当前位置:文档之家› 功放电路原理图50例

功放电路原理图50例

功放电路原理图50例
功放电路原理图50例

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

KSA50甲类功放详细制作流程

这里是事先声明: (1)我是第一次装机子而且是甲类机---别人会问:第一次就装甲,你厉害啊----不是甲我有必要装么?我以前用的国产乙类,甲乙类厂机。 (2)买了四块KSA50---烧毁了一块,另外一块电源接反烧了俩二极管以及电源输入线路上的铜箔,重新弄好,正式上机是后来的两块,板子是惠州老刘的KSA50 (3)我的目的是听音乐,不是焊机为娱乐滴人----我不折腾,可能的话一块线路调到我要的声音,如果可能的话。 (4)老鸟可以无视我的经验,以下的只对菜鸟起作用,因为我连电路图差不多都看不懂,我是个吃现成的人---老鸟可以鄙视下 (5)发帖的目的是为了别人少走弯路,以下经验所诉只针对KSA50,以前开过贴不全面问题没有表述清楚,这次汇总下,终于挂上双声道了----这说明声音接近自己调试目的了,这点很重要。目的是个人准备给滤波电容最后拍定,测试声场定位,高中音 表现很理想了已经。(个人意见) 以下是正文: (1)选择之前很困惑,到底什么线路好?论坛上放水得多,冒充大侠的不少,真理只在少部分人手里---我相信这句话,但是群总的眼睛是雪亮的—我也相信这句话。既然 卖了那么多,买了那么多,存在即是道理,所以我选择了KSA50(也是因为群里的 朋友在推荐),想装PASS但是很多人对低音有微词,所以暂不考虑, (2)备料----KSA50整个淘宝就那么几款板子,直刻原厂的还是算了吧,我自问没那水平,我要的是KSA50基本框架,有些卖家适当的改进未必不见得是坏事,适合国情。 滤波电容的选择因为之前只对ELNA有所耳闻所以找了几个库存全新的JVC定制品 (这是第一次买料),机箱找遍淘宝只能是这个小甲箱(散热面积最大),那些个动 辄几十斤散热的大侠你还是别忽悠了,除非你想让你的散热片工作在50度以下!经过推算,淘宝上卖的最多的大甲箱A1000A998之类的绝对可以对付50W甲类!但 是由于是多块拼接所以紫铜均热板是必需的!!越大越好!(当然这样搞成本很高) 以之前对于音响系统的了解,双单声道无疑是最好的,干扰最低,而且这样搞散热 也很大---事实证明我的选择是对的!变压器是定制的,基本不叫—开机一瞬间微哼,后面听不到了,初级和次级大电流线径很重要,国内的牛和外国的还是有差距,因 为做的是甲类,线径不到大电流输出不能保证,我定制的是800W36V四线线径不 过1.5mm而已,勉强达标。IR桥上面散热片是用硅胶粘的牢靠的很(记住是硅胶不是硅脂)另外又买了一小盒含银硅脂,桥装在底板或者上盖板散热效率确实比 散热片强些,当然大型的散热片除外,桥的发热比散热片低,要是劣质产品那就超 标了。第二次备料----日化滤波18000uf四只,飞利浦23000uf四只,尼康BP-S 无极一堆,思碧等等小容量电容一堆,还有负反馈各种各样(我就不说了,个人听 音取向不同选择不同)。整流桥我都是买的IR,整个淘宝适合IR的整流桥电路板就一家,我后来发现很多朋友选择的螺栓型无电路板滤波和整流其实是很方便的,用电源板局限性很大。。。线材的选择---这里有必要说下,淘宝里铜镀银特氟龙基本都是很硬的那种,多股线芯很粗铜质有待考证,而且不符合线径一定线芯越多越 好的原则。老刘的和另外两家都一样,说实话我很不喜欢,因为我的是引线连接, 硬线非常不好用,后来别家买了软的特氟龙(有点水,不是说线水,线很好铜的纯 度高很软,这个外皮是透明的不燃但是60W烙铁温度高了外皮会化的很软但是还没融掉)最终测试用的是这种,对于外接线的大管要像我这样给上标记,我用的是热 缩管,避免线接错的悲剧发生。喇叭走线是4mm的怪兽,这线也不能焊,物理直连。 开关是红波的19mm开孔自复位开关,因为有软启动,没有软启动的选择机箱自带

