当前位置:文档之家› 高考文科数学练习题圆的方程、直线与圆及圆与圆的位置关系含答案解析

高考文科数学练习题圆的方程、直线与圆及圆与圆的位置关系含答案解析

高考文科数学练习题圆的方程、直线与圆及圆与圆的位置关系含答案解析
高考文科数学练习题圆的方程、直线与圆及圆与圆的位置关系含答案解析

人教版数学-高中数学竞赛标准教材10第十章 直线与圆的方程讲义.

第十章 直线与圆的方程 一、基础知识 1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x 2+y 2=1是以原点为圆心的单位圆的方程。 2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。 3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。 4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式: 1=+b y a x ;(5)两点式:1 21121y y y y x x x x --= --;(6)法线式方程:xcos θ+ysin θ=p (其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:?????+=+=θ θ sin cos 00t y y t x x (其中θ为该直线 倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取正,否则取负)。 5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tan θ= 2 11 21k k k k +-,tan α= 2 1121k k k k +-. 6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。且两者不重合,则l 1//l 2的充要条件是k 1=k 2;l 1⊥l 2的充要条件是k 1k 2=-1。 7.两点P 1(x 1, y 1)与P 2(x 2, y 2)间的距离公式:|P 1P 2|= 2 21221)()(y y x x -+-。 8.点P(x 0, y 0)到直线l: Ax+By+C=0的距离公式:2 2 00| |B A C By Ax d +++= 。 9.直线系的方程:若已知两直线的方程是l 1:A 1x+B 1y+C 1=0与l 2:A 2x+B 2y+C 2=0,则过l 1, l 2交点的直线方程为A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2=0;由l 1与l 2组成的二次曲线方程为(A 1x+B 1y+C 1)(A 2x+B 2y+C 2)=0;与l 2平行的直线方程为A 1x+B 1y+C=0(1 C C ≠). 10.二元一次不等式表示的平面区域,若直线l 方程为Ax+By+C=0. 若B>0,则Ax+By+C>0表示的区域为l 上方的部分,Ax+By+C<0表示的区域为l 下方的部分。 11.解决简单的线性规划问题的一般步骤:(1)确定各变量,并以x 和y 表示;(2)写出线性约束条件和线性目标函数;(3)画出满足约束条件的可行域;(4)求出最优解。 12.圆的标准方程:圆心是点(a, b),半径为r 的圆的标准方程为(x-a)2+(y-b)2=r 2,其参数方程为 ?? ?+=+=θ θsin cos r b y r a x (θ为参数)。

【精品】高中数学 选修1-1_双曲线及其标准方程_ 知识点讲解 讲义+巩固练习(含答案)提高

双曲线及其标准方程 【学习目标】 1.知识与技能: 从具体情境中抽象出双曲线的模型;掌握双曲线的定义、标准方程及几何图形;能正确推导双曲线的标准方程. 2.过程与方法: 学生亲自动手尝试画图、发现双曲线的形成过程进而归纳出双曲线的定义、图象和标准方程. 3.情感态度与价值观: 了解双曲线的实际背景,感受双曲线在刻画现实世界和解决实际问题中的作用,进一步感受数形结合的基本思想在解析几何中的作用. 【要点梳理】 要点一:双曲线的定义 把平面内到两定点1F 、2F 的距离之差的绝对值等于常数(大于零且小于12F F )的点的集合叫作双曲线. 定点1F 、2F 叫双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距. 要点诠释: 1. 双曲线的定义中,常数应当满足的约束条件:常数=1212PF PF F F -<,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若常数分别满足以下约束条件,则动点的轨迹各不相同: 若 常数=1212PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点2F 的一支; 若 常数=2112PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点1F 的一支. 若 常数=1212PF PF F F -=,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点); 若 常数=1212PF PF F F ->,则动点轨迹不存在; 若 常数=12=0PF PF -,则动点轨迹为线段F 1F 2的垂直平分线. 要点二:双曲线的标准方程

1.双曲线的标准方程 2.标准方程的推导 如何建立双曲线的方程?根据求曲线方程的一般步骤,可分为4步:建系、设点、列式、化简. (1)建系 取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴建立平面直角坐标系. (2)设点 设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0). (3)列式 设点M与F1、F2的距离的差的绝对值等于常数2a. 由定义可知,双曲线就是集合:P={M||M F1|-|M F2||=2a}={M|M F1|-|M F2|=±2a}. ∵2222 12 ||(),||(), MF x c y MF x c y ++=-+ ∴2222 ()()2 x c y x c y a ++-+=± (4)化简 将这个方程移项,得 当焦点在x轴上时, 22 22 1 x y a b -=(0,0) a b >>,其中222 c a b =+; 当焦点在y轴上时, 22 22 1 y x a b -=(0,0) a b >>,其中222 c a b =+

