当前位置:文档之家› 被动大陆边缘沉积体的特征及其构造背景

被动大陆边缘沉积体的特征及其构造背景

被动大陆边缘沉积体的特征及其构造背景
被动大陆边缘沉积体的特征及其构造背景

被动大陆边缘沉积体的特征及其构造背景

被动大陆边缘(passive continental margin)又称大西洋型大陆边缘(Atlantic type continental margin)。即通常所说的稳定大陆边缘,构造上长期处于相对稳定状态的大陆边缘。其地壳是洋壳到陆壳的过渡,大陆和海洋位于同一刚性岩石圈板块内的过渡带。它没有海沟俯冲带,早期裂开阶段位于板块内部,随后被动地随着裂开的板块而移动,故无强烈地震、火山和造山运动;它以生成巨厚的浅海相沉积、岩浆活动微弱和地层基本上未遭变形而与活动大陆边缘形成鲜明对照。被动大陆边缘由宽阔的大陆架、较缓的大陆坡以及缓坦的大陆陆基组成。通常年轻的稳定大陆边缘陆架较窄;发育成熟的稳定大陆边缘具有广阔的陆架区。陆架下界(陆架坡折)的平均深度约130米。陆坡的坡度相对陆架显著增加,世界大陆坡的平均坡度为4°17′,比陆架的坡度大20倍左右。陆坡地形十分崎岖,常被海底峡谷切割。陆基是大陆坡与深海平原之间的过渡区,坡度十分平缓,由巨厚的浊流、等深流和滑塌沉积物组成,可形成许多海底复合扇。是伸展作用体制下大陆岩石圈减薄和大幅度沉陷形成的活动微弱的大陆边缘。属于被动大陆边缘的有非洲边缘(北部除外)、澳大利亚西部和印度半岛的南部边缘等。北美东侧的大西洋沿岸是现代正在发育的被动大陆边缘,它开始形成于美洲与非洲分开后的晚三叠世。空间上呈一系列与大陆边缘相平行的长条形盆地,由两部分地层组成:下部地堑型盆地充填了晚三叠世陆相粗碎屑堆积和火山岩,分布于靠内陆一侧;上部为拗陷成因的厚7~12千米、大致呈水平产状的侏罗纪到新近纪的海相沉积。它们形成向海加厚的楔体叠置在下伏厚度减薄的过渡型地壳之上。被动陆缘的生成源于岩石圈拉伸所导致的上地幔物质上涌,减薄了的地壳通过铲状正断作用在地表形成复杂的地堑系;来自上地幔的熔岩沿裂隙上升,铺满新出现的海底,最终建造起正常厚度的大洋壳。破裂不整合标志着陆壳断开的时间。随着洋盆扩大,它外侧的陆壳逐渐远离以中脊为代表的热流中心;它的冷却沉陷造就了其上巨厚的被动陆缘沉积岩系。下面分析一个实例。

西非海岸盆地属典型的被动大陆边缘盆地,它在中新生代联合大陆发生裂解过程中,跟北美板块与南美板块和非洲板块的裂谷作用及持续扩张作用有关,是冈瓦纳大陆解体和大西洋扩张形成的被动陆缘盆地。

非洲西部被动大陆边缘盆地从北向南分为三段;北段主要包括阿尤恩—塔尔法亚盆地和塞内加尔盆地;中段包括尼日尔三角洲盆地、加蓬盆地、下刚果盆地、Rio Muni 盆地和宽扎盆地;南段主要包括纳米比亚盆地和西南非海岸盆地。其中中段盆地群油气最为丰富, 盆地间一般以构造隆起或地形高作为分隔(图1)。

图一西非大陆边缘主要含油气盆地

西非被动大陆边缘自中新元古代-古生代初泛非运动结束,一直到侏罗纪末-白垩纪初,基本上都处于稳定的克拉通内。侏罗纪-白垩纪之交,在冈瓦纳大陆南部才开始发育大陆裂谷系,而西非边缘就是在这一系列大陆裂谷系的基础上演化形成的。

图二西非被动大陆边缘演化和盆地剖面示意

裂谷作用最先是在非洲大陆的最南端开始的,时间大约在晚侏罗世-早白垩世。此后裂谷作用逐渐向北发展。西非边缘的发展可大致分为“同裂谷”、“过渡阶段”和“后裂谷”3个阶段。

(1)“同裂谷阶段”,以裂谷作用和地壳重组为特征。沿西非边缘的早期裂谷作用表

现出明显的阶段性:贝利阿斯期、豪特里维期和晚巴列姆-早阿普特期是3个强烈的裂谷作用期,期间为短暂坳陷期。据有关资料,大陆裂谷作用于巴列姆期到达Walvis Ridge南侧,于阿普特期到达贝努埃海槽。裂谷作用期间沉积物主要为河流相厚层湖相三角洲及盆地相页岩沉积等。

(2)“过渡阶段”同裂谷阶段结束,初始洋壳开始形成,同时受南侧Walvis Ridge火山岩带形成的地形高地横向阻挡的影响,在Walvis Ridge北侧的非洲-南美边缘间的巨型盆地区形成了海水循环受限的局限环境,沉积了厚度很大、区域性分布的阿普特阶蒸发岩。

(3)“后裂谷阶段”也称为“漂移阶段”洋壳开始出现,洋中脊不断扩张、洋底增生及边缘热沉降。阿尔布阶陆架区以浅水碳酸盐岩为主,向海变为盆地相页岩,南大西洋成为广海环境。晚白垩世为缺氧环境,沉积了大量富有机质黑色页岩。古近纪到新近纪以海相页岩和和浊积岩沉积为特征,其中晚始新世-渐新世发生了西非边缘具区域意义的抬升及剥蚀作用。