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路 许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3886、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好*的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试以上6种后级电路可根据P甲=2I02RL计算其所需甲类功率或末级静态电流,从而根据需要调试末级静态电流。如一台在8Ω负载下输出功率为80W的纯甲类机,末级静态电流为Io=2.236,则流过每管的静态电流为Io′=Io/n=2.236/3A=0.745A,即0.25Ω/5W电阻上直流压降为V=Io′?R=745×0.25≈186(Mv)。 虽然纯甲类功放声音柔和、甜美,但是它对变压器、滤波电容、功率管及散热片都有极其严格的要求。听一个月下来,电费负担重。在这种情况下,不妨把功放制作成高偏置甲乙类功放,比如20W以下为甲类输出,20W~100W为甲乙类输出。此时功放总静态电路为Io=1.118A,其实一般居室环境,20W左右的纯甲类输出,可满足大多数烧友的听音要求。 由于电压放大部分已被厂家调试好,只需装配好末级电流放大部分及相关接口。微调电压放大部分的W1使输出为0mV,再调节电流放大部分的多圈电位器W2,测量0.25Ω/5W电阻两端的直流电压,使其符合自己的要求,对图3、图4可直接测量0.25Ω/5W两端的电压,对图5应测量SAP15N④、⑤脚或SAP15P①、②脚两端的电压。 若测试一切正常,即可煲机1~2小时,重复检查各项参数,若无误,即可放音试听。若想装配纯甲类功放,可把整机先调成高偏置甲乙类功放,试听正常,再逐步加大静态电流至所需值,使该机成为纯甲类功放。 以上五种电流放大板,所配散热器尺寸均为360mm×120mm×50mm,成品板均调试成高偏置甲乙类功放(甲类20W+20W),若要装配80W+80W纯甲类功放,只需换掉散热片,把功放板装入两边外露散热器式专业功放机箱(480mm×430mm×150mm)调试好即可。 以上线路,稍作调整(如改变变压器功率及供电电压、功率管对数及静态电流)即可有多种用途使用。如:制作大功率功放(250W/4Ω);制作电子分频功放;制作高品质耳机放大器(用本电压放大板推动K214/J77或K2013/J313);用电压放大部分对一些分立元件中、低档功放进行摩机;制作顶级8声道纯后级功放(如用4块电压放大板,共用电源,每声道一对三肯2SC3858、2SA1494等)

18W胆场输出甲类功放电路

18W胆场输出甲类功放电路 这是一款输出功率18W的甲类功放,末级采用电流串联负反馈电路(输出级自给偏压电阻两端旁路电容被取消),电气性能优越。电路如图。胆机电路图片如下: 子管三只,6N3与6P1都是花生管,场管IRF450的市面折机品价位也这是一款输出功率18W的甲类功放,末级采用电流串联负反馈电路(输出级自给偏压电阻两端旁路电容被取消),电气性能优越。电路如图。 电子管三只,6N3与6P1都是花生管,场管IRF450的市面折机品价位也十分低廉。 6N3的放大倍数μ=35,互导gm=5.9mA/V,共

阴放大,6P1输出约4W,IRF450输出14W,共同输出18W。IRF450可用其他场效应功率管代替,但其反向耐压必须大于500V,功耗大于100W。本例IRF450工作电流113mA时,栅源压降3.5V,因此取R5为68Ω(注意,不同场管数据会有所差异,应实测)。若改变R6值,即可改变本机的输出功率。但如果IRF450工作电流过大,容易引起自激。 输出变压器需自制,其铁心截面积S=10cm2,初次级匝数为14∶1,阻抗比为1560Ω∶8Ω,初级漆包线∮=0.29mm,绕2100匝,次级线∮=1.00mm,绕150匝,不必分段绕制,就能取得良好效果。注意,不要使铁片交叉,固定铁心的铁夹或铁板条不能继续使用,要用铝板重做。铁心的三个柱面皆放一层牛皮纸做间隙层,确保铁心没有一点磁饱和,这样变压器失真才能减到最小,电感L铁心截面S=9cm2,漆包线∮=0.33mm,绕满即可,IRF450要用较大散热器以利散热。 本机无大环负反馈,瞬态响应良好,电路简捷。需要注意的是6P1的工作电流,应使其为50mA。需要调整的是R6的阻值,以定末级输出功率。

