当前位置:文档之家› 全氧燃烧玻璃熔窑与电熔窑运行成本对比

全氧燃烧玻璃熔窑与电熔窑运行成本对比

全氧燃烧玻璃熔窑与电熔窑运行成本对比
全氧燃烧玻璃熔窑与电熔窑运行成本对比

玻璃熔窑设计

目录 前言 (1) 第一章浮法玻璃工艺方案的选择与论证 (3) 1.1平板玻璃工艺方案 (3) 1.1.1有曹垂直引上法 (3) 1.1.2垂直引上法 (3) 1.1.3压延玻璃 (3) 1.1.4 水平拉制法 (3) 1.2浮法玻璃工艺及其产品的优点 (4) 1.3浮法玻璃生产工艺流成图见图1.1 (5) 图1.1 (5) 第二章设计说明 (6) 2.1设计依据 (6) 2.2工厂设计原则 (7) 第三章玻璃的化学成分及原料 (8) 3.1浮法玻璃化学成分设计的一般原则 (8) 3.2配料流程 (9) 3.3其它辅助原料 (10) 第四章配料计算 (12) 4.1于配料计算相关的参数 (12) 4.2浮法平板玻璃配料计算 (12) 4.2.1设计依据 (12) 4.2.2配料的工艺参数; (13) 4.2.3计算步骤; (13) 4.3平板玻璃形成过程的耗热量的计算 (15) 第五章熔窑工段主要设备 (20) 5.1浮法玻璃熔窑各部 (20) 5.2熔窑主要结构见表5.1 (21) 5.3熔窑主要尺寸 (21) 5.4熔窑部位的耐火材料的选择 (24) 5.4.1熔化部材料的选择见表5.3 (24) 5.4.2卡脖见表5.4 (25) 5.4.3冷却部表5.5 (25) 5.4.4蓄热室见表5.6 (25) 5.4.5小炉见表5.7 (26) 5.5玻璃熔窑用隔热材料及其效果见表5.8 (26) 第六章熔窑的设备选型 (28) 6.1倾斜式皮带输送机 (28) 6.2毯式投料机 (28)

6.3熔窑助燃风机 (28) 6.4池壁用冷却风机 (29) 6.5碹碴离心风机4-72NO.16C (29) 6.6L吊墙离心风机9-26NO11.2D (29) 6.7搅拌机 (29) 6.8燃油喷枪 (29) 6.9压缩空气罐C-3型 (29) 第七章玻璃的形成及锡槽 (30) 第八章玻璃的退火及成品的装箱 (32) 第九章除尘脱硫工艺 (33) 9.1除尘工艺 (33) 9.2烟气脱硫除尘 (33) 第十章技术经济评价 (34) 10.1厂区劳动定员见表10.1 (34) 10.2产品设计成本编制 (35) 参考文献 (38) 致谢 (39) 摘要 设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。 关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。

一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。 关键词平拉玻璃熔窑设计 天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。 随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽 度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下: 1 熔化部设计 在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。 本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。 1.1 熔化部主要尺寸的确定 按照熔化部的池宽尺寸计算公式: B=9000+ (P-300) ×7 求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。 对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸: 熔化部池长:L=9 000×2.9=26100 mm, 熔化区池长:Ll=9 000×1.85=16650 mm。

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较 玻璃熔窑的节能降耗一直是业内关注的重大课题,在能源危机日益加重的今天,玻璃熔窑对高品质能源的过度依赖已经制约了玻璃行业的发展。玻璃熔窑燃烧过程中,空气成分中占78%的氮气不参加燃烧反应,大量的氮气被无谓地加热,在高温下排入大气,造成大量的热量损失,氮气在高温下还与氧气反应生成NOx,NOx气体排入大气层极易形成酸雨造成环境污染。另一方面随着高科技和经济社会的发展,要求制造各种低成本、高质量的玻璃,而全氧燃烧技术正是解决节能、环保和高熔化质量这几大问题的有效手段,被誉为玻璃熔制技术的第二次革命。纯氧燃烧技术最早主要被应用于增产、延长窑炉使用寿命以及减少NOx排放,但随着制氧技术的发展以及电力成本的相对稳定,纯氧燃烧技术正在成为取代常规空气助燃的更好选择,这得益于纯氧燃烧技术在节能、环保、质量、投资等方面的优势。 氧气燃烧的应用分为整个熔化部使用纯氧燃烧的全氧燃烧技术、纯氧辅助燃烧技术以及局部增氧富氧燃烧技术等几种方式。 1、全氧燃烧技术的优点 1)玻璃熔化质量好。全氧燃烧时玻璃粘度降低,火焰稳定,无换向,燃烧气体在窑内停留时间长,窑内压力稳定,有利于玻璃的熔化、澄清,减少玻璃的气泡及条纹。 2)节能降耗。全氧燃烧时废气带走的热量和窑体散热同时下降。研究和实践表明,熔制普通钠钙硅平板玻璃熔窑可节能约30%以上。3)减少NOx排放。全氧燃烧时熔窑废气中NOx排放量从2200mg/Nm3降低到500mg/Nm3以下,粉尘排放减少约80%,SO2排放量减少30%。 4)改善了燃烧,提高了熔窑熔化能力,可使熔窑产量得以提高。玻璃熔窑采用全氧燃烧时,燃料燃烧完全,火焰温度高,配合料熔融速度加快,可提高熔化率10%以上。 5)熔窑建设费用低。全氧燃烧窑结构近似于单元窑,无金属换热器及小炉、蓄热室。窑体呈一个熔化部单体结构,占地小,建窑投资费用低。

