条带与预计的大小不一致,或大或 小,或者同时出现特异性扩增带与非特异性扩增带,为什么?有何对策? (2)PCR扩增后有时出现涂抹带或片状带,其原因是什么?应该如何改进? (20分) (1)其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低, 及PCR循环次数过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增。其对策有:①必要时重新设计引物。②减低酶量或调换另一来源的酶。③降低引物量,适当增加模板量,减少循环次数。④适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。 (2)出现片状拖带或涂抹带 PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:①减少酶量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓度。④增加模板量,减少循环次数。 3、获得一个功能未知的基因克隆后,怎样研究该基因的功能?请提出具体的 研究方案。(20分) 基因功能的研究思路主要包括: 1.基因的亚细胞定位和时空(发育期或梯度药物处理浓度, 不同组织/器官)表达谱; 2.基因在转录水平的调控(可以通过genome walking PCR或通过已有的资源库寻找该基因的启动子等转录调控区域, 通过单杂交或ChIP 等技术, 寻找该基因的转录调控蛋白)

基因工程原理-复习资料

0、基因工程的技术基础和理论基础 1)理论基础: 40年代确定遗传信息携带者,即基因的分子载体是DNA而不是蛋白质,明确了物质基础 50年代确定DNA的双螺旋模型和半保留复制机理,明确自我复制和传递 60年代提出中心法则和操纵子学说,破译遗传密码,阐明信息流向和表达。 2)技术基础: 60年代的琼脂糖凝胶和Southern转移杂交技术,用于DNA分离和检测 60年代初70年代末,发现限制性内切酶和DNA连接酶,实现体外切割 70年代中期,实现DNA分子的核苷酸序列分析技术 80年代实现体外重组DNA并进入宿主细胞 1、基因工程研究的主要内容或步骤 ①从生物有机体基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片段; ②在体外,将带有目的基因的外源DNA片段连接到能够自我复制载体分子上,形成重组DNA分子; ③将重组DNA分子转移到适当的受体细胞(寄主细胞),并与之一起增殖; ④从大量细胞繁殖群体中,筛选出获得了细胞重组DNA分子的受体细胞克隆; ⑤从这些筛选出来的受体细胞克隆,提取出已经得到扩增的目的基因,供进一步分析研究使用; ⑥将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要物质。 2、三位一体的基因概念 ①基因既是携带生物体遗传信息的结构单位,又是控制一个特定性状的功能单位。 ②基因是染色体上的实体 ③基因象链珠(bead)一样,孤立地呈线状地排列在染色体上 基因是功能、突变、交换“三位一体”的最小的、不可分割的、基本的遗传单位。 3、一位一体的基因概念 基因是一个具有特定功能的、完整的、不可分割的最小的遗传单位。基因内可以较低频率发生基因内的重组和交换。 4、顺反子假说 1个顺反子决定1条多肽链。能产生1条多肽链的是1个顺反子,Cistron是基因的同义词。在一个顺反子内,有若干个突变单位:突变子(muton)。在一个顺反子内,有若干个交换单位:交换子(recon)。 5、全同等位基因 在同一基因座位(locus)中,同一突变位点(site)向不同方向发生突变所形成的等位基因(homoallele)。 6、非全同等位基因 在同一基因座位(locus)中,不同突变位点(site)发生突变所形成的等位基因(heteroallele)。 7、重叠基因的概念及其生物学意义 概念: 大多数由一条DNA序列组成的基因,仅有编码一种蛋白质的功能(尽管基因在两端有非编码区,并且在编码区内有内含子)。但是,有些情况下,一条序列编码不止一种蛋白质。 生物学意义: a)原核生物进化的经济原则(较小的C值编码较多的基因信息); b)提高蛋白质的疏水性,以增强生物体自然选择的适应性。

基因工程技术与应用知识点

基因工程的定义:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造, 将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。 基因工程的基本过程:切、接、转、增、检 基因工程理论依据:a) 生物的遗传物质是DNA。b) DNA的双螺旋结构和半保留复制机理。c) 遗传信息的传递方式(中心法则)和三联体密码子系统的建立 遗传工程:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。包括细胞工程和基因工程等不同的技术层次。 克隆。指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。 限制性核酸内切酶。是一类能识别双链DNA 中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。限制性内切酶由三个基因位点所控制:hsd R---限制性内切酶,hsd M---限制性甲基化酶,hsd S---控制两个系统的表达。Hsd S-识别特定DNA序列,Hsd M-甲基化,Hsd R-限制性内切酶功能。 命名法:例如Haemophilus influenzue)d 株中分离的第三个酶:Hin d III 同裂酶:不同来源的限制酶具有相同的识别位点和切割位点。同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶 粘性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称之。 酶活性单位。在合适的温度和缓冲液中,在50μl反应体系中,1小时内完全切割1微克DNA所需的酶量为1个酶活性单位U。 星活性:指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。引起星活性原因:若使用buffer不当, 会有star activity,而star activity是指限制酶对所作用的DNA及序列失去专一性, 当酶辨认切割位置的能力降低,导致相似的序列或是错误的辨认序列长度也会作用,而产生错误的结果。连杆:化学合成的8~12个核苷酸组成的寡核苷酸片段。以中线为轴两边对称,其上有一种