功放基础知识

功放基础知识 1 家用声频功率放大器常识 1.1定义 声频功率放大器是将信号源(例如VCD)输来的信号进行放大处理使之能驱动扬声器系统工作的设备它是电声系统中的重要设备决定着整个 放声系统的电声性能和放声效果 1.2分类 从用途上可以大致分为四种 1.2.1 家庭影院用环绕声放大器 它追求准确的声像定位追求听众的现场感受俗称AV放大器AV功放能对编码的或不编码的信号进行处理当然也有仅作功率放大的多声道放大器 1.2.2 专用音乐重放功率放大器 追求低噪声高品质力求原汁原味的艺术体现俗称Hi-Fi放大器1.2.3卡拉OK功率放大器 追求人声表现好并可对人声进行美化 1.2.4 组合音响 追求功能的实现并没有对音色有很高的要求 1.3 AV放大器的组成 一般来讲最常见的AV放大器可分为AV综合放大器内置解码器码器和AV多声道放大器不含解码器两种例如我公司的TA6110和TA 2030就分别属于上述两种放大器也有很多AV功放带有收音功能所以也有人称AV接收机AV RECEIVER 以TAE6110为例一般AV放大器包括音源选择解码音量音调控制功率放大控制与显示和电源等部分如下图所示

1.4 AV放大器的主要指标 1.4.1 输出功率 一般是指功放机输送给其负载的功率单位为瓦W一台功放机的输出功率是和负载大小失真度大小以及测量方法密切相关所以只有说明清 楚这几项条件功率的数值才是有意义的才具有可比性 市场上有的机器标出音乐功率和音乐峰值功率其实由于这两种功率无统一的标准各厂的测量方法也不一样故其数值往往不实 1.4.2 频率响应 频率响应是表征功放机的频率范围以及在频率范围内的不均匀度频率响应曲线是否平直一般用分贝表示 1.4.3 信噪比 信噪比是指功放机输出的信号电平与各种噪声电平之比用分贝dB 来表示信噪比当然越高越好 1.4.4 失真度 失真度是指功放机输出信号的失真程度常见的是指谐波失真多用百 分数表示 2 常见环绕声系统的几种类型 2.1 Dolby Sourround Dolby Sourround是杜比实验室在MP矩阵基础上发展而来的它有4个声道解码器的作用就是把隐藏着的第三维信号恢复出来我们常见的杜比 定向逻辑解码器Dolby Pro Logic采用主动式解码性能比被动式解码器大大提高直到今天还在使用 2.2 Dolby Digital Dolby Digital也是杜比实验室研发的它有5.1个声道其中三个是前置声道左中右和两个环绕声道共5个全频带20Hz20kHz声道 一个被称为.1声道的有限频带3Hz120Hz的不完全频带的低频声道统称5.1声道 这5.1声道中的5声道用来产生平面水平面立体声而.1声道用于表现那些特殊的低频效果声如爆炸声撞击声 所有这6个声道的信号都是数字化的即将模拟声音信号进行取样量化和编码再进行码率压缩形成AC3码流功放机就是将接收到的码流进行解压缩并转换成模拟信号经放大处理后推动扬声器发声 2.3 DTS DTS是英文Digital Theater System的缩写其意为数字影院系统它和Dolby Digital有相似之处也是一种将多声道信号数字化后压缩编码的音频制式采用5.1声道格式但最多可达8.1声道目前采用DTS编码的 的软件越来越多DTS已经在家庭影院中占有重要的地位

LM386 电路原理 音频放大器

LM386 电路原理 LM386是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 一、 LM386内部电路 LM386内部电路原理图如图所示。与通用型集成运放相类似,它是一个三级放大电路。 第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。 第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。

引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。 电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。 二、 LM386的引脚图 LM386的外形和引脚的排列如右图所示。引脚 2为反相输入端,3为同相输入端;引脚5为 输出端;引脚6和4分别为电源和地;引脚1 和8为电压增益设定端;使用时在引脚7和地 之间接旁路电容,通常取10μF。 LM386的外形和引脚的排列如右图所示。引脚2为反相输入端,3为同相输入端;引脚5为输出端;引脚6和4分别为电源和地;引脚1和8为电压增益设定端;使用时在引脚7和地之间接旁路电容,通常取10μF。 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声。 1、通过接在1脚、8脚间的电容(1脚接电容+极)来改变增益,断开时增益为20dB。因此用不到大的增益,电容就不要接了,不光省了成本,还会带来好处--噪音减少,何乐而不为? 2、PCB设计时,所有外围元件尽可能靠近LM386;地线尽可能粗一些;输入音频信号通路尽可能平行走线,输出亦如此。这是死理,不用多说了吧。 3、选好调节音量的电位器。质量太差的不要,否则受害的是耳朵;阻值不要太大,10K最合适,太大也会影响音质,转那么多圈圈,不烦那! 4、尽可能采用双音频输入/输出。好处是:“+”、“-”输出端可以很好地抵消共模信号,故能有效抑制共模噪声。 5、第7脚(BYPASS)的旁路电容不可少!实际应用时,BYPASS端必须外接一个电解电容到地,起滤除噪声的作用。工作稳定后,该管脚电压值约等于电源电压的一半。增大这个电容