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

人教版必修二数学圆与方程知专题讲义

人教版必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标 ②利用平面几何性质

涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 两点为直径的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 2.直线与圆相切 (1)知识要点 ①基本图形

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

2013高考数学曲线方程汇总

30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小 题满分9分. 已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ?为等边三角形,求椭圆C 的方程; (2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P F Q ⊥ , 求直线l 的方程. 31.(2013年高考四川卷(理))已知椭圆C :22 221,(0)x y a b a b +=>>的两个焦点分别为 12(1,0),(1,0)F F -,且椭圆C 经过点41 (,)33 P . (Ⅰ)求椭圆C 的离心率; (Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且 222 211 ||||||AQ AM AN =+ ,求点Q 的轨迹方程. 32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆 2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F , ,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程; (Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围; (Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明12 11kk kk +为定值,并求出这个定值. 33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线2 21:12 x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为 “C 1—C 2型点”. (1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证); (2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”;

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 22)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22= ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

直线和圆的方程复习讲义全

直线和圆的方程 一、直线方程 1. 直线的倾斜直角和斜率: (1) 倾斜角:一条直线向上的方向与x 轴的正方向所成的最小正角,叫直线的倾斜角.围 为[)0,π (2) 斜率:不等于的倾斜角的正切值叫直线的斜率,即k=tana(a ≠90°). (3) 过两点P1(x1.y1)、P2(x2.y2)(x1≠x2)的直线的斜率公式为k=tana=21 21 y y x x -- 2. 直线方程的五种表示形式: 斜截式:y=kx+b ; 点斜式:y-y0=k(x-x0); 两点式: 11 2121 y y x x y y x x --=-- 截距式: 1x y a b +=; 一般式:Ax+By+C=0 3. 有斜率的两条直线的平行期、垂直的充要条件: 若L1: y=k 1x+b 1 L2: y=k 2x+b 2 则: (1) L1∥L2?k 1=k 2且b 1≠b 2; (2) L1⊥L2?k 1×k 2 = -1 4. 两条直线所成的角的概念与夹角公式 两条直线相交所成的锐角或直角,叫做这两条直线所成的角,简称夹角,如果直线L1、L2的斜率分别是k1、k2,L1和L2所成的角是θ,且0 90θ≠ 则有夹角公式:tan= 12 12 1k k k k -+ 5. 点到直线的距离公式:点P (x0.y0)到直线Ax+By+C=0(A 、B 不同时为零)的距离 题型1 直线的倾斜角与斜率 1.(2004.)设直线ax+by+c=0的倾斜角为a ,且sin α+cos α=0,则a,b 满足( ) A.a+b=1B.a-b=1C.a+b=0D.a-b=0 2.(2004.启东)直线经过点A (2.1),B (1,m 2 )两点(m ∈R ),那么直线L 的倾斜角取值围是( ) A.[)0,π B 0, ,42πππ???? ??????? .C 0,4π?????? . D ,,422ππππ???? ? ?????? . 3.(2004.)函数y=asinx+bcosx 的一条对称轴方程是x= 4 π ,那么直线ax+by-c=0的倾斜角为 。 题型2 直线方程 4.(2001.新课程)设A 、B 是x 轴上的两点,点P 的横坐标为2且PA=PB ,若直线PA 的方程为x-y+1=0,则直线PB 的方程是( )

(通用版)202x高考数学一轮复习 2.11 函数与方程讲义 文

第十一节函数与方程 一、基础知识批注——理解深一点 1.函数的零点 (1)零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点. (2)零点的几个等价关系:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数. 2.函数的零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件. 对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 二、常用结论汇总——规律多一点 有关函数零点的结论 (1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.

(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.