准噶尔盆地构造演化阶段及其特征

准噶尔盆地构造演化阶段及其特征 摘要:准噶尔盆地由于受到周缘造山带的多期次的逆冲推覆作用,其发育演化过程不同于一般意义的前陆盆地,而是具有类前陆盆地的特征。准噶尔盆地经历海西、印支、燕山和喜山四个构造旋回的演化,形成了早二叠纪时期的裂谷盆地,中晚二叠纪的前陆盆地,三叠纪至白垩纪的复合类前陆盆地和第三纪以来的类前陆盆地为特征的多期叠合型盆地。 关键词:准噶尔盆地构造演化类前陆盆地 引言 准噶尔盆地是我国西部发育的大型陆相盆地,对其盆地的类型及其演化,经历了很长一段研究探索过程,形成了对准噶尔盆地的形成过程的诸多认识和观点。20世纪90年代主要以二叠纪为裂谷和断陷为主,三叠-白垩坳陷,第三纪以后为上隆。一些学者分别提出了“陆内前陆盆地”(陈发景,1997) 、“再生前陆盆地”(卢华复等,1994) 及“类前陆盆地”(雷振宇,2001 ) 等概念。蔡忠贤等(2000)认为准噶尔盆地在早二叠世为裂谷,晚二叠世为热冷伸展坳陷,三叠纪—老第三纪为克拉通内盆地,新第三纪至今为陆内前陆盆地。陈新和卢华复等(2002)则将准噶尔盆地划分为地体形成、板块拼贴、前陆盆地、陆内坳陷和再生前陆盆地等6个阶段。陈业全(2004)划分盆地演化为晚泥盆世-早石炭世裂陷盆地、晚石炭世-二叠纪碰撞前陆盆地、三叠纪-古近纪陆内坳陷盆地和新近纪-第四纪再生(陆内俯冲型)前陆盆地4个阶段。 通过对准噶尔盆地区域二维地震剖面的解释,结合钻井及测井资料,我们将准噶尔的演化划分为早二叠纪时期的裂谷盆地,中晚二叠纪的前陆盆地,三叠纪至白垩纪的复合类前陆盆地和第三纪以来的类前陆盆地四个阶段。其中以中生代的复合类前陆盆地为最重要的一个阶段,与油气的关系最为密切。 一地质构造背景 中国西部各盆地位于几个大的造山带及板块缝合带之间,属于古亚洲与特提斯—喜马拉雅构造域,处于西伯利亚板块和印度板块相对挤压和相对扭动的压扭性构造环境下形成的构造格局.在南北对挤和南北对扭的联合和复合的应力条件下产生的大量平移断裂控制着盆地的展布. 中国西部盆地主要受控于三向动力体系:北部主要受古亚洲动力系所作用,受控于古亚洲域;西部主要受特提斯动力系所作用,受控于特提斯域;南部的动力来源于印度板块的北上扩张.三大动力体系在时间、空间上的叠加、复合, 形成了具有明显的旋回性和阶段性多期叠合盆地,并且在不同演化阶段中具有不同的板块构造背景,盆地类型和性质也不相同。 中国西部盆地的演化大致可以分为三个阶段: 古亚洲洋开合阶段,新元古代晚期Rodinia古陆解体,使华北、扬子、华南、塔里木等小陆块从其上裂解出来。晚奥陶世开始地壳俯冲消减,至泥盆纪晚期碰撞闭合,成为克拉通内(挤压)盆地,发育一套海相碎屑岩和碳酸盐岩沉积。古亚洲洋在晚二叠世之前消减殆尽,华北、准噶尔—吐哈、塔里木等小陆块拼合在西伯利亚块体的南缘,形成古亚洲大陆。在拼合后的

长江大学盆地构造分析期末试题

一、…名词解释(每小题3分,共24分) 1.伸展盆地分类:根据伸展盆地的岩石圈或陆壳性质及演化阶段又可将伸展盆地划分为:大陆内部裂谷、陆间裂谷(原洋裂谷)、被动大陆边缘盆地、弧间和孤后边缘海盆地、大洋盆地等基本类型。 2.伸展盆地:伸展盆地是由岩石圈受拉张作用而伸展、减薄而形成的裂陷或裂陷一拗陷盆地。 3. 挤压盆地:挤压盆地与大洋岩石圈的俯冲和陆一陆碰撞或陆一孤碰撞有关,通常包括海沟盆地、残留洋盆地、孤前盆地和前陆盆地等。 4.前陆盆地:前陆盆地系指介于造山带前缘及相邻克拉通之间的狭长状盆地,盆地横剖面为一不对称楔状。前陆盆地分为孤后前陆盆地、周缘前陆盆地和破裂前陆盆地三类;(前二者属于简单型前陆盆地,后者属于复杂型前陆盆地。) 5.前渊:前渊是指紧邻前陆冲断带的覆水最深的前陆区,不能将覆水深的盆地与前陆盆地的巨厚地层混淆,因为巨厚的前陆地层是完全可以在缺乏覆水盆地的条件下堆积起来的。 6.走滑盆地及分类:因走滑断层的走滑作用而产生的盆地,总称为走滑盆地。这些盆地发生在走滑断层产生的局部拉张地区。走滑盆地分为三种基本类型,即转换拉张盆地、转换挤压盆地和拉分盆地。其中拉分盆地与油气的关系最为密切。 7.拉分盆地及分类:拉分盆地产生在两个走滑断层雁列重叠部位的拉张区,其拉伸轴基本上平行主断层,这类盆地常为菱形断陷,发育成熟的盆地长宽比为3:1。断层的长度反映水平位移量,盆地边界有走滑断层和正断层,盆地中常有张性及张剪性断层,边缘可见雁列褶皱。拉分盆地依形态分舒缓S型及Z型。拉分盆地的规模相对较小,但具有沉降速率快、沉积速率大的特点,且热流值较高,有利于油气的聚集,常构成小而肥的含油气盆地。 8. 裂谷形成的动力学模式:一类是要有热源,如地慢柱和上升热对流,由于热岩石圈变弱和变薄而产生应力或应力集中;另一类是归因于岩石圈的拉伸,引起热软流圈的被动上拱,由于板块的相互作用而在板内形成张应力,或继承老地壳和岩石圈边界和构造产生先存应力的集中,或大洋裂谷作为一种迁移破裂传播到大陆内部去等,均可以导致岩石圈的拉伸。以上两类的主要差别在于热源和拉伸的关系上具有相反的因果关系。前者称为主动裂谷,而后者则称为被动裂谷。) 9.正花状构造:是在压剪性应力场下形成的。基底走滑断层向上分叉并形成背形构造,10.负花状构造:发育于张剪性应力场下,基底走滑断层向上分叉并形成向形构造。

约束边缘构件解析

常见边缘暗柱详解 1、平法中的边缘构件 边缘构件分为约束边缘构件和构造边缘构件。高抗震等级时采用约束边缘构件,低抗震等级时采用构造边缘构件。因此我们常见的图纸楼层表中会用括号扩起注明(约束区)。而楼层高出位置一般是构造边缘。由于构造边缘简单,无毒无危害,在这大致讲一下约束边缘。 2、软件中的处理。 约束边缘构件根据设计单位,有不同的风格。如下: 案例一:

这种设计可以看到分为阴影区和非阴影区。一般会在说明中作如下说明: λv/2区域为阴影区,详见柱大样详图。边缘构件和框架柱内的拉筋植筋及间距同相应箍筋植筋及间距……… 这句话通俗来讲就是阴影区该怎么样怎么样,做成普通暗柱。非阴影的λv/2区域纵筋同剪力墙钢筋,而拉筋是同柱(暗柱)的箍筋规格。 那么在广联达中就存在两种画法: 第一种方法: 1、暗柱如图绘制轮廓,剪力墙照常布置,不同的拉筋输入在其他钢筋中。 但此种方法有个弊端,就是剪力墙本身在λv/2区域的拉筋不会扣除,这部分的拉筋会重复计算。 第二种方法:(如下绘制轮廓)