关于浮法玻璃熔窑改进的几项措施

关于浮法玻璃熔窑改进的几项措施 3唐春桥1,孙兴银2,袁建平2,戴玖凤2 (1.深圳南玻浮法玻璃有限公司,广东 深圳 518067; 2.江苏华尔润集团有限公司,江苏 张家港 215600) 摘要:目前,我国的浮法玻璃熔窑结构设计技术有了较大的发展,使熔窑的熔化能力和熔制质量不断提高,熔窑寿命不断延长,熔窑能耗不断降低。但随着新技术的不断涌现,熔窑的结构设计仍有值得改进和完善的地方。本文就浮法玻璃熔窑改进的几项措施进行探讨,以供同仁参考。 关键词:浮法玻璃熔窑;结构;改进措施 中图分类号:T Q171.6+23.1 文献标识码:B 文章编号:1000-2871(2005)05-0023-02 So m e Acti on s Taken for I m prove m en t of Floa t Gl a ssM elti n g Furnace TAN G Chun -qiao,SUN X ing -y in,YUAN J ian -ping,DA I J iu -feng 1 概述 20世纪90年代初期,随着托利多熔窑技术的引进,国内平板玻璃熔窑在设计水平、熔化能力、窑炉寿命、能耗热效、玻璃熔制质量等方面均取得了跨越式的发展,走出了一条引进、消化、创新的路子。如今,国内设计的浮法熔窑,熔化能力从400t/d,向500t/d 、600t/d 、900t/d 稳步发展;窑龄也从5年向8年和10年迈进;熔制缺陷如气泡、结石等的大量减少,使玻璃质量从普通建筑级提高到汽车级和制镜级。 目前,国内针对浮法玻璃熔窑又进行了多方面的设计创新,如采用全等宽投料池、加长1# 小炉到前脸的间距、加长澄清带长度、大碹保温采用复合保温结构、全连通蓄热室改为“全分隔式”或“分组式”蓄热室、集中式烟道布置、采用水平搅拌和垂直搅拌混合的卡脖结构等等。但是浮法熔窑结构设计仍有改进和完善的空间,下面就浮法玻璃熔窑改进的几项措施进行探讨。2 浮法玻璃熔窑改进措施探讨 2.1 设置辅助电助熔装置 目前,在浮法玻璃熔窑上采用辅助电熔装置熔制玻璃的企业为数不多,主要集中在少数合资或外资企业和极少数国内的浮法玻璃企业中,其好处是:⑴在配合料料区采用电助熔,可大幅度提高料层下面的玻璃液温度,使料层获得更多的热量,提高料层的熔化能力,这样可大幅度增加浮法玻璃产量。而在热点区域采用电助熔,可强化热点、突出热点,从而提高玻璃液质量。⑵生产着色玻璃时,开启电加热可提高熔窑的池底温度,加强池底玻璃液对流,减少不动层厚度,同时,玻璃液可获得更多的热量,通过对流传递到配合料层,从而加快配合料的熔化,在一定程度上补偿空间热量的投入,降低熔窑的火焰空间热负荷,延长窑炉寿命。 第33卷第5期2005年10月玻璃与搪瓷G LASS &E NAMEL Vol .33No .5Oct .2005 3收稿日期:2004-10-10

浮法玻璃熔窑设计的改进

浮法玻璃熔窑设计的改进 宋 庆 余 (蚌埠玻璃工业设计研究院 蚌埠市 233018) 近些年来,我国浮法玻璃熔窑的设计技术取得了长足的发展,20年前中国只有一座浮法玻璃熔窑,当时的熔化能力只有230t/d,窑炉的寿命只有3年,熔化率为1.13t/m2?d,热耗11675kJ/kg玻璃液,玻璃质量仅能达到当时厂标的二、三等品,总成品率为65%。现在我国已有浮法窑61座,我国自己设计的最大吨位为600t/d的窑已投产2年,与20年前相比,熔化能力增加了2.6倍,熔化率达到2.26t/m2?d,提高了近一倍,热耗为6688kJ/ kg玻璃液,降低了43%,产品质量大幅度提高,制镜级和加工级玻璃达到90%,总成品率大于80%。以上的浮法玻璃熔窑技术指标,我国只有少数生产线可以达到,多数浮法玻璃熔窑达不到。这少数的浮法玻璃熔窑与国外先进的相比还有不小的差距。本文主要讨论目前我国浮法玻璃熔窑应如何改进。1 投料池设计的改进 投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的位置、泡界线的稳定,最终会影响到产品的质量和产量。 1.1 应设计与熔化部等宽的投料池 投料池越宽,配合料的覆盖面积就越大,配合料的吸热是与覆盖面积大小成正比的。因此采用与熔化部等宽或接近等宽的投料池,有利于提高热效率,有利于节能,有利于提高熔化率。 1.2 采用无水包的45度“L”型吊墙 传统的“L”型吊墙都有水包,由于水包的寿命短、易损坏、漏水,造成吊墙砖的炸裂,吊墙砖实际上在热工作状态下无法更换,这样就影响窑炉的寿命。所谓无水包吊墙,就是水包被一排吊砖所代替,这就解决了因水包漏水所造成的吊墙砖炸裂问题,同时也解决了更换损坏水包对生产的影响。1.3 投料口采用全密封结构 投料池内的压力一般是正压,所以由窑内向外部的溢流和辐射热损失较大。采用全密封结构,构成预熔池,将减少这部分热损失,使配合料进入熔化池之前能吸收一定的热量,将其中的水分蒸发并进行预熔,这样料堆进入熔化池后很快就会熔化摊平,因此加速了熔化过程。同时,由于料堆表面被预熔,就减少了粉料被烟气带入蓄热室的量,也减轻了飞料对熔窑上部结构的化学侵蚀。投料池采用全密封结构,可以防止外界的干扰,保证窑内压力制度、温度制度的稳定,保证泡界线的稳定。特别是保证玻璃对流的稳定,有利于减少生料对池壁砖的侵蚀,延长窑炉寿命,是一条宝贵的经验。 2 熔化部设计的改进 2.1 加长1#小炉至前脸墙的距离 加长1#小炉至前脸墙的距离,可开大1#小炉,提高熔化效率和热效率。从辐射传热公式可以清楚地看出这个问题。 Q=C? T1 100 4 - T2 100 4 ?F 式中:Q——配合料吸收的热量,kJ; T1——火焰的温度,K; T2——配合料的温度,K;