三、基础小题强化——功底牢一点 一判一判对的打“√”,错的打“×” (1)函数的零点就是函数的图象与x 轴的交点.( ) (2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( ) (5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( ) 答案:(1)× (2)× (3)× (4)√ (5)√ (二)选一选 1.已知函数f (x )的图象是连续不断的,且有如下对应值表: x 1 2 3 4 5 f (x ) -4 -2 1 4 7 f x A .(1,2) B .(2,3) C .(3,4) D .(4,5) 解析:选B 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数f (x )在(2,3)内有零点. 2.函数f (x )=(x -1)ln(x -2)的零点有( ) A .0个 B .1个 C .2个 D .3个 解析:选B 由x -2>0,得x >2,所以函数f (x )的定义域为(2,+∞),所以当f (x )=0,即(x -1)ln(x -2)=0时,解得x =1(舍去)或x =3. 3.函数f (x )=ln x -2x 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C.? ?? ??1e ,1和(3,4) D .(4,+∞) 解析:选B 易知f (x )为增函数,由f (2)=ln 2-1<0,f (3)=ln 3-23 >0,得f (2)·f (3)<0,

高中数学人教A版必修2《圆的方程》讲义

(同步复习精讲辅导)北京市-高中数学 圆的方程讲义 新人教A 版 必修2 题一 题面:方程211(1)x y -=--表示的曲线是( ) A .一个圆 B .两个半圆 C .两个圆 D .半圆 金题精讲 题一 题面:求以(1,2),(5,6)A B --为直径两端点的圆的方程. 题二 题面:根据下列条件写出圆的方程: (1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上; (2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 题三 题面:(1)求过点(2,2),(5,3),(3,1)A B C -的圆的方程,并求该圆的半径与圆心坐标; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 题四 题面:求圆0722:22=+++-+a y ax y x C 的圆心轨迹方程. 题五 题面:若曲线2222(1)40x y a x a y +++--=关于直线0y x -=的对称曲线仍是其本身,则实数a = . 题六 题面:圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 题七 题面:已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( ) A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2 =2 C .(x -1)2+(y -1)2=2 D .(x +1)2+(y +1)2=2

题八 题面:Rt ABC ?的三个顶点与圆心都在坐标轴上,AB =4,AC =3,求其外接圆方程. 思维拓展 题一 题面:(1)若实数,x y 满足等式 2241x y x +=-,那么 x y 的最大值为 . (2)若实数,x y 满足等式2241x y x +=-,那么22x y +的最大值为 . 讲义参考答案 重难点易错点解析 题一 答案:A 金题精讲 题一

2021版新高考数学一轮复习讲义:第八章第八讲 曲线与方程 (含解析)

第八讲曲线与方程 ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测 知识梳理 知识点一曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系: 那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线. 知识点二求动点的轨迹方程的基本步骤 重要结论 1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件. 2.求轨迹问题常用的数学思想 (1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y 的方程及函数关系. (2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合. (3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.

双基自测 题组一 走出误区 1.(多选题)下列结论错误的是( ABCD ) A .方程x 2+xy =x 的曲线是一个点和一条直线 B .到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2 C .y =kx 与x =1 k y 表示同一直线 D .动点的轨迹方程和动点的轨迹是一样的 题组二 走进教材 2.(必修2P 37T3)已知点F (14,0),直线l :x =-1 4,点B 是l 上的动点,若过点B 垂直于 y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D ) A .双曲线 B .椭圆 C .圆 D .抛物线 [解析] 由已知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 题组三 考题再现 3.(2019·广东汕头模拟)一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则此动圆必过定点( B ) A .(4,0) B .(2,0) C .(0,2) D .(0,0) [解析] 圆心C 在抛物线上,设与直线x +2=0相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线x +2=0为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点(2,0),故选B . 4.(2019·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )

高中数学圆的方程综合训练试题

圆的方程综合训练试题 一、选择题 1.直线0643=+-y x 与圆4)3()2(2 2=-+-y x 的位置关系是( ) A.过圆心 B.相切 C.相离 D.相交但不过圆心王新敞 2.若直线0=++a y x 与圆a y x =+2 2相切,则a 为( ) A.0或2 B.2 C.2 D.无解王新敞 3.两圆094622 =+-++y x y x 和0191262 2=-+--+y x y x 的位置关系是( ) A.外切 B.内切 C.相交 D.外离王新敞 4.以M (-4,3)为圆心的圆与直线052=-+y x 相离,那么圆M 的半径r 的取值范围是( ) A.0<r <2 B.0<r <5 C.0<r <25 D.0<r <10 5.两圆2 2 2 r y x =+与r r y x ()1()3(2 2 2 =++->0)外切,则x 的值是( ) A.10 B. 5 C.5 D. 2 10 王新敞 6.已知半径为1的动圆与圆16)7()5(2 2 =++-y x 相切,则动圆圆心的轨迹方程是( ) A.25)7()5(2 2=++-y x B. 17)7()5(22=++-y x 或15)7()5(2 2=++-y x C. 9)7()5(2 2=++-y x D. 25)7()5(22=++-y x 或9)7()5(2 2=++-y x 王新敞 7.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ) A. 16)4()3(22=++-y x B. 16)4()3(2 2=-++y x C. 9)4()3(22=++-y x D. 9)4()3(2 2=-++y x 王新敞 二、填空题 8.圆02410222=-+-+y x y x 与圆08222 2=-+++y x y x 的交点坐标是 王新敞