将λv/2区域画入暗柱,单独设置此部分的拉筋及纵筋规格。这样的话,由于暗柱和剪力墙重合部分是全部扣除剪力墙的,拉筋不会重复计算。 弊端是由于λv/2区域的拉筋间距是独立的,精确布置边筋不好设置(GGJ2013有所改善) 综合来看的话,方法二是目前比较稳妥的。 第二种约束边缘设计 这种设计是最让人抓狂的,也就是墙身水平筋形成封闭箍筋。并于暗柱自身箍筋一起构成完整短肢剪力墙后。再与附加钢筋隔一布一进行绘制。具体可以参照右边的图。 那这种的话,因为懒,我就不截图了,只写下来。大家凭空想想。 首先可以参考,附加箍筋和自身箍筋的规格。如果规格一样。如上图,那么间距缩小一倍处理。那么就是个人性化的设计。省事非常多。 第二种是两边箍筋规格不一样。 那么观察上图,右边附加箍筋区域一般是由完整暗柱箍筋构成的。那么就以附加箍筋作为暗柱的钢筋定义暗柱。剪力墙钢筋照常绘制,默认来说端部是封边15d,转角是外侧连续通过,内侧弯折15d。把节点改为墙后减两个保护层的宽度即为封闭。(当然也是因为懒,我一般也不改,出入不大)。那么只剩下左侧图的水平方向的大箍筋和拉筋没有处理,输入到其他钢筋处理。我曾经天方夜谭的教人在编辑钢筋中复制一份出来,然后改直径。现在想想真是折磨人的一种做法,在此忏悔。 其他钢筋无论是对量还是干嘛的都要方便很多,很强大。 以上,结束了。 By 喻工 2014.04.29 希望大家在群里多交流,空闲了问题统一做整理做成这样的文档。当然,空闲的时候不多。O(∩_∩)o 哈哈

空心板结构构件检验

空心板结构构件检验 1、 检验准备 对空心板构件实物进行检验前,构件混凝土的实际强度应不低于设计等级的90%;也不高于110%。如不符合上述要求时应通过分析对检验结果加以调整。 构件检验前记录构件的几何尺寸、外观缺陷、原始裂缝与预应力张拉情况。外观检查后,可在板底表面涂刷一薄层石灰浆(水灰比1:5),然后打上适当的方格,并将所有原始缺陷及裂缝在构件上标出。 构件检验时,采用经标定的砖加荷。砖垛之间应保持50~100毫米的间隙。构件的支座作成一端滚动,另端铰接,各支座支点距构件端部的长度,取。 2、 仪表布置与加荷 根据检验要求,选用百分表进行变形的量测。 根据检验要求,为了取得可作比较的量测结果,相同点的仪表宜布置两处以上。当荷载加至标准荷载的1.25倍时,所有机械仪表均应拆除。 构件变形量测仪表的布置原则如下: 构件检验前,应以不低于20%的标准荷载进行预压。以便对整个加荷系统与仪表工作情况进行检查,预压正常时即可进行卸荷,并待构件变形恢复后;通常不少于15分钟,开始记录仪表初读数,并准备正式加荷。 加荷时应按构件实际荷载增长情况划分加荷等级,但在标准荷载前不应少于四级。如难以按实际情况划分加荷等级时,一般以标准荷载的20%作为一级,第一级荷载中应计入构件与加荷设施的重量。当荷载加至计算开裂荷载的90%时,应以标准荷载的10%,逐级加荷至裂缝出现;当荷载加至计算破坏荷载的90%时,为避免构件破坏时的冲击,应以标准荷载的5%,逐级加荷至构件破坏。 构件加荷中应尽量缩短加荷时间,每级加荷不宜超过30分钟,荷载加完后应恒载10分钟,再行测读仪表并进行观察,观测时间一般不超过15分钟。钢筋混凝土及预应力钢筋混凝土构件加荷至标准荷载时,恒载时间应延长为30分钟; 3、 构件强度检验 进行强度检验的构件在加荷过程中出现下列情况之一时,即认为该构件已处于破坏状 态,此时所对应的荷载(包括自重与加荷设施重量)称为构件检验的破坏荷载; 可按构件的实测挠度达到或超过1/50跨度作为屈服的标志; 钢筋混凝土或预应力钢筋混凝土构件中的受拉钢筋被拉断或从锚固区滑移拔出; 钢筋混凝土或预应力钢筋混凝土构件上最大垂直裂缝,在受力主筋的最大宽度达到如下数值时, )(0005.02 1max f f p f l l +=δ

被动大陆边缘&活动大陆边缘

被动大陆边缘&活动大陆边缘 2009-03-06 18:42 大陆边缘是指大陆与大洋盆地的边界地。包括大陆架﹑大陆坡﹑陆隆以及海沟等海底地貌-构造单元﹐平行于大陆-大洋边界延伸千余至万余公里﹐宽几十至几百公里。它现代分布于各大洋周围﹐在地质历史时期中分布在古大陆与已经消失的古大洋之间的边界地带。大陆边缘可分为被动大陆边缘和活动大陆边缘。 【被动大陆边缘】 由于大洋岩石圈的扩张而造成的由拉伸断裂所控制的宽阔的大陆边缘,又称稳定大陆边缘。其邻接的大陆和洋盆属同一板块,由大陆架﹑大陆坡和陆隆所构成。无海沟发育。它在大西洋周围最先被详细研究,故又称大西洋型大陆边缘。地貌上它以具有较宽的大陆架为特征﹐大陆架宽30~300公里﹐与大陆坡之间坡度转折点在极区深达600米,在赤道不超过100米﹐大陆坡坡度为0.2°~0.04°,其下为坡度略小于0.01°的宽80~500公里的陆隆。大陆架实际上是非常厚的巨大沉积体的表面,它们形成于稳定持续的沉降构造环境中,而且极少经受变形。大陆坡的坡脚沉积层厚达5公里,这是由于大陆坡的基底沉降,沉积物填入所形成的。大陆坡上分布有很多海底峡谷,它们把大陆坡的沉积物输至陆隆和深海盆地。陆隆主要由浊流和等深流的沉积楔所构成。被动型大陆边缘是最初大陆裂谷的所在地,因此有一系列阶梯状正断层和地堑地垒等伸展构造发育在沉积物和基底中。这种大陆边缘常常切断邻近的大陆上的较老的构造。主要分布在大西洋西侧﹑印度洋西北侧﹑澳大利亚周围﹑南极洲周围,白令海阿拉斯加大陆边缘﹑鄂霍茨克海的西伯利亚大陆边缘﹑日本海的西伯利亚和朝鲜大陆边缘﹑东海和南海的中国大陆边缘。 [编辑本段] 【活动大陆边缘】 也称太平洋型大陆边缘、主动大陆边缘、汇聚大陆边缘等。其陆架狭窄,陆坡较陡,陆隆被深邃的海沟所取代。地形复杂,高差悬殊。与被动大陆边缘位于漂移着的大陆的后缘相反,活动大陆边缘是漂移大陆的前缘,属于板块俯冲边界,地震、火山活动频繁,构造运动强烈。主要分布在太平洋周缘、印度洋东北缘等地。它在太平洋周围表现最为显着,故又称太平洋型大陆边缘。大陆架比较狭窄,一般宽仅几十公里。海沟的两坡很陡,坡度达5°~10°,其中堆积着浊积物﹑硅质沉积﹑火山碎屑和滑塌堆积。由于大洋板块在海底处的俯冲作用,海沟及其附近的沉积物受到“铲刮”,而强烈变形,形成叠瓦状逆掩断层和混杂堆积。海沟和与其伴生的岛弧或