玻璃熔窑砌筑工程的质量检验和评定

玻璃熔窑砌筑工程的质量检验和评定 2.0.2每座玻璃熔窑就为一个分部工程。每个分部工程应划分为:烟道、蓄热室和小炉、熔化部和冷却部、成型室和供料通路等分项工程,其中熔化部和冷却部为主要分项工程。(Ⅰ)保证项目 2.0.3耐火材料和制品的品种、牌号、泥浆的品种、牌号、配合比、稠度必须符合本标准第 1.2.1条和第1.2.2条的规定。 2.0.4干砌体内砖与砖之间必须紧靠,除设计另有要求外,不应加填充物。 湿砌砌休砖缝的泥浆饱满度必须在于:烟道、蓄热室和小炉90%,熔化部和冷却部、成型室和供料通路95%。 检查数量和检验方法应按本标准第3.2.3条的规定执行。 2.0.5桥砖砌体必须按设计标高保持水平。多块砖砌的桥砖,砖块间必须紧靠吻合,不得透光。桥砖的中心线必须同立柱、顶紧装置的中心线对正。 检验方法:观察和尺量检查,灯光检查。 2.0.6成型室的尺寸、成型与玻璃成型设备的相对位置必须符合设计要求。 锡槽纵向中心线必须与熔窑纵向中心线一致。锡槽底锚固件的焊接必须牢固。 检验方法:经纬仪和拉线检查,锤击检查。 2.0.7拱脚砖必须紧靠拱脚梁。 检验方法:观察检查。 (Ⅱ)基本项目 2.0.8玻璃熔窑砌体砖缝的允许厚度应符合表2.0.8的规定、其检查数量和检验方法应符合下列规定。 玻璃熔窑砌体砖缝的允许厚度 项次项目砖缝允许厚度(mm) 1 烟道和蓄热室 (1)底和墙 (2)蓄热室拱脚以上的分隔墙(3)拱 3 2 2 2 小炉 (1)墙和拱 (2)用硅砖砌筑的小炉口 (3)用熔铸砖砌筑的小炉口 (4)底 2 1. 5 2 3 3 熔化部和冷却部 (1)用大型粘土砖砌筑的池壁 (2)窑拱 2 1.5

玻璃窑炉节能技术发展与应用

玻璃窑炉节能技术发展与应用 发布者: chiefway 发布时间: 2009-12-18 13:53 浏览次数:334 玻璃窑炉节能技术发展与应用 陈福赵恩录张文玲李军明 秦皇岛玻璃工业研究设计院 摘要:本文综述了玻璃窑炉节能途径,全保温技术、余热利用技术、减压澄清、富氧燃烧技术、全氧燃烧技术以及“0”号小炉全氧燃烧助熔技术。并重点介绍了全氧燃烧的机理特点,以及全氧燃烧的优点,并对其应用前景进行了展望。 关键词:玻璃窑炉,全氧燃烧,节能技术 0引言 我国平板玻璃工业已具有相当规模。到2008年9月底国内浮法玻璃生产共有186条,生产能力超过4.5亿重量箱,玻璃产能增加较快,市场竞争逐步白热化。做为玻璃主要燃料的重油,价格持续走高,在玻璃成本中所占比例越来越大。因此,降低玻璃能耗,对降低生产成本,提高企业的市场竞争力,减少环境污染,缓解能源短缺等都具有巨大意义。玻璃企业的节能是一个长期任务,国内外技术人员积极进行研究,如优化窑炉结构设计、余热利用、减压澄清、富氧燃烧、全氧燃烧电助熔等。目前很多企业已开始在生产过程中实施节能措施,新型节能技术产业化市场空间巨大。 1熔窑全保温技术 对玻璃熔窑窑体各部位施行合理的保温,是提高热效率的重要途径。窑体保温,不仅能显著地减少砌体表面向外界的热量损失,改善操作人员的工作条件,而且由于增大了窑体的热容量,有利于窑内温度制度的稳定和提高玻璃液本身的实际温度,使池内玻璃液的温度分布和流动更趋于合理。因此窑体保温已成为增大池窑出料量,提高玻璃质量和降低燃料消耗的主要措施。 窑体保温有如下优点:相同熔化率下,可降低热损耗,节约能源。池底可减少热损耗72%,池壁87%,胸墙79%,蓄热室80%,碹顶49%;能量消耗相同情况下,可提高熔化率。一般15%~20%。玻璃液平均温度提高30℃~40℃,有利于玻璃液的澄清和均化,提高玻璃液质量,使成品率提高;火焰空间热负荷降低,延长了窑顶的使用寿命,并改善了操作条件。 2余热利用技术 从蓄热室或换热室出来的烟气、工作池和供料道排出来的气体、窑体和供料道的外表散热以及低温冷却水等的热量可以回收利用。安装余热锅炉可以回收热量,节约燃料,降低烟气温度。生产的蒸汽可作燃油的雾化剂或用来预热重油,也可作为煤气发生炉的气化剂,还可以转化为电能或制造压缩空气等。 2.1余热锅炉 余热锅炉是利用窑炉烟气的余热以获得蒸汽或热水的装置。它和普通锅炉的区别是:其传热作用全部依靠对流和气体辐射,而不是依靠火焰或燃料层的辐射,因而不仅传热系数较低,而且平均温差也小,所以需要的加热面积也应较大。 500t/d级熔窑烟到总烟气量设计值(标态)约76000~80000Nm3/h。根据建设单位的要求,烟气可设计为部分通过余热锅炉,可半通过,也可以全部通过余热锅炉(烟气温度400℃~500℃)。据此选用余热锅炉的台数。常规设计选用的余热锅炉,蒸汽压力可达到1.27MPa,每台锅炉每小时可产生蒸汽4t~5t。蒸汽作为二次能源,可用于燃料油系统的加热,可作为雾化系介质,可作为厂区内采暖及生活用汽等。 2.2利用熔窑烟气余热预热玻璃配合料 利用烟气余热进行玻璃熔窑配合料预热工艺技术及装备的研究开发,有效利用烟气余热预热玻璃配合