各种进口功放电路图

ONKYO 安桥A-VR400功放后级电路图 ONKYO 安桥A-VR410功放后级电路图 此电路X 2 Q6∞ 2SA1015 K511 330 II C513 IOMP R501 2K2 Ilf ------------ ?H C654 IUIE R?0 H M T C501 IOUF R503 411 470 GIn) ------ R661 IOCe 丄 0501 29^878 _ ? Q507~X? γ+L 29J2259 J TC5O3 I I 丄330? U Q509 k T 297184! ?Γ I \ 2931815 C513 X515 270 OUT

此电路× 5 RS19 R621 82 C5001 刚1 4TuF C 70 +44. 2 V 2.2 R6 C519 104 R63, 龙 9 Q525 2SAt^l Q521 C1845 Q523 2335198 0517 C34I? LAJJ L501 S 5 丄C53 丁 223 R541 2.2 K569 22 -CZ}-? R567 22 R623 82 过浹保护 ± l ^C51FL VT 0607 AM9 1501 Q5O3 ± R513 T ? 「r J .C 1845 X 2 刁 [C=I 丄 C5O3 〕 跑5 I IOi RS07 JR509 T IK 上 C5O5 丄<∏ 47 [220UF RSli RSoI C50I 470 4?UF L IN *→=>i ∣ R501 270 Q5O5 Cl$45 0529 C1740 IoOK X673 C52J 2K IOl R539 2.2 R652 33K ?来自萨道 ^f ?r' RM7 ×2 中点检测 L Our R¢63 D511 R62? 82 R631 I8K Q515 C2229 R625 68 t ,C526 L -IlftIF R592 Lc? -44.2 V ONKYO 安桥TX-DS575功放后级电路图 SSXe 270 Q5003 2X1Π5 Tr ≡ 47 45002 2SC!775 516 U S5311 C501 1 :CC 2 2X174O×2 C5012 ICtf KOS 10 470 Q5013 ΠD2061 K∞4 22K C5018 41tf R5013 刚6 KU1024 2X5203 IBeeM R5016 2TK —?>- 站019 ι∞ I 此电路X5绍 Q5001 2SC1775 R501 5 Wo5 M ITAI Tt C5003 IOI ?5OI2 IOK R5020 !8K RMo7 47 ≡DB ∏ QSOO8 ITC32D^/ DMM R (7 K¢30 ∞19 C5023, ICtf ? I B5026 470 ÷71V Q601? 2sc2ωi ≡35 331 ≡≡ 胃f 中龍护 ■ T zzh TT T onT KMO 8.2 T czh TV UJJ L5001 86038 10×2 C5OI4 473 -TlV ONKYO 安桥TX-DS777功放后级 电路

[整理]NE5532并联驱动的20W纯甲类功放.

NE5532并联驱动的20W纯甲类功放 这个电路由爱山乐水网友提供。好象是来源于日本发烧友 国外有很多制作精良的功率放大器,输出功率并不大,但其甜美优雅的音乐往往是很多大功率放大器所无法比拟的。 本文介绍的这款功放,虽然它的元件用得可算一般,其输出功率也只有20W,但其音乐表现力却极为出众,特别是对于古典音乐的重放尤其神韵。 【电路原理】 电路如图6-1所示,本机电路中使用两组独立的运算放大器(NE5532)分别构成两路完整的单端放大器,它们都工作在纯甲类方式下,各自独立构成性能优良的全波形放大器。放大后的信号在输出点再有机地混合,有效地降低了对音质危害极大的奇次谐波失真。激励级的双极二极管(VT1和VT2)作为电流控制器件,直接从运放的输出端吸取所需的基极电流,是一种较为理想的使用方式。VT3和VT4分别用作VT2、VT1的恒流源负载,保证了整机的稳定性,也使得本机可免去麻烦的调试手续。 激励级的VT1、VT2与输出级的两个大功率三极管构成交叉耦合方式。由于各二极管工作点之间的钳位作用,使得此电路的稳定性极好,在电源接通瞬间也不会出现冲击电流声。交叉耦合的另一个好处是激励级和输出级分别从正负电源端索取工作电流,这对提高放大器的共模抑制比十分有利。激励级的工作电流高达85mA,输出级的工作电流更是高达 1.7A 之巨(两管并联)。由于本机电流很大,制作时一定要给每一个三极管(包括激励级和恒流源负载三极管)都加上足够大的散热器,且电源变压器一定要有充足的余量(推荐为150W)。由于本机对电源的适应性很强,故电源电路只需简单的整流、滤波即可。有条件者可在供电