鄂尔多斯盆地地质特征

鄂尔多斯盆地地质特征鄂尔多斯盆地,北起、大青山,南抵,西至贺兰山、六盘山,东达、太行山,总面积37万平方公里,是我国第二大。 鄂尔多斯盆地是上的名称,也称陕甘宁盆地,横跨陕、甘、宁、蒙、晋五省(区)。“”意为“宫殿部落群”和“水草肥美的地方”。权威的解释,“鄂尔多斯”是“官帐”的意思。由蒙语翰尔朵(官帐的意思)的复数演变而来。但也有人把成吉思汗死后,其使用过的物品被安放在八个白室中供奉,专门的护陵人繁衍并逐渐形成了一个新的蒙古部落鄂尔多斯部落。其后几百年间,鄂尔多斯部落的按时祭奠,一直没有离开此地。这样久而久之,这一地区就叫做鄂尔多斯了。历史上的鄂尔多斯地区包括今日伊克昭盟全境,还包括的河套及宁夏和的一部分地区。鄂尔多斯地区西、北、东三面环水,南与相接,形成一个巨大的套子,因此也被称为“河套”。从所跨地域 鄂尔多斯盆地,其地域跨蒙汉广大地域,而且绝大部分地域是汉族居住区,为什么把该“盆地”叫蒙语“鄂尔多斯”盆地,而不叫汉语名称。据传说1905年前后,英国人到此地域勘探,最早进入现在的,就是最先踏入的立足地,另外在西方人眼里,亚洲人都是属于序列。所以,自然而然地就把该盆地称之为鄂尔多斯盆地,但也无法考证。 “陕甘宁”盆地在长庆油田会战初期叫得比较响,但随着市场经济的缘故,人们都喜欢“新奇”,“陕甘宁”盆地叫的人越来越少了,加上赶时髦,伊克昭盟改为“鄂尔多斯”市,叫“陕甘宁”盆地的人就更少了。

“陕甘宁”也不确切,因为“盆地”跨陕、甘、宁、蒙、晋五省(区)地域。总之,这也不是个什么大问题,在和谐的今天,叫什么都无所谓。 从地质特性看,鄂尔多斯盆地是一个整体升降、坳陷迁移、构造简单的大型多旋回克拉通盆地,基底为太古界及下变质岩系,沉积盖层有长城系、蓟县系、震旦系、寒武系、、石炭系、、三叠系、、白垩系、第三系、第四系等,总厚5000—10000m。主要油气产层是三叠系、侏罗系和奥陶系上古升界和下。 从盆地构造特征看 鄂尔多斯盆地石油开发示意图 从盆地构造特征看,西降,东高西低,非常平缓,每公里坡降不足1°。从盆地油气聚集特征讲是半盆油,满盆气,北气、上油下气。具体讲,面积大、分布广、复合连片、多层系。纵向说含油层系有“四层楼”之说,因此,这个盆地有之誉。 鄂尔多斯盆地地形模型 鄂尔多斯盆地位于中国中西部地区,为中国第二大,其、、三种资源探明储量均居全国首位,石油资源居全国第四位。此外,还含有、、、水泥灰岩、、、、等其他矿产资源。 盆地具有地域面积大、广、能源矿种齐全、资源潜力大、储量规模大等特点。盆地内石油总约为86亿吨,主要分布于盆地南部10万平方公里的范围内,其中占总储量78.7%,占总储量19.2%,宁夏占总储量2.1%。天然气总资源量约11万亿立方米,储量超过千亿立方米的天然气大气田就有5个。埋深2000米以内的煤炭总资源量约为4万亿吨;埋深1500米

鄂尔多斯盆地地质特征图文稿

鄂尔多斯盆地地质特征文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

鄂尔多斯盆地地质特征鄂尔多斯盆地,北起、大青山,南抵,西至贺兰山、六盘山,东达、太行山,总面积37万平方公里,是我国第二大。 鄂尔多斯盆地是上的名称,也称陕甘宁盆地,横跨陕、甘、宁、蒙、晋五省(区)。“”意为“宫殿部落群”和“水草肥美的地方”。权威的解释,“鄂尔多斯”是“官帐”的意思。由蒙语翰尔朵(官帐的意思)的复数演变而来。但也有人把成吉思汗死后,其使用过的物品被安放在八个白室中供奉,专门的护陵人繁衍并逐渐形成了一个新的蒙古部落鄂尔多斯部落。其后几百年间,鄂尔多斯部落的按时祭奠,一直没有离开此地。这样久而久之,这一地区就叫做鄂尔多斯了。历史上的鄂尔多斯地区包括今日伊克昭盟全境,还包括的河套及宁夏和的一部分地区。鄂尔多斯地区西、北、东三面环水,南与相接,形成一个巨大的套子,因此也被称为“河套”。 从所跨地域 鄂尔多斯盆地,其地域跨蒙汉广大地域,而且绝大部分地域是汉族居住区,为什么把该“盆地”叫蒙语“鄂尔多斯”盆地,而不叫汉语名称。据传说1905年前后,英国人到此地域勘探,最早进入现在的,就是最先踏入的立足地,另外在西方人眼里,亚洲人都是属于序列。所以,自然而然地就把该盆地称之为鄂尔多斯盆地,但也无法考证。 “陕甘宁”盆地在长庆油田会战初期叫得比较响,但随着市场经济的缘故,人们都喜欢“新奇”,“陕甘宁”盆地叫的人越来越少了,加上赶时髦,伊克昭盟改为“鄂尔多斯”市,叫“陕甘宁”盆地的人就更少了。“陕甘宁”也不确切,因为“盆地”跨陕、甘、宁、蒙、晋五省(区)地域。总之,这也不是个什么大问题,在和谐的今天,叫什么都无所谓。

剪力墙边缘构件的配筋计算刘孝国

1.工程实例: 第一类:短肢墙的边缘构件 (一):构件信息 图一 横向墙的信息如下: 混凝土墙短肢墙加强区,截面参数(m)B*H=0.300*0.700 抗震构造措施的抗震等级NF=3AS=873.(图一取为9) 竖向墙肢的信息如下: 混凝土墙短肢墙加强区,截面参数(m)B*H=0.300*1.850 墙分布筋间距(mm)SW=200.0 抗震构造措施的抗震等级NF=3计算配筋为0 (二):边缘构件信息:

上部 中部 下部 图二 (三):配筋计算结果及过程 图二中,竖向墙肢上部(标注上部的地方)边缘构件配筋信息及计算过程: 第28号:约束边缘构件 抗震等级:3 楼层属性:加强层 竖向墙肢总长度1850,底部加强区三级短肢剪力墙的最小配筋率1%(高规规定),墙宽300,所以整个墙肢的配筋为: 1850*300*1%=5550(cm2) 图二中间部分按照分布筋配筋(分布筋配筋率为0.25%): (1850-400-400)*300*0.25%=787.5 剩下的部分两边边缘构件按面积分配,两边面积相同 所以上部边缘构件配筋面积为: (5550-787.5)/2=2381.25(cm2)(包括竖向分布筋和阴影区纵筋?) 图中横向墙肢的配筋:从构件信息中知道AS=873 横向墙肢总长700,计算的时候,aa取40 (350-40)*300*0.25%=232.5 计算配筋+分布筋=873+232.5=1105.5 两边分布筋相等,下面也是232.5 图二下部第15号:约束边缘构件 楼层属性:加强层 由2个边缘构件合并而成

(1)纵筋原始数据: 阴影区面积(cm2):2700.0:(300*300+300*600=270000) 构造配筋率(%): 1.00 构造配筋(mm2):2700.00 计算配筋(mm2):3487.15 3487.15=下部配筋面积+分布筋面积+横向墙右侧配筋=2381+873+232.5 (2)纵筋当前结果: 采用最大构造配筋率的计算结果:3900.00 构造钢筋取值:采用求和后,再调整的算法(3900.00) 有效阴影区面积(cm2):3900.0 构造配筋(mm2):3900.00 计算配筋(mm2):4593.07(=3487.15+1105) 主筋配筋率(%): 1.18 第二类:转角加洞口的边缘构件 异形柱框剪的工程,6层,按照规范此工程是3级框架,2级剪力墙,底部一层加强区,构造配筋率0.008Ac和6Φ14中较大值,为其他部位的构造配筋为0.006Ac和6Φ12,那PKPM 里的构造边缘构件的配筋率0.94怎么来的?