【2019年整理】玻璃熔窑的全氧燃烧

《玻璃熔窑的全氧燃烧》 本文论述了玻璃熔窑的全氧助燃、全氧燃烧机理,发展趋势以及因助燃介质的改变引起的熔窑结构变革,全氧燃烧还是治理环境;大气污染、温室效应的有效措施,并建议在编制“十一五”规划时,制订相应的指导性政策,试行“全氧燃烧技术”取得经验以利推广。 关键词:全氧燃烧、全氧助燃“0号小炉”、温室效应、“NO x”、硅砖碹顶蚀变、高碹顶技术、节能、大气污染、“京都协议书”、“万象协议”。 本文谨献给编制“十一五”规划、从事玻璃工业的科技工作者。 一、概论 改革开放20多年以来, 国民经济迅速发展举世瞩目。玻璃工业(平板玻璃、电子玻璃、玻璃纤维、日用玻璃、光学玻璃等)相应得到迅速发展,仅以浮法玻璃为例,截止2004年底,已建成投产126条浮法线(总产量已达到3亿重量箱,日熔量52930T),还有51条线在建、拟建。熔化玻璃采用煤、煤焦油、重油、天然气、或电(少量)作燃料。目前我国熔化一公斤玻

璃液(平板玻璃)平均指标在1500-1800大卡。按此单位能耗测算,玻璃工业无疑是重要能耗大户之一。当今世界石油价格上涨,我国进口石油逐年增加(中国生产力发展研究报告研究表明;中国石油进口率测算到2010、2015和2020年进口率下限将分别达到55.4%、57.4%、59.7%。大大超过30%理论上控制指标,按国际能源组织今年预测2030年中国石油对外依存度将达到74%的进口率)。玻璃熔窑大部分采用重油做燃料,因此,对于玻璃工业的总量控制,尤其是高能耗玻璃熔窑的能耗限制,从节能、成本考虑采用新燃烧技术已是当务之急。 2005年2月16日“京都协议书”生效、2005年7月27日美国、澳大利亚、中国、印度、韩国在万象签订了亚太地区清洁能源开发及气候变化研究伙伴关系的协议“万象协议”,都在呼吁保护全球环境。 目前中国的温室气体排放量已高居世界第二,并预计将会超过美国升至第一(美国纽约时报10月30日文章:中国下一个剧增的可能是污染空气)。根据粗略统计,中国有1/3的地区受到酸雨侵蚀。中国政府现在必须认识到,在环境方面,它既有国内责任,也有国际责任。 党和国家提出的“十一五”规划纲要,已将

t浮法玻璃熔窑熔制制度的确定

玻 璃 熔 制 组别:第二组 组长:黄忠伦 组员:孙印持、黄忠伦、张彬、何洋、赖世飞、朱子寒

“玻璃熔制”课程任务 一、任务目的: 400t/d浮法玻璃熔窑熔制制度的确定 二、主要内容: 1、确定玻璃熔制过程的温度-黏度曲线; 2、确定玻璃熔制的各种熔制制度; 3、分析熔制制度对玻璃质量的影响; 三、基本要求: 1、玻璃熔制制度应符合实际生产情况要求,便于组织生产; 2、熔制制度参数选择合理、先进; 3、熟悉玻璃熔制制度对玻璃质量的影响; 4、提交一份打印的任务说明书及电子文档; 5、提交本小组各成员的成绩表(100分制);

(一)黏度与温度的关系 1.由于结构特性的不同,玻璃熔体与晶体的黏度随温度的变化趋势有显著的差别。晶体在高于熔点时,黏度变化很小,当到达凝固点时,由于熔融态转变晶态的缘故,黏度呈直线上升。玻璃的黏度则随温度下降而增大,从玻璃液到固态,玻璃的黏度是连续变化的,其间没有数值上的突变。 (1)应变点:应力能在几小时内消除的温度,大致相当于粘度为1013.6Pa·s时的温度,也称退火下限温度。(2)转变点(Tg):相当于粘度为1012.4Pa·s时的温度。高于此点脆性消失,并开始出现塑性变形,物理性能开始迅速变化。 (3)退火点:应力能几分钟内消除的温度,大致相当于粘度为1012Pa·S时的温度,也称退火上限温度。(4)变形点:相当于粘度为1010-1011Pa·S时的温度范围。(5)、软化温度(Ts):它与玻璃的密度和表面张力有关,相当于黏度为3×106~1.5×107Pa·s的温度范围。对于密度约等于2.5的玻璃它相当于粘度为106.6Pa·S时的温度。(6)操作范围:相当于成型玻璃表面的温度范围。T上限指准备成型的温度,相当于粘度为102-103Pa·S时的温度;T下限相当于成型时能保持制品形状的温度,相当于粘度>105Pa·S时的温度。操作范围的粘度一般为103-106.6Pa·S