数学必修2圆与方程知识点专题讲义

必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040 A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标

②利用平面几何性质 涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 为直径两端点的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?<

2021圆的方程、直线与圆及圆与圆的位置关系 教学案 高三数学一轮复习

圆的方程、直线与圆及圆与圆的位置关系 [典例] (2021·全国卷Ⅱ)设抛物线C :y2=4x 的焦点为F ,过F 且斜率为k(k >0)的直线l 与C 交于A ,B 两点,|AB|=8. (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. [解] (1)由题意得F(1,0),l 的方程为y =k(x -1)(k >0). 设A(x1,y1),B(x2,y2), 由??? y =k x -1,y2=4x 得k2x2-(2k2+4)x +k2=0. Δ=16k2+16>0,故x1+x2=2k2+4k2 . 所以|AB|=|AF|+|BF| =(x1+1)+(x2+1)=4k2+4k2 . 由题设知4k2+4k2 =8, 解得k =1或k =-1(舍去). 因此l 的方程为y =x -1. (2)由(1)得AB 的中点坐标为(3,2), 所以AB 的垂直平分线方程为y -2=-(x -3),

即y =-x +5. 设所求圆的圆心坐标为(x0,y0), 则? ?? y0=-x0+5, x0+12=y0-x0+122+16. 解得??? x0=3,y0=2或??? x0=11,y0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. [方法技巧] 1.确定圆的方程必须有3个独立条件 不论是圆的标准方程还是一般方程,都有三个字母(a ,b ,r 或D ,E ,F)的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a ,b ,r(或D ,E ,F)的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程. 2.几何法在圆中的应用

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

高考数学直线和圆的方程专题复习(专题训练)

专题六、解析几何(一) 直线和圆 1.直线方程:0=+++=c by ax t kx y 或 2.点关于特殊直线的对称点坐标: (1)点),(00y x A 关于直线方程x y = 的对称点),(n m A '坐标为:0y m =,0x n =; (2) 点),(00y x A 关于直线方程b x y +=的对称点),(n m A '坐标为:b y m -=0,b x n +=0; (3)点),(00y x A 关于直线方程x y -=的对称点),(n m A '坐标为:0y m -=,0x n -=; (4)点),(00y x A 关于直线方程b x y +-=的对称点),(n m A '坐标为:b y m +-=0,b x n +-=0; 3.圆的方程:()()2 2 2 x a y b r -+-=或() 2 2 2 2 040x y Dx Ey F D E F ++++=+->, 无xy 。

4.直线与圆相交: (1)利用垂径定理和勾股定理求弦长: 弦长公式:222d r l -=(d 为圆心到直线的距离),该公式只适合于圆的弦长。 若直线方程和圆的方程联立后,化简为:02 =++c bx ax ,其判别式为?,则 弦长公式(万能公式):12l x =-= a k a c a k ? +=--+=2 2214b 1)( 注意:不需要单独把直线和圆的两个交点的坐标求出来来求弦长,只要设出它们的坐标即可, 再利用直线方程和圆的联立方程求解就可达到目标。这是一种“设而不求”的技巧,它可以简化运算,降低思考难度,在解析几何中具有十分广泛的应用。 5.圆的切线方程: (1)点在圆外: 如定点()00,P x y ,圆:()()2 2 2 x a y b r -+-=,[()()2 2 2 00x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =,求出k ,从而得到切线方程,这里的切线方程的有两条。特别注意:当k 不存在时,要单独讨论。 (2)点在圆上: 若点P ()00x y ,在圆()()2 2 2 x a y b r -+-=上,利用点法向量式方程求法,则切线方程为: ?=--+--0)(()((0000b y y y a x x x ))()()()()200x a x a y b y b r --+--=。 点在圆上时,过点的切线方程的只有一条。 由(1)(2)分析可知:过一定点求某圆的切线方程,要先判断点与圆的位置关系。 (3)若点P ()00x y ,在圆()()2 2 2x a y b r -+-=外,即()()2 2 200x a y b r -+->, 过点P ()00x y ,的两条切线与圆相交于A 、B 两点,则AB 两点的直线方程为: 200))(())((r b y b y a x a x =--+--。 6.两圆公共弦所在直线方程: 圆1C :2 2 1110x y D x E y F ++++=,圆2C :2 2 2220x y D x E y F ++++=, 则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程。 7.圆的对称问题: (1)圆自身关于直线对称:圆心在这条直线上。 (2)圆C 1关于直线对称的圆C 2:两圆圆心关于直线对称,且半径相等。 (3)圆自身关于点P 对称:点P 就是圆心。