边缘构件选筋规则

精心整理边缘构件选筋规则 纵筋的选筋规则 1)按照纵筋的最大间距和最小间距计算确定边缘构件纵筋的允许根数范围; 2)按照纵筋的优选间距计算出优选纵筋根数(在根数范围内),根据该边缘构件需要的纵筋面积计算出纵筋直径规格,如果该规格在纵筋直径优选序列中且不小于最小构造直径要求则纵筋选配成功; 3)如果按优选间距未成功选配,则按纵筋直径优选序列进行选配。先对排在最前面的满足最小构 4)如果仍未配出,程序自动逐次增加两根纵筋并重选纵筋直径,直至能选配出箍筋或者纵筋根数达到构造最多根数。所以一般情况下,很少会有选配不出来箍筋的情况。 5)如果有选配失败的情况,软件将标记为N/A(NotAvailable,不可用)。 约束边缘构件非阴影区箍筋的选筋规则

约束边缘构件非阴影区只对配箍提出了要求,非阴影区的箍筋需要墙身的竖向分布筋来固定,所以其位置需要尽量与墙身的竖向分布筋协调。同时为了尽量利用墙身的水平分布筋替代非阴影区的封闭箍,还需要考虑非阴影区的箍筋间距与墙身水平分布筋的直径、间距协调问题。 所以本软件在约束边缘构件非阴影区箍筋的选筋中执行的是协调优选原则,具体来说: 1)非阴影区拉筋的水平间距(肢距)取200mm和相应墙身竖向分布筋间距的较小者,非阴影区长度200和竖向分布筋间距的较小者的整数倍且不小于计算值(参见04SG330P4); 2)如果墙身配筋强度等级和直径不小于边缘构件箍筋等级情况下,可以考虑用墙身水平分布筋替代封闭箍筋。 3 注意:(优先级低) 4 显大于2 尽量是 5 6 条件, 的钢筋, 箍钢筋条件,则完全标记为等级直径@竖向间距。如下右图中的Ф8@100表示:非阴影区长度为600mm,采用一级直径为8mm的钢筋,竖向间距同阴影区箍筋的间距为100mm,水平间距同墙竖向分布筋间距为150mm。这种情况下,是否还可以由墙身水平筋替代非阴影区封闭箍钢筋,由设计方和施工单位判断,比如右图示意情况下还可以部分利用墙身水平筋替代非阴影区封闭箍钢筋。 边缘构件箍筋计入墙水平分布筋原则 约束边缘构件和构造边缘构件均可以选择考虑墙水平分布筋。 《高规》第7.2.15明确提出约束边缘构件可以考虑墙水平分布筋的。 图集11G101-1给出了剪力墙水平分布筋计入约束边缘构件体积配箍率的做法。

剪力墙构造要求

剪力墙构造要求 1. 剪力墙的水平、竖向分布钢筋最小配筋率 剪力墙的水平、竖向分布钢筋最小配筋率 2. 墙肢轴压比限值 重力荷载代表值作用下,一、二、三级剪力墙墙肢的轴压比不宜超过表2.5-2的限值。 注:剪力墙轴压比指在重力荷载代表值作用下墙的轴压力设计值与墙的全截 面面积和混凝土轴心抗压强度设计值乘积的比值。 一、二、三级剪力墙底层墙肢底截面轴压比大于表2.5-3规定时,以及部分框 支剪力墙结构的剪力墙,应在底部加强部位及相邻的上一层设置约束边缘构 件,约束边缘构件应符合本规范第2.5-5条的规定;除上面所列部位外,剪力 墙应按表2-5-4规定设置构造边缘构件。 剪力墙设置构造边缘构件的最大轴压比 3. 暗柱纵筋最小配筋量 暗柱纵筋最小配筋量 注:1 对其他部位,拉筋的水平间距不应大于纵向钢筋间距的2倍,转角 处宜设置箍筋;

2 当端柱受集中荷载时,应满足框架柱的配筋要求。 注意:程序中按照暗柱的普通部位处理。 4. 约束边缘构件配箍 一、二、三级抗震等级剪力墙约束边缘构件的纵向钢筋的截面面积,对图2.5-1所示暗柱、端柱、翼墙与转角墙分别不应小于图阴影部分面积的1.2%、1.0%和1.0%。 约束边缘构件沿墙肢的长度lc及其配箍特征值λv 注: 1. 两侧翼墙长度小于其厚度3倍时,视为无翼墙剪力墙;端柱截面边长小于墙厚2 倍时,视为无端柱剪力墙; 2. 约束边缘构件沿墙肢长度lc除满足2.5-5的要求外,且不宜小于墙厚和400mm; 当有墙柱、翼墙和转角墙时,尚不应小于翼墙厚度或端柱沿墙肢方向截面高度加30mm; 3. hw为剪力墙的墙肢截面高度。 图2.5-1 剪力墙的约束边缘构件