玻璃熔窑安全评价分析

玻璃熔窑安全评价分析 摘要 系统安全分析与评价是保证生产系统安全运行的基础。本文将各种系统安全 分析与评价技术进行了归类介绍,从不同的角度和层次上研究了其特点及其应用,对实际系统安全分析与评价具有一定的指导意义。 关键词玻璃熔窑安全分析危害因素管理对策 前言 本论文是针对玻璃熔窑进行的安全评价分析,分析了在玻璃生产中存在的有害因素和机械伤害程度,,并通过国家法规和行业技术标准对玻璃熔窑在设计和生产中容易存在安全隐患的几个系统利用安全分析检查表法对其中的所包含的具体内容进行剖析,并 提出一些安全管理对策措施及建议。 1.工艺系统简述 玻璃熔窑,指玻璃制造中用于熔制玻璃配合料的热工设备。将按玻璃成分配好的粉料和掺加的熟料(碎玻璃)在窑内高温熔化、澄清并形成符合成型要求的玻璃液。 玻璃熔窑有坩埚窑和池窑两大类。它们均包括玻璃熔制、热源供给、余热回收和排烟供 气4个部分。 坩埚窑 窑膛内放置单只或多只坩埚。坩埚窑(图1坩埚窑结构示意)中玻璃熔制的各阶段(熔化、澄清、均化、冷却)在同一坩埚中随时间推移依次进行,窑内温度制度随时间推移变动。成型时,用人工从坩埚口取料,再进行吹制、压制、拉引、浇注等,也可以坩埚底供料,或将整坩埚移出取料。坩埚材质以粘土居多,也有用铂的。形状有开口和横口(闭口)两种。开口坩埚的坩埚口朝向窑膛,能直接得到窑墙及热源辐射和传递的热能;横口坩埚的坩埚口朝向窑外,要通过坩埚壁间接取得热量,能避免窑内气氛对玻璃液的影响和污染。坩埚窑适用于熔制产量小、品种多或经常更换料种的玻璃。 池窑

窑膛包含一耐火材料砌筑的熔池,配合料投入窑池内熔化。池窑有间歇式和连续式两种。间歇式池窑又称日池窑,一般较小,熔池面积仅几平方米。熔制过程完成后,从取料口取料,大多采用手工或半机械成型。适用于生产特种玻璃。绝大多数池窑属于连续式,各个熔制阶段在窑的不同部位进行。各部位的温度制度是稳定的。配合料由投料口投入,在熔化部经历熔化和玻璃液澄清、均化的行进过程,转入冷却部进一步均化和冷却,继而进入成型部最后均化(包括玻璃液温度均化)和稳定供料温度。由于池窑靠近底部玻璃液温度低而呈滞流状态,因此窑池玻璃液总容量大于作业玻璃量,连续作业的加料量与成型量保持平衡。熔化好的玻璃液采用连续机械化成型。连续式池窑容量大,相对散失热少,热效率明显高于坩埚窑,适于大批量高效率的连续性生产。 锡槽 窄进口端:流道溜槽闸板 宽流槽进口端:砍砖侧壁闸板 主体结构有槽身.胸墙.顶盖, 钢结构.电加热系统.冷却系统 退火窑(annealing furnace) 用于玻璃的退火,消除玻璃内的内应力。 玻璃退火主要分为两个方面:内应力的减弱和消除,放置内应力的重新产生。 按照移动情况分为间歇式、半连续式和连续式。 按照加热工艺分加热均热预冷区、重要冷却区、冷却区和急速冷却区。 2系统危险,有害因素识别 2.1工艺设备/装置的危险,有害因素识别 设备、设施缺陷.强度不够、刚度不够、稳定性差、密封不良、应力集中、外形缺陷、外露运动件、操纵器缺陷、制动器缺陷、控制器缺陷、设备设施其他缺陷等 据相关资料的搜集 (1)设备本身能满足工艺的要求。标准设备均由具有生产资质的专业工厂所制造;特种设备的设计、生产、安装、使用,均具有相应的资质或许可证。 (2)设备具备相应的安全附件或安全防护装置,如安全阀、压力表、温度计、液压计、

浮法玻璃熔窑的结构

浮法玻璃熔窑的结构 浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。 一投料池 投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。 1.投料池的尺寸 图1-1 浮法玻璃熔窑平面图 1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室 图1-2 浮法玻璃熔窑立面图 1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴

投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。(目前多采用垄式投料机和斜毯式投料机)。 (1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。 (2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使用,它的投料方式与垄式投料机相似,只是投料面比垄式投料机要宽得多,因此其投料池的尺寸在设计上与采用垄式投料机的投料池尺寸没有太大的区别,仍然决定于熔化池的宽度和投料面的要求。 随着玻璃熔化技术的成熟和熔化工艺的更新,浮法玻璃熔窑投料池的宽度越来越大。因为配合料吸收的热量与其覆盖面积是成正比的,投料池越宽,配合料的覆盖面积越大,越有利于提高热效率和节能,有利于提高熔化率。因此,目前在大型浮法玻璃熔窑的设计中,均采用投料池与熔化池等宽和准等宽的模式。随着投料池宽度的不断增大,大型斜毯式投料机也应运而生,熔化池和投料池宽度均在11m的熔窑,采用两台斜毯式投料机即可满足生产和技术要求。 二熔化部 浮法玻璃熔窑的熔化部是进行配合料熔化和玻璃液澄清、均化的部位。熔化部前后由熔化区和澄清区组成;上下又分为上部火焰空间和下部窑池。其中上部空间又称为火焰空间,由前脸墙、玻璃液表面、窑顶的大碹与窑壁的胸墙所围成的充满火焰的空间;下部池窑由池

【安全】石灰窑安全评价报告

【关键字】安全 前言 ××××××石灰窑位于济宁市梁山县梨花园镇,是一家私营企业。主要从事建筑用生石灰的生产和销售。 为贯彻国家“安全第一,预防为主”的安全生产方针,确保企业在劳动安全方面符合国家有关的法律、法规和标准、规范,根据《中华人民共和国安全生产法》、《中华人民共和国矿山安全法》,以及国家、省安全生产监督管理局的有关规定,××××××石灰窑应进行安全评价。 受××××××石灰窑的委托,山东齐信安全评价有限公司组成了评价组对××××××石灰窑石料开采和生石灰生产项目进行现状评价。 评价组成员在对受××××××石灰窑进行实地考察的基础上,查阅相关资料,选用合理的安全评价方法,对该项目进行安全现状评价。评价过程中找出了项目存在的安全隐患,提出了相应的安全对策和措施,并根据国家安全生产监督管理局(安监管技装字[2003]第93号)“关于印发《非煤矿山安全评价导则》通知”的要求编制了安全评价报告。为企业今后的安全生产和安全管理提供了依据,也为主管部门进行安全监督管理提供了参考。 2011年9月