回路串入1~2H的电感以获得更佳的效果。

雅马哈EMX2300功放维修

雅马哈EMX2300功放维修 上面是其电原理图 高保真OCL、OTL功放电路前级多采用差分放大输入,末级采用互补大功率对管输出,前后级之间直接耦合。它具有工作稳定、频率特性好、失真小等优点,因而在近几年专业和家用功放电路中得到广泛的应用。但是,由于采用多管直接耦合,一旦某只元件变质或损坏,会造成整个电路工作点的改变,轻则导致声音小而失真,重则造成元器件大面积损坏,甚至烧毁扬声器系统。一点电压的改变,会引起多点电压随之改变,这也给故障的判断和检修造成困难。与同行交流时还发现,在检修此类功放时,如果故障排除不彻底,通电试机时往往引起新器件再次损坏,造成经济损失。因此笔者在检修实践中试行了一种安全检修方法,通过

实例的形式介绍给大家,以期与同行们交流。 实例1 一位同事检修一台日产雅马哈EMX2300功放和调音台组合机时,发现两路功放的16只大功率对管、4只推动管全部击穿,两只音箱内的扬声器全部烧毁。按规格全部更换已损坏件后,在没连接前级调音台的情况下,通电试机,仅过几分钟,就见机内冒烟。停机检查,新换的大功率对管又损坏12只,两只音箱内扬声器再次烧毁,损失达两千多元。他不敢再修,求助于笔者修理。 有了前车之鉴,笔者经慎重考虑,采取了一种稳妥安全的方法进行检修,排除了故障。 具体检修步骤如下: (1)对照实物,参照原理图(见图),弄清电路的工作原理和元器件参数。 (2)用电阻测量法对电路中所有元件进行一次在路测量,并将左、右电路测量结果对照比较,找出损坏元器件。 为了提高在路测量精确度,测量电阻时用数字式万用表。由于数字万用表内阻大,向被测电路提供的电流小,不能使二极管、三极管PN结导通,相当于开路,可减小对电阻测量的影响。测量二极管、三极管时用指针式万用表。测量PN结正向电阻时用R×1挡,既可向PN结提供较大的正向电流,检查其正向特性,又可减小在路其它元件对测试的影响。正常情况下用1.5V电池供电的电阻挡测量PN 结正向电阻时,指针应偏转到电阻量程刻度线的中点(距0Ω1/2左右),如果显示电阻较大,说明PN结正向特性不良。测反向电阻时,用R×100或R×1k挡,显示电阻应略小于测试两点间并联电阻。测量电容器时(特别是电解电容器),也选用指针万用表,并根据容量大小选择相应的量程,既可测量电容器在路电阻,又可根据指针摆动情况,估测电容器容量。 在上述方法进行在路测量后,该组合机有12只大功率输出管击穿,5只发射极电阻烧断,推动管有两只漏电,扬声器保护电路失效。将上述元件全部更换新件,修复扬声器保护电路后,进入关键的通电试机阶段。 (3)采用三步安全通电试机法进行通电试机。首先为了不损坏扬声器和大功率管,试机前不接扬声器系统,在推挽输出端与地之间(即图1中的C点与D点之间)接一只20~50Ω/20~50W线绕电阻做假负载。其次,断开末级大功率管的任意两个电极或事先不安装大功率管Q212~Q219。保留推动管Q210、Q211做互补推挽输出(如果推动管发射极与中点之间无发射极电阻,应临时加装两只100~270Ω、0.5W以上电阻,试机后拆除)。接着在功放电源220V输入端串接一台调压器,从50V开始向功放供电,并监测输出端中点电压(C点与D点之间的电压)。对OCL电路来说,这一电压应为0V±0.5V,对OTL电路来说应为电源电压的一半。如果中点电压不符合正常值,应立即停机检查。此时由于供电较低,一般不会造成元器件损坏。如果中点电压正常,可逐渐提高电源电压,一边监测中点电压,一边观察有无变色、冒烟元件,同时用手感觉推动管温度。如果市电升到正常值,通电半小时输出端电压保持不变,推动管无温度上升或元器件无变质变色等现象,则表明安全通电试机法第一步操作结束,可进行下一步操作。 第二步是接入大功率管,保持假负载,降压供电,监测中点。也就是说,装上末级大功率管Q212~Q219,并按照从50V起逐渐升压的方法继续通电试机。必要时,应对整机静态电流、中点电压进行相应的调整。如果中点电压失常,应重点检查末级功放管及外围电路。直到中点电压稳定,功放管不发热为止。 第三步是拆去假负载,接入低档扬声器和信号源,正常供电试听。具体说,