构造盆地编图系列

盆地构造研究编图系列 一、盆地分析编图方法概述 为了对赋存有煤、石油、天然气等矿产资源的地进行全面系统和深入研究,为了查明这些能源矿产的形成条件和赋存规律,以作出合理的工业评价,就应当根据地质勘探过程中根据野外观察和各种普查勘探工程与手段所获得资料,编制出一整套盆地分析图件。目前,包括煤盆地在内的沉积盆地分析已经形成比较完整的一套理论、概念和术语、分析流程和方法,而与知识赢得一整套编图方法也已成龙配套,日趋完善。 盆地分析编图方法是在沉积岩石学,沉积学和盆地分析等学科发展中不断积累和完善起来的。 早在1836年,J.Phillips首次编制了石炭纪一个统的岩相分析图。1862年,Hull根据野外观测结果编制了厚度等值线图,用以反映英国石炭纪碎屑岩和灰岩厚度的消长关系,并详细讨论了等值线图的编制和使用方法。1913年,A.W.Grabau编制了岩相图,用阴影图案来表示低层单位的区域变化,如海陆性质等。1938年,A.Gressly在研究瑞士保罗山和法国东部侏罗纪地层时发现:侏罗纪最顶部地层单位可以分为五种岩性类型,每一种类型各自具有特征的动物群,他把这些同时期的不同岩性类型和动物群称之为相(facies),意指反映这些岩石形成环境的与岩性和古生物面貌,并且用相图表示了这个地层单位的区域变化。1947年,Read和Wood用等值线表示新墨西哥州宾夕法尼亚含煤岩系碎屑成分对非碎屑成分的比值。上述学习和的工作成果对近代盆地分析理论和方法的形成无疑是打下了最初的基础。但是,真正淡定近代盆地分析学科和发展基础的主要是W.C.Krumbein等人的《综合相分析》,P.E.Potter等人的《古流相盆地分析》和C.E.B.Conybcare的《岩石地层分析》。 盆地的构造研究是盆地分析的主要内容,构造作用是控制盆地形成和演化的重要因素,对盆地的沉降沉积及沉积矿产和油田分布具有重要的控制作用。盆地构造租用研究的主要目的是恢复和了解盆地的范围和形态,确定盆地坳陷的幅度和方向,查明盆地内部低级别的同生构造,分析盆地类型及形成机制,弄清盆地的古构造与周围区域构造背景的关系,分析古构造对盆地沉积的控制作用。 盆地构造学的主要图件一般包括:构造纲要图,古构造剖面图,构造格架图,构造-沉积充填模式图,构造-岩相分区图,构造等高线图,构造高程趋势面图及残差图,古构造剖面图,盆地基底构造图,盆地基底等高线图,构造演化剖面图等。 下面简要介绍一些常用图件: 二、.构造纲要图 构造纲要图是以地质图为基础编制的,以不同的线条、符号、颜色表示一个地区地质构造的一种图件。主要表示填图区各类构造如褶皱、断层、岩体等的特征;一般无须绘出所有地层界线,只须表示反映构造运动的不整合面、假整合面以及以此为依据所划分的构造层等。图上也可标注面理、线理等的统计资料。绘制构造纲要图的目的是为了形象地突出一个地区的主要构造特点,使之能够鲜明、概括地反映出构造复杂地区的主要构造特征及其构造发展史。它是一种理论性较强的图件,特别是由于研究范围和观察现象的限制,常常要作某些推断,但一定要力求有理有据。因此,需要充分分析本区构造情况后,方可动手编制构造纲要图。构造纲要图的目的是说明区域或矿区的构造条件和构造特点,是采用地质历史发展的观点编绘的一种图件,如下图,一般要求用醒目的方法表达各类型、各级别的褶皱、断裂和其他构造形迹在时间上分布规律,及其对岩浆岩和矿床的控制作用。 在沉积盆地分析中构造分析十分重要。具体包括地质观察和填图、物探、航片与卫星照片判释、构造岩石学以及数学和物理模拟等多种方法。 盆地构造纲要图,主要反映盆地性质、基本轮廓和走向、构造分析(隆起及坳陷分布)

塔里木盆地构造特征与油气聚集规律

?177?收稿日期1999-04-20 塔里木盆地构造特征与油气聚集规律 贾承造 (教授级高工石油地质塔里木石油勘探开发指挥部新疆库尔勒841000) 摘要塔里木盆地是一个由古生界克拉通盆地和中、新生界前陆盆地组成的大型叠合复合盆地,具有古老陆壳基底和多次沉降隆升的复杂构造演化历史。古生界油气聚集受克拉通古隆起和斜坡构造控制,中、新生界油气聚集受喜马拉雅期逆冲构造控制。此外油气分布还受油气系统、区域盖层、断裂及不整合等因素控制。盆地具有多套烃源岩、多个油气系统、多套储盖组合、油气多源多期多种类型的特点。储集层条件好、天然气资源丰富和整体勘探程度低是在盆地进行油气勘探时不可忽视的三个特点。塔里木盆地已成为我国三大天然气区之一,油气勘探前景广阔。 主题词塔里木盆地构造特征构造演化油气特征油气聚集油气勘探中图法分类号 TE111.1,TE111.2 第20卷第3期新疆石油地质 V ol.20,N o.3 1999年6月 XIN J IANG PET ROLEUM GE OLOGY Jun.1999 1 盆地构造特征 1.1 盆地类型 塔里木盆地是一个由古生界克拉通盆地和中、新生界前陆盆地组成的大型叠合复合盆地,具有古老陆壳基底和多次沉降隆升的复杂构造演化史。1.1.1 盆地基底 盆地边缘露头地层资料、盆地内天然地震转换波测深剖面和大地电磁测深剖面等资料研究表明,塔里木盆地具有统一的前震旦系古老陆壳基底。库鲁克塔格地区出露基底地层最古老的为中-下太古 界托格拉克布拉克群深变质岩系,角闪岩全岩Sm -Nd 年龄为3263±129M a ;盆地地壳厚度为37~55km;岩石圈以整体挠曲变形为特征,各层界面同步起伏,即盆地基底坳陷和隆起区基本上也是莫霍面的相对坳陷和隆起区,横向厚度变化不大。因此,塔里木盆地基底是典型的刚性陆壳基底,其地壳各层具刚性、没有明显侧向蠕变,盆地深部构造特征与中国东部盆地基底坳陷与莫霍面隆起呈镜象关系的特点截然不同。另外,塔里木盆地基底构造极为复杂,具强烈的不均一性,这对后期盆地形成与演化起了重要的控制作用。1.1.2盆地类型 经盆地分析,塔里木的主体是位于古老陆壳基 底之上的古生代克拉通盆地,晚期在南北叠加了两个中、新生代前陆盆地,总体上是一个由古生界克 拉通盆地和中、新生界前陆盆地组成的大型叠合复合盆地。由于盆地主体是陆壳克拉通,塔里木盆地 构造具有相对稳定的特点,在长达8×108 年的地质历史中,仅震旦—奥陶纪和早二叠世表现出较强的地壳活动性;盆地内火山活动主要出现在震旦—寒武纪和早二叠世,其它时代基本没有火山活动。塔里木盆地的构造变形表现为盆地内部平缓,盆地周缘强烈;构造样式在盆地内部以走滑断裂、陡倾角逆断层控制的断垒为主,复杂的逆冲带、推覆构造及复杂的褶皱主要出现在盆地周缘。 塔里木盆地沉积盖层中存在多个不整合界面和多个沉积体系。在纵向上古生代为海相克拉通沉积,中、新生代为陆相前陆盆地沉积;在平面上有多个沉降中心,而不同时期的沉降和隆起既有继承性,又有迁移和相互转换,并且经历了多次沉降和隆起的复杂构造演化历史。因此,塔里木盆地是多个不同时期、不同性质原型盆地在纵向上叠合、在平面上复合的联合体,是一个特殊的复杂的沉积盆地。 1.1.3 盆地地热特征 塔里木盆地现今地温梯度为1.8~2.0℃/hm ,大地热流值为40~50mW/m 2,具有低地温梯度和低