目录 1编制说明 0 1.1评价目的 (1) 1.2评价依据 (1) 1.3评价范围 (3) 1.4评价程序 (4) 2被评价单位的基本概况 (5) 2.1企业基本情况 (5) 2.2区域位置、平面布置及地质、自然条件 (5) 2.3工艺概况 (9) 2.4设备概况 (10) 3主要危险、有害因素分析 (11) 3.1矿山开采主要危险因素分析 (11) 3.2生石灰生产过程中主要危险、有害因素分析 (14) 3.3用电系统的主要危险因素分析 (18) 3.4主要有害因素分析 (19) 4评价单元的划分和评价方法的选择 (21) 4.1评价单元的划分 (21) 4.2评价方法的选择 (21) 4.3评价方法简介 (21) 5安全评价 (26) 5.1预先危险性分析评价 (26) 5.2作业条件危险性评价 (30) 5.3安全检查表分析评价 (30) 6安全对策措施和建议 (42) 6.1对策措施 (42) 6.2补充措施和建议 (42) 7整改复查表 (45) 8评价结论 (46) 附件: (47)

全氧燃烧超白玻璃熔窑结构设计研究

研究与综述 0 引言 通常超白压延玻璃生产线多为一窑多线,一条横通路连接多条支通路,玻璃液流至每条支通路所经过的路程不同,每条支通路分布的玻璃液不均匀,则每条支通路出口的玻璃液将产生温差,将直接影响玻璃液的后续压延成型及产品的质量。 基于以上超白压延一窑多线熔窑结构设计的不足,提出一种新型超白压延玻璃生产线熔窑结构设计形式,主要用于全氧燃烧玻璃窑炉。窑炉结构主体为一窑四线,包括熔化池和卡脖,卡脖出口端接一条主横通路,在主横通路出口端接两条次横通路,每条次横通路直接与两条支通路相接,如图1所示。在实现一窑多线的同时,又使熔化池出口端至支通路出口端距离相等,从而玻璃液温降相等,各支通路出口玻璃液的横向温差大大降低,进一步提高了产品质量和稳定性。 全氧燃烧超白玻璃熔窑结构设计研究 1211111张文斌 宋春来 仝小飞 王将 周康 李娟 阚正权 (1. 彩虹(合肥)光伏有限公司 合肥市 230000; 2. 秦皇岛玻璃工业研究设计院有限公司 秦皇岛市 066001) 摘 要 以全氧燃烧超白玻璃一窑四线熔窑设计为例,主要从熔窑结构设计特性方面进行分析研究,阐述了全氧燃烧玻璃 熔窑的特点,以及超白玻璃熔窑主要特性等,提出切合实际的全氧燃烧超白玻璃熔窑设计方案。 关键词 全氧燃烧 超白压延玻璃 横向温差 中图分类号:TQ171 文章标识码:A 文章编号:1003-1987(2018)10-000-04 The Design about Furnace Structure of Ultra-clear Glass with Oxy-fuel 12111 ZHANG Wenbin, SONG Chunlai, TONG Xiaofei, WANG Jiang, ZHOU Kang, 11 LI Juan, KAN Zhengquan (1. Caihong(Hefei)photovoltaic Company Limited, Hefei, 230000; 2. Qinhuangdao glass industry research and design institute Company Limited, Qinhuangdao, 066001)Abstract: Takes the design of a four-wire furnace of a Oxy-fuel ultra-clear glass furnace as an example. the structure design characteristics of Oxy-fuel furnace are analyzed,the advantages of Oxy-fuel furnace are described,and the main characteristics of Ultra-clear glass furnace,a practical design of a Oxy-fuel ultra-clear glass furnace is proposed. Key Words: oxy-fuel, ultra-clear rolled glass, transverse temperature 9 图1 全氧燃烧超白压延玻璃熔窑平面示意图 1 全氧燃烧技术优越性 玻璃工业是耗能大户,目前我国玻璃窑炉的 9

浮法玻璃熔窑卡脖深层水包的使用

浮法玻璃熔窑卡脖深层水包的使用 浮法玻璃熔窑卡脖水包深浅的使用与玻璃熔窑设计有关,深层水 包一般使用在平底、浅池、小冷却部窑炉,使用不同深度的水包,会改变玻璃液对流,对流的改变,玻璃质量和能耗也会发生相应 的改变,控制好深层水包的深度对玻璃生产有着重大的意义。 卡脖水包是玻璃液分隔设备,在我国浮法熔窑上应用极其广泛。其作用:一 是阻挡熔化部未熔化好的粉料浮渣或者不能熔化的难熔物进入冷却部,参与成型,提高玻璃的产质量;二是调节玻璃液进入冷却部的流量和降低玻璃液的温度。 一、池窑内玻璃液流的对流 1、由于窑体的散热,造成池窑内玻璃液产生温度差,而玻璃液的密度与温 度成反比,温度差必然造成密度差,窑池内各部位存在不同密度玻璃液的情况下,形成表层玻璃液由高温向低温侧流动,低温玻璃液由深层向高温侧流动现象,玻璃液的温度梯度越大,其对流越激烈。 2、投料推力,配合料在投入玻璃熔窑以后,靠投料机的推力把配合料由投 料口向熔窑中部推,自然配合料会带动料层下的表层玻璃液向前移动。 3、玻璃液出口,成型拉引造成的液面低洼,产生的表面流动。 玻璃液在窑内的流动图 由热点到投料口的对流我们称为环流一。 热点到卡脖的对流我们称为环流二。 热点到冷却部、流道的对流我们称为环流三。 卡脖水包的深浅直接控制者进入冷却部的供回流玻璃液量,水包插入越深,进入冷却部的供回流玻璃液越少,冷却部降温速度越快。