圆的方程 - 简单 - 讲义

圆的方程 知识讲解 一、圆的标准方程 ⑴以点(,)C a b 为圆心,r 为半径的圆的方程:222()()x a y b r -+-= ⑵圆心在原点的圆的标准方程:222x y r += 二、圆的一般方程 方程:220x y Dx Ey F ++++=, (2240D E F +->)① 说明:⑴2x 和2y 项的系数相等且都不为零; ⑵没有xy 这样的二次项. ⑶表示以(,)22D E -- a)当2240D E F +-=时,方程①只有实根2D x =-,2 E y =-,方程①表示一个点(,)22D E -- b)当2240D E F +-<时,方程①没有实根,因而它不表示任何图形 三、圆的参数方程 概念:cos ,(sin x a r y b r θθθ=+??=+?为参数)叫做圆的参数方程.特别地,当0,a b ==即圆心在原点,圆的参数方程式为cos ,(sin x r y r θθθ=??=? 为参数).圆的参数方程,其实质是三角换元.当涉及有关最值或取值范围问题时,可设圆上的点参数,这样可把代数问题转化为三角问题,然后利用三角知识来处理. 四、圆心的三个重要的几何性质 1.圆心在过切点且与切线垂直的直线上. 2.圆心在模一条弦的中垂线上. 3.两圆内切或外切时,切点与两圆圆心三点共线. 五、判断点与圆的位置关系的方法 1. 圆的标准方程222()()x a y b r -+-=,圆心(,)A a b ,半径r ,若点00(,)M x y 在圆上,则

22200()()x a y b r -+-=;若点00(,)M x y 在圆外,则22200()()x a y b r -+->;若点00(,) M x y 在圆内,则22200()()x a y b r -+-<.反之,也成立. 2. 利用几何法来判断点与圆的位置关系.当点M 到圆心的距离大于圆的半径,则若点M 在圆外;当点M 到圆心的距离小于圆的半径,则若点M 在圆内;当点M 到圆心的距离等于圆的半径,则若点M 在圆上.即AM r >?点M 在圆外;AM r

2.圆的方程与位置关系-讲义版

课程主题:圆的方程与位置 【知识点】 一、圆的方程形式 (1)圆的标准方程:)0()()(2 22>=-+-r r b y a x ,其中(,a b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:02 2=++++F Ey Dx y x (0422>-+F E D ),圆心坐标为(,)22 D E - -,半径为2242 D E F r +-= . 注:①确定圆的方程需要有三个互相独立的条件,通常也用待定系数法; ②圆的方程有三种形式,注意各种形式中各量的几何意义,使用时常数形结合充分运用圆的平面几何知识; ③圆的直径式方程:1212()()()()0x x x x y y y y --+--=,其中1122(,),(,)A x y B x y 是圆的一条直径的两端点. 二、点、线、圆与圆的位置关系 (一)点与圆: 点00(,)P x y 与圆2 2 2 ()()x a y b r -+-=的位置关系: (1)点在圆内?2 2 2 ()()x a y b r -+-< (2)点在圆上?2 2 2 ()()x a y b r -+-= (3)点在圆外?2 2 2 ()()x a y b r -+-= (二)直线与圆: 1.直线l :0(,Ax By C A B ++=不全为0),圆C :2 2 2 ()()x a y b r -+-=, 圆心到直线的距离为d ,直线与圆的位置关系的判断方法: (1)几何法:d r >?直线与圆相离;d r =?直线与圆相切;d r ?直线与圆相交. 2.若点00(,)P x y 为圆上一点,则过点P 的切线方程为 .0220000=+? ?? ? ??++???? ??+++F y y E x x D y y x x 或2 00))(())((r b y b y a x a x =--+-- 课程类型: 1对1课程 ? Mini 课程 ? MVP 课程

相关主题
文本预览
相关文档 最新文档