构造边缘构件与约束边缘构件的区别

构造边缘构件与约束边缘构件的区别 1.从编号上看,构造边缘构件在编号时以字母G打头,如GAZ、GDZ、GYZ、GJZ等,约束边缘构件以Y打头,如YAZ、YDZ、YYZ、YJZ等。见03G101-1中的第3页 2.约束边缘构件的抗震性能要高于构造边缘构件。从03G101-1的18、49、50页可以看出,如构造边缘构件的端柱仅在矩形柱范围内布置纵筋和箍筋,类似于框架柱,而约束边缘构件除端部有一个阴影部分外,在阴影部分和墙身之间还有一个“虚线区域”,该区域的特点是加密拉筋或同时加密竖向分布筋。 3. 构造边缘暗柱是按构造配置,而约束边缘暗柱是按计算配置。 4. 对于抗震等级一、二级的剪力墙底部加强部位及其上一层的剪力墙肢,应设置约束边缘构件。其他的部位和三级抗震的剪力墙应设置构造边缘构件。 约束边缘构件对体积配箍率等要求更严,用在比较重要的受力较大结构部位;构造边缘构件要求松一些。 约束边缘暗柱。 定义 约束边缘暗柱是指用箍筋约束的柱,其混凝土用箍筋约束,有比较大的变形能力。在剪力墙两端和洞口两侧应设置边缘暗柱。 构造边缘暗柱和约束边缘暗柱区别 剪力墙柱编号 剪力墙柱类型代号序号 约束边缘暗柱 约束边缘端柱 约束边缘翼墙(柱)约束边缘转角墙(柱)构造边缘暗柱 构造边缘端柱YAZ YDZ YYZ YJZ GAZ GDZ XX XX XX XX XX XX

构造边缘翼墙(柱)构造边缘转角墙(柱)非边缘暗柱 扶壁柱GYZ GJZ AZ FBZ XX XX XX XX 1、从编号上看,构造边缘构件在编号时以字母G打头,如GAZ、GDZ、GYZ、GJZ 等,约束边缘构件以Y打头,如YAZ、YDZ、YYZ、YJZ等。 2、从图集上体会,可以看出,约束边缘构件比构造边缘构件要“强”一些,主要体现在抗震作用上。所以,约束边缘构件应用在抗震等级较高(如一级)的建筑,构造边缘构件应用在抗震等级较低的建筑。 3、从图集中的配筋情况也可以看出构造边缘构件(如端柱)仅在矩形柱范围内布置纵筋和箍筋,类似于框架柱,当然也不能说构造边缘端柱一定没有翼缘。约束边缘构件除端部或角部有一个阴影部分外,在阴影部分和墙身之间还有一个“虚线区域”,该区域的特点是加密拉筋或同时加密竖向分布筋。 4、图集引用了GB50011-2001建筑抗震设计规范中关于抗震墙的抗震构造措施,可参考该规范加深理解。 约束构件是根据抗震等级要求来设计的,截面和墙长墙高有关系,配筋是要进行受力计算的。构造构件是根据规范做的剪力墙增强构件,根据构造要求设计截面和配筋; “边缘构件”位于剪力墙墙肢的两端。在水平地震力到来的时候,“边缘构件”(比起中间的墙身来说)是首当其冲抵抗水平地震力的。约束边缘暗柱是承重结构了,配筋有具体要求的,构造边缘暗柱不是承重结构,没有特殊用处时,只要满足相应规范中最小配筋率即可; 约束边缘暗柱是指用箍筋约束的柱,其混凝土用箍筋约束,有比较大的变形能力. 在剪力墙两端和洞口两侧应设置边缘暗柱. ; 构造边缘暗柱是构造边缘暗柱相对约束边缘暗柱,其对混凝土的约束较差。 抗震墙边缘构件的箍筋应采用何种形式,阴影部分是否可以用拉筋代替箍筋? 答:抗震墙墙肢两端应设置边缘构件,边缘构件分为约束边缘构件和构造边缘构件两类。抗震墙墙肢的延性与受压区混凝土的变形能力即箍筋的约束有关,抗震墙设置边缘构件是避免墙肢在轴压力和弯矩共同作用下,受压区混凝土压碎破坏。约束边

结构设计原理受压构件习题及答案

第六章受压构件正截面承截力 一、选择题 1.轴心受压构件在受力过程中钢筋和砼的应力重分布均() A .存在;B. 不存在。 2.轴心压力对构件抗剪承载力的影响是() A .凡有轴向压力都可提高构件的抗剪承载力,抗剪承载力随着轴向压力的提高而提高; B .轴向压力对构件的抗剪承载力有提高作用,但是轴向压力太大时,构件将发生偏压破坏; C .无影响。 3.大偏心受压构件的破坏特征是:() A .靠近纵向力作用一侧的钢筋和砼应力不定,而另一侧受拉钢筋拉屈; B .远离纵向力作用一侧的钢筋首先被拉屈,随后另一侧钢筋压屈、砼亦被压碎; C .远离纵向力作用一侧的钢筋应力不定,而另一侧钢筋压屈,砼亦压碎。 4.钢筋砼柱发生小偏压破坏的条件是:() A .偏心距较大,且受拉钢筋配置不多; B .受拉钢筋配置过少; C .偏心距较大,但受压钢筋配置过多; D .偏心距较小,或偏心距较大,但受拉钢筋配置过多。 5.大小偏压破坏的主要区别是:() A .偏心距的大小; B .受压一侧砼是否达到极限压应变; C .截面破坏时受压钢筋是否屈服; D .截面破坏时受拉钢筋是否屈服。 6.在设计双筋梁、大偏压和大偏拉构件中要求2s x a '≥的条件是为了:() A .防止受压钢筋压屈; B .保证受压钢筋在构件破坏时能达到设计屈服强度y f '; C .避免y f '> 400N/mm 2。 7.对称配筋的矩形截面偏心受压构件(C20,HRB335级钢),若经计算,0.3,0.65i o e h ηξ>=,则应按( )构件计算。

A .小偏压; B. 大偏压; C. 界限破坏。 8.对b ×h o ,f c ,f y ,y f '均相同的大偏心受压截面,若已知M 2>M 1,N 2>N 1,则在下面四组内力中要求配筋最多的一组内力是() A .(M 1,N 2); B.(M 2,N 1); C. ( M 2,N 2); D. (M 1,N 1)。 9.当2s x a '<,在矩形截面大偏心受压构件的计算中求A s 的作法是:() A.对s A '的形心位置取矩(取2s x a '=)求得; B. 除计算出A s 外,尚应按s A '=0求解As ,取两者中的较大值; C .按B 法计算,但取两者中较小值; D .按C 法取值,并应满足最小配筋率等条件。 10.钢筋砼柱发生大偏压破坏的条件是() A .偏心距较大; B.偏心距较大,且受拉钢筋配置较多; C .偏心距较大,且受压钢筋配置不过多; D .偏心距较大且受拉钢筋配置不过多。 11. 指出下列哪些说法是错误的() A .受压构件破坏时,受压钢筋总是受压屈服的; B. 大偏心受压构件破坏时,受拉钢筋已经屈服; C. 小偏心受压构件破坏时,受拉钢筋可能受压,也可能受拉。 二、是非题 1.在钢筋砼大偏心受压构件承载力计算时,若2s x a '<,则在构件破坏时s A '不能充分利用。 2.偏压构件,若ηe i >0.3 h o ,则一定为大偏压构件。 3.不论大、小偏压破坏时,s A '总能达到y f '。 4.螺旋箍筋仅用在轴向荷载很大且截面尺寸受限制的轴心受压短柱中。 5.配螺旋箍筋的轴心受压柱中的砼抗压强度大于f c 。 6.若轴压柱承受不变的荷载,则不论经过多长时间,钢筋及砼压应力都不随时间的变化。 7.在对称配筋偏心受压构件中,M 相同时,N 越小越安全。 三、思考题 1. 为什么要引入附加偏心距e a ,如何计算附加偏心距? 2. 什么是结构的二阶效应?《混凝土结构设计规范》GB50010-2002中如何考虑结构的二阶效应?