卡脖水包对熔化的影响,应考虑以下两点,一是熔化能耗。二是玻璃的熔化、澄清。 二、卡脖开度对玻璃熔化能耗、澄清、均化的影响 1、能耗:卡脖水包加深后,减少冷却部的供回流量,冷却部回流量减少, 熔化所需要加热的低温玻璃液减少,熔化池玻璃液整体温度升高,熔化速度加快,玻璃液澄清温度升高,能耗降低。但另一方面讲,进入冷却部的热玻璃液 量少了,降温速度加快,而流道的温度是一定,必须满足成型的要求,这就需 要提高末对小炉温度,来满足成型需要,增加能耗。一个窑炉上采用不同深度 的水包,水包插入深度由浅逐渐加深,其能耗变化是从能耗高逐渐降低,到达 最低点后又逐渐升高,它是一个抛物线形式的变化曲线。 2、玻璃液的澄清: 玻璃的澄清,在卡脖开度减少的情况下,成型流玻璃液进入冷却部的玻璃 液量减少,冷却部回流量减少,熔化部玻璃液整体温度上升,玻璃液在高温时 澄清排泡能力增加,有利于玻璃液的高温澄清。而玻璃液澄清过程应分为两部分,一是玻璃液的高温排泡澄清;二是玻璃液在冷却过程中的残余气泡吸收,冷却微泡吸收澄清。 减少卡脖开度,玻璃液高温澄清效果明显转好,但卡脖开度的改变,势必 改变了玻璃液的冷却温度曲线,冷却曲线的改变对微泡的吸收有着较大的影响,总的澄清效果应进行多方面的测试,试验得出良好的澄清效果。 正常的玻璃液冷却温度曲线应均匀稳定,无突变的曲线,如下图: 如果温度缩小卡脖开度,即增加卡脖插入深度,其玻璃液温度曲线会在卡 脖处产生一个温度剧变点,如下图,从而改变玻璃液冷却过程中的微泡吸收的 热历史,使微泡难以被玻璃液吸收,存在于成品中影响玻璃质量。 玻璃液在卡脖处产生一个剧烈降温段,在此处,玻璃液中气体微泡中的二 氧化硫气体会与玻璃中的钠离子重新结合,以液态形式附着在气泡内壁上,阻 止微泡被玻璃液吸收。

玻璃熔窑全氧、纯氧及富氧燃烧节能专业技术

玻璃熔窑全氧、纯氧及富氧燃烧节能技术

————————————————————————————————作者:————————————————————————————————日期:

玻璃熔窑全氧、纯氧及富氧燃烧节能技术对比 来源:中国节能产业网时间:2011-8-17 22:33:20 玻璃熔窑的节能降耗一直是业内关注的重大课题,在能源危机日益加重的今天,玻璃熔窑对高品质能源的过度依赖已经制约了玻璃行业的发展。玻璃熔窑燃烧过程中,空气成分中占78%的氮气不参加燃烧反应,大量的氮气被无谓地加热,在高温下排入大气,造成大量的热量损失,氮气在高温下还与氧气反应生成NOx,NOx气体排入大气层极易形成酸雨造成环境污染。另一方面随着高科技和经济社会的发展,要求制造各种低成本、高质量的玻璃,而全氧燃烧技术正是解决节能、环保和高熔化质量这几大问题的有效手段,被誉为玻璃熔制技术的第二次革命。 纯氧燃烧技术最早主要被应用于增产、延长窑炉使用寿命以及减少NOx排放,但随着制氧技术的发展以及电力成本的相对稳定,纯氧燃烧技术正在成为取代常规空气助燃的更好选择,这得益于纯氧燃烧技术在节能、环保、质量、投资等方面的优势。 氧气燃烧的应用分为整个熔化部使用纯氧燃烧的全氧燃烧技术、纯氧辅助燃烧技术以及局部增氧富氧燃烧技术等几种方式。 1、全氧燃烧技术的优点 1)玻璃熔化质量好。全氧燃烧时玻璃粘度降低,火焰稳定,无换向,燃烧气体在窑内停留时间长,窑内压力稳定,有利于玻璃的熔化、澄清,减少玻璃的气泡及条纹。 2)节能降耗。全氧燃烧时废气带走的热量和窑体散热同时下降。研究和实践表明,熔制普

玻璃浮法熔窑毕业设计开题报告

玻璃浮法熔窑毕业设计开题报告 毕业设计(论文)开题报告 系(部): 材料科学与工程 2012年3月9日课题名称日产600吨天然气浮法熔窑及锡槽初步设计—普通玻璃 毕业设计 B080106 学生姓名丁博专业班级课题类型 指导教师陈文娟职称副教授课题来源教学 1. 综述本课题国内外研究动态,说明选题的依据和意义 1.1选题背景 自1959年2月,英国Pilkington玻璃兄弟有限公司宣布浮法工艺成功以来,浮法玻璃技术得到迅速推广。2010年世界浮法玻璃生产利用率高达94%,库存约小于6%,其中市场消耗优质浮法玻璃已经超过了10亿重量箱以上。目前,国外一些大公司掌握了较为先进的玻璃制造技术,可以生产出0.5,25mm之间各种厚度的浮法玻璃,其玻璃熔窑拉引规模也在150,1000t/d之间不等。 1981年中国“洛阳浮法”诞生,从此我国玻璃工业进入了一个快速发展时期。浮法玻璃技术被迅速推广,一批采用“洛阳浮法”技术的浮法玻璃生产线陆续建成,目前我国已成为世界上生产规模最大的平板玻璃生产国。截止2011年,全国共有242条浮法玻璃生产线,2010年平板玻璃总产量达7.07亿重量箱,约占全球总产量的50%以上。 由于玻璃产量日益扩大,再加上玻璃多元化的发展,玻璃的价格越来越低,质量方面也要求越来越高。我国玻璃厂技术水平不高,产品比较单一,质量普遍不高,在市场上处于不利的位置。因此,我们迫切需要提高自己的技术水平,扩大规模,完善管理制度,向多元化高质量方面发展。