基因工程技术在环境保护中的应用

基因工程技术在环境保护中的应用随着科技的发展,人类在为自己生产出越来越多生活资料的同时,产生有害物质的数量和种类也大幅度增加,环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术是在DNA分子水平上按照人们的意愿进行的定向改造生物的新技术。而利用基因工程技术提高微生物净化环境的能力是用于环境治理的一项关键技术。这一技术发展到今天,正形成产业化并列为世界领先专业技术领域之一,广泛应用于食品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力。 一、基因工程在废水处理中的应用 基因工程技术应用于废水处理是水处理领域一项具有广泛应用前景的新兴技术。常规的废水处理方法有物化法、生物法等。由于一般的物化方法只是污染物的转移,不能从根本上治理,且容易造成二次污染,成本也较高,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限,如果能利用基因工程技术对这些菌株进行遗传改造,提高微生物酶的降解活性,并可大量繁殖,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人们的重视。基因工程技术在废水处理中的应用有以下几个方面。 1、基因工程在环境污染监测中的应用 目前,聚合酶反应(简称PCR)技术和核酸探针技术是常用于水环境中微生物的检测技术。PCR技术是一种在体外模拟自然DNA复制过程的核酸扩增技术,常用于监测海洋环境中存在的微生物。标记的核酸探针可以用于待测核酸样本中特定基因序列,如监测饮用水中病毒的含量。PCR技术和核酸探针技术可能取代常规的水质分析,发展成为一种快速可靠水体微生物的检测技术,并将在细菌、病毒及其他毒物检测中得以迅速的应用发展。 2、基因工程菌对水体中重金属离子的生物富集 利用基因工程菌代替普通微生物处理重金属是近年来研究的热点。基因工程技术在重金属废水治理中的作用主要体现在提高微生物菌体细胞对重金属离子

基因工程原理笔记整理版

一、分子遗传学的传承与发展 1、经典遗传学阶段 孟德尔最初提出了遗传因子的概念;摩尔根创立了遗传的染色体理论。 2、生化遗传学阶段(或微生物遗传学阶段) 3、分子遗传学阶段 1953年,Watson和Crick提出了DNA的双螺旋模型。 4、基因工程阶段 (1)、基因工程诞生的理论基础 ①在40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,从 而明确了遗传的物质基础问题; ②在50年代揭示了DNA分子的双螺旋模型和半保留复制机理,解决了基因的自我复 制和传递的问题; ③在50年代末期和60年代,相继提出了“中心法则”和操纵子学说,并成功地破 译了遗传密码子,从而阐明了遗传信息的流向和表达问题。 (2)、基因工程诞生的技术基础 核酸内切限制酶、DNA连接酶、核酸杂交技术、琼脂糖凝胶电泳技术、克隆载体以及大肠杆菌转化体系的建立。(PCR技术不能作为基因工程诞生的技术基础,因为PCR 技术是在基因工程诞生后建立起来的。) (3)基因工程的优点 ①具有跨越天然物种屏障能力; ②能够使目的基因在大肠杆菌体内得到极大扩增,因此能对基因进行表达调控等基 因工程研究; ③确立了反向遗传学的研究途径。 5、基因组学阶段 基因组学包括:结构基因组学、功能基因组学(转录本组学、蛋白质组学、代谢组学)、基础基因组学、应用基因组学、比较基因组学 6、表观遗传学阶段 研究生命机体在发育与分化过程中,导致表型性状特征发生改变,但是相应核苷酸序列结构却没有发生改变的遗传学成为表观遗传学。 一、遗传信息的三个组成层次 1、有基因组DNA当中的蛋白质编码基因(<2%)构成的第一个层次; 2、仅仅包含非编码RNA(siRNA、miRNA),存在在广袤的RNA当中; 3、表观遗传信息包含在DNA周围与DNA相互作用的大分子—蛋白质。 二、基因的分子结构中的若干概念 1、5’侧翼序列:位于mRNA转录起点之前的序列为5’侧翼序列,也成为启动区。 在启动区有几个控制基因转录的信号:①决定mRNA转录起点的信号;②决定mRNA 转录起始的信号;③对环境刺激因素作出反应的信号;④对法语程序作出反应的信号; ⑤增强子 2、3’侧翼序列:指位于mRNA分子3’-末端的一段非转译的序列。 在3’侧翼序列区有3种信号:①控制转录终止信号;②控制mRNA末端加工信号; ③多数真核生物3’末端多聚腺苷酸化信号。 4、前导序列区:位于mRNA 5’端起始密码子之前的数百个核苷酸(不转译RNA区段),

相关主题
文本预览
相关文档 最新文档