16G101-1剪力墙归纳

一、剪力墙水平钢筋构造P71 1.1剪力墙水平钢筋节点构造:1个端部无边缘构件的水平钢筋节点做法,2个端部有边缘构件(矩形暗柱、L型暗柱)的水平钢筋节点做法: ①墙端部无暗柱时,水平钢筋应延伸至边缘构件外侧纵筋外侧,搭接 10d;②墙端部有矩形暗柱时,水平钢筋应延伸至边缘构件外侧纵筋内侧,搭接10d;③墙端部有L形暗柱时,水平钢筋应延伸至边缘构件外侧纵筋内侧,搭接10d; 1.2剪力墙水平钢筋上层与下层的交错搭接,搭接长度 1.2Lae,接头错开500mm;剪力墙水平钢筋转角外侧构造P71 转角墙外侧水平分布钢筋在转角处布置有三种形式: ①在水平分布钢筋较少一侧搭接,搭接长度为 1.2laE,接头错开500mm;②转角墙两侧水平钢筋数量相同时,应上下间隔,左右隔一搭一方式,搭接长度为 1.2laE; ③所有剪力墙外侧水平钢筋全部集中在转角处搭接,搭接长度为 1.6 laE;剪力墙内侧水平钢筋做法都相同,延伸至对面剪力墙竖向钢筋内侧,弯锚15d;另: 斜交转角墙外侧水平分布钢筋贯通设置,内侧水平钢筋延伸至对面剪力墙竖向钢筋内侧,弯锚15d; 剪力墙水平钢筋转角外侧构造P72 端柱转角墙(矩形边缘构件L形墙)、端柱翼墙(矩形边缘构件T形墙)、端柱端墙(矩形边缘构件一字形墙)、翼墙或斜交翼墙(T形边缘构件T 形墙):

外侧水平分布钢筋和内侧水平分布钢筋的做法一样,延伸至对面剪力墙竖向钢筋内侧,弯锚15d; 二、剪力墙竖向钢筋构造P 73、74 剪力墙墙身和剪力墙边缘构件竖向钢筋绑扎连接时连接构造: 剪力墙墙身纵向钢筋,抗震等级为一级、二级且剪力墙位于底部加强区,搭接长度LlE= 1.2laE并且接头净距应错开500mm;其他情况的剪力墙纵向钢筋,可以在同一截面连接;剪力墙边缘构件纵向钢筋,任何情况下都接头应错开搭接,搭接长度LlE为按图表查询并且接头净距应错开 0.3LlE; (16G101-1与11G101-1相比,剪力墙边缘构件纵向钢筋接头位置在绑扎搭接时(直径Φ≤12mm的钢筋)有明显变化,11G101-1剪力墙边缘构件底部500mm为非连接区域,而16G101-1底部允许接头,采用搭接长度进行连接即可,接头位置错开要求同11G101-1,为 0.3LlE。) 剪力墙墙身和剪力墙边缘构件的纵向钢筋焊接连接时(直径Φ≥14mm的钢筋),底部500mm为非连接区,接头净距应错开35d且≥500mm; 剪力墙墙身和剪力墙边缘构件的纵向钢筋机械连接时(房建直径Φ≥22mm 的钢筋或市政直径Φ≥25mm),底部500mm为非连接区,接头净距应错开 35d;P73增加了剪力墙身防震缝的构造节点大样图,下部为一个墙身,上板顶处分为二个墙身形成防震缝,设置了构造做法。三、约束边缘构件YBZ构造做法P75 约束边缘构件YBZ构造做法(墙水平分布筋计入体积配箍率)P76 构造边缘构件GBZ、扶壁柱FBZ、非边缘暗柱AZ构造做法P77

华北盆地构造特征

在我们伟大祖国960万平方公里的辽阔土地上,沉积岩总面积约354万平方公里,星罗棋布地分部着近300个沉积盆地,发育着从震旦亚代到新生代的沉积岩系。从古老的前震旦亚界变质岩系到到最新的第四系都找到了丰富的油气资源。我国海域辽阔,面积285万平方公里,共有10个大中型沉积盆地,初步勘探证实,大都具有形成大油气田的基本地质条件。(一)华北盆地位于我国华北地区,包括北京、天津、河北、山东、河南、辽宁等省市的全部或一部分及渤海海域,面积近20万平方公里。盆地东临胶辽隆起,西与太行山隆起为邻,北为燕山台褶带。是一个新生代的沉降平原,广为第四系所覆盖。 华北盆地是迭置在华北地台古生界盖层之上的中、新生界断陷盆地。有人也称其为复式迭加型沉积盆地。盆地内广泛发育震旦亚界、古生界与中、新生界海陆两套沉积地层,累计厚度约33000米。 吕梁运动后,沿着内蒙地轴南缘,张家口-北票深断裂南侧形成了一个北北东方向的沉降带,沉积了晚元震旦亚界,为一套海相碳酸盐岩为主的沉积,厚达9000余米。青白口纪末的蓟县运动使华北地台曾一度上升,早寒武世时又沉没在浅海中,一直延续到中奥陶世末才结束。在内蒙古陆以南和鲁东古陆以西的广阔浅海内,沉积以碳酸盐岩为主夹少量泥质岩和蒸发岩,厚1000-1500米。这是一套有利的生油气岩系。加里东运动使华北地台整体上升成陆,经历了长期的风化剥蚀和岩溶作用。中石炭世又下降接受沉积,沉积了海陆交替相煤系地层,厚200-400米。二叠纪为陆相碎屑沉积,仅堆积在一些坳陷内,厚度不等,300-1500米。中生代三叠纪分部零星,仅在太行山东麓的平顺、峰峰和燕山的平泉有沉积,广大地区均未发现,说明印支运动在华北地区主要以大面积隆起为主。侏罗、白垩系主要分部在一些断陷盆地内,燕山地区沉积厚度大可达10000余米;辽胶地区7000余米;河淮地区厚2800余米;鲁西和太行山地区厚度更小。这些断陷和凹陷为华北盆地的进一步大面积坳陷开创了基础。新生代第三纪是华北大面积沉降时期,也是油气的主要形成时期。为一套河湖相沉积,厚达6000余米。 (二)基本构造特征 1 断块构造是华北盆地最突出的构造特征 海西运动以后,华北地区处于大面积隆起剥蚀状态。燕山运动以断裂陷落和火山活动为主要形式,在强烈的张扭性和张性断裂作用下,拉开了华北盆地发展的序幕。当时的主要断裂带有:北北东方向的×庐断裂带、沧州-东明断裂带、太行山东麓断裂带和近东西方向的北塘-乐亭断裂带、黄河断裂带。沿断裂带发育了一些断陷和凹陷,堆积了陆相碎屑沉积和火山岩。经过侏罗、白垩纪的发展,华北盆地已具雏形。据估算,当时的盆地总面积约等于新生

相关主题
文本预览
相关文档 最新文档