在平板玻璃原片制造技术上,目前国际上还没有新的更好的方法能取代浮法成型工艺,但浮法技术如超薄技术、在线镀膜技术、一窑多线技术仍需继续提高和完善。 本设计主要是针对浮法玻璃熔窑及锡槽方面进行的,综合目前国内外的先进技术,对600万吨浮法玻璃熔窑及锡槽部分进行设计。 1.2选题的目的及意义 了解浮法玻璃熔窑及锡槽的结构,对浮法玻璃的熔窑及锡槽工艺有一个全面的了解。培养学生严谨的工作作风和求实努力的科学态度,弄清浮法玻璃熔窑及锡槽工艺制度的设计方法,进一步培养学生独立思考、综合运用已学理论知识及其它途径分析和解决实际问题的工作能力、锻炼学生理论结合实际的能力、看图和制图的能力、设计和科研的能力,提高学生的工厂设计能力。 1.3选题的可行性在校期间,本人已经系统的学习了浮法玻璃工艺,硅酸盐热工基础及其设备等相关专业课程,还参加过玻璃厂参观实习的实践课程,将理论与实践很好的结合,对玻璃生产工艺有了直观的认识和了解,这些都为本科设计奠定了良好的理论和实践基础。此外学校也为我们提供了良好的设计环境。 国内外的浮法玻璃工艺技术经过半个多世纪的发展已日益成熟,熔窑及锡槽的结构更加合理和稳定。洛阳作为我国浮法玻璃工艺技术的诞生地也为本次设计提供了更好的条件和环境。同时国家的节能减排及产业结构调整政策也给我们的设计提出更高的要求。 2. 研究的基本内容,拟解决的主要问题 2.1设计的主要内容 1参考国内同类产品的组成,确定玻璃的组成; 2选择原料,并进行料方计算; 3对浮法玻璃熔窑及锡槽工艺做整体的了解;

玻璃窑炉富氧燃烧技术

富氧燃烧新技术在马蹄焰玻璃窑炉上的应用探讨 一、膜法富氧原理: 膜法富氧技术是利用高分子材料的一些本征特性,如对不同气体分子具有不同的选择渗透性能,以及高分子材料的特殊加工性能,科技人员将一些特殊的高分子材料研究加工成为具有工业应用价值的气体分离膜和膜原件。 选用高分子材料,经特殊工艺加工成复合膜和膜原件,可以将空气中的氧从21%富集到30%,且具有超高气体透量(与玻璃态高分子膜相比),单位面积/单位时间/单位压力可产富氧(30%)4Nm3/m2?h?bar,与深冷法制氧和变压吸附法制氧(折合成相同浓度)相比,膜法的制氧成本最低。 二、富氧燃烧原理: 富氧燃烧目的就在于使燃料充分燃烧,并有效地充分利用燃烧生成的数量。燃烧的工艺与炉窑效率有着至关重要的关系。燃烧是由于燃料中可燃分子与氧分子之间发生高能碰撞而引起的,所以氧的供给情况决定了燃烧过程完成的是否充分。在常规空气助燃的燃烧系统中,这种高能碰撞作用受到占空气成份近五分之四不助燃的氮分子阻碍,减少了氧分子与燃料可燃分子之间的碰撞机会,直接影响燃烧效率的提高,不仅如此,氮还在炉窑中吸收大量的热量在废气中排掉造成热损失,浪费能源。采用比常规空气含氧量高的空气助燃称富氧燃烧,它有提高火焰温度、加快燃烧速度、降低燃料燃点温度、增加热量利用率的特点。 三、马蹄焰玻璃窑炉描述: 马蹄焰玻璃窑炉以价格低廉的发生炉煤气(油或天燃气)为燃料,不但提高了熔化质量,且大大节约了燃料成本。该炉型设有合理的蓄热室结构,提高了热能利用率和工作效率。在蓄热室设计时,是让烟气直接通过蓄热室进入烟道,而蓄热室是一个用耐火材料砌成的空心格子的加热室。当发生炉煤气和空气通过蓄热室时预热空气和煤气,一起进入小炉内相互混合和预燃。使燃料释放出更多的热量。烟气在蓄热室反复上升与下沉的过程中,热量被格子砖充分吸收并蓄积,有部分热量被废气所带走,大部分热量被充分利用到工作中去。 四、富氧燃烧技术在发生炉煤气马蹄焰璃熔窑炉上的应用 马蹄焰玻璃窑炉局部富氧助燃是很有必要的,也是可行的。在一般的玻璃熔窑火焰空间中,火焰下部总是最缺氧的部位,燃烧不完全,温度较低。如果富氧喷管以一定的角度和速度将氧气引入窑炉空间,冲击火焰底部,这样就会在靠近玻璃液面一侧形成一个含未燃烧碳粒较少的富氧层,使之燃烧充分,温度提高较大。这种不对称火焰,可靠垂直的温度梯度,在靠近玻璃料液的一侧形成一个高温带,使火焰底部增加向玻璃料液内部的热辐射和热对流。而在靠近窑碹的一侧温度并不升高,使窑顶免受由此带来的侵蚀加重。同时由于火焰强度增加,火焰变短,有助于控制熔窑内温度分布。此外,可防止在蓄热室内燃烧。这对蓄热式熔窑来说,格子砖的寿命也可以得到改善。 由于马蹄焰窑是侧面加料,正面喷火,因此其料层长度相对来说比较短,为了加强熔化,火焰长度也要求短些,一般宜采用短焰燃烧。只有这样,火焰热量才会

相关主题
文本预览
相关文档 最新文档