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

动手制作 再造hood jlh 1969M小甲类功放 教程方法 制作图纸 科技小制作新满多

动手制作再造hood jlh 1969M小甲类功放教程方法制 作图纸科技小制作新满多 讲1969M之前,得讲一下JOHN LINSLEY HOOD 1969这个经典线路。。。 线路原形如下: John Linsley Hood 在1969年发表了这个电路,10W纯甲类功放,电路很简单,每声道由4只晶体管构成,虽然功率不大,但音色优美,吸引了不少DIY爱好者。。。 里不得不说一下老哥DIY过的1969。。。 小风扇起到一定的散热作用

A10的格局 搭焊在电路板上的零件 功放的输出电容,有7个并联在一起一个不太大的变压器 军工钽电容 输入插口 喇叭接线柱

John Linsley Hood 的1969 电路简洁,易于制作,音色也不错,因此衍生了许多个版本的1969。。。 1969M就是其中的一个。。 某高人根据1969设计的1969M(1969MOS)电路如下,因为末级改为场效应管,因此简称1969M,此版本可以工作在AB类,意味着不用那么大的工作电流,功率也比1969大。。。而原形的1969只能工作在纯甲类,效率低,只有10W 的输出,电流大,更需要体积不小的散热片。 为了做好1969M,于是把线路做了一次仿真,按照现有的条件,如电压,使用的管子进行测试,调整参数,使谐波失真达到最小。。 仿真软件是大名鼎鼎的Multisim!!!这是DIY烧友电脑上

必装软件,如果你没有,那就OUT了啊。。 Multim 10 启动画面 Multim 10 工作界面。。。看上去好像很专业。。不过玩几下基本上就能掌握。。。 新完成的1969M电源滤波用两只25V15000U的电容串联,没办法,单只的耐压不够啊。。。内部图 实际应用的电路图。。。 说明一下图中红色圈起来的部分

音频功率放大器的设计与实现汇总

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

雅马哈功放RX-V471安装说明书

检查本机是否带有以下配件。 根据本指南的说明准备以下用于连接的缆线(未附带)。? 如果您的电视支持 Audio Return Channel (ARC) 功能,则不需要数字光纤缆线。 1准备工作 配件 遥控器 将电池按正确方向插入电池盒(+ 和 -)。 AM 天线 FM 天线 VIDEO AUX 输入盖 YPAO 麦克风 (使用说明书) 快速设置指南(本说明书) 准备缆线 音箱缆线(每个音箱都需要) HDMI 缆线 x 2 单声道针口缆线 x 1 数字光纤缆线 x 1

请按如下所示的方式摆放音箱。其他布置方式(5.1 声道音箱布置方式除外)如《使用说明书》中所示。 5.1 声道系统 前置音箱(左) 前置音箱(右) 中置音箱 环绕声音箱(左) 环绕声音箱(右) 低音炮 2

连接音箱缆线 音箱缆线有两根线。一根用于连接本机和音箱的负极 (-) 端子,另一根用于连接正极 (+) 端子。如果这两根线存在颜色区分,则应用黑色的线连接负极端子,而用另一根线连接正极端子。 1从音箱缆线端部剥去大约 10mm 的绝缘皮,然后将 裸线捻在一起。 2松开音箱端子。 3 如果很难将裸线插入端子侧 的间隙内,则可将其插入端 子下方的间隙内。 4拧紧端子。 连接香蕉插头 拧紧旋钮,然后将香蕉插头插入 端子末端。1将前置音箱 (/)连接到 端子。 2将中置音箱 ()连接到 CENTER 端子。 ? 使用阻抗至少为 6Ω的音箱。 ? 使用有内置放大器的低音炮。 ? 连接音箱前,请拔下电源插头。 ? 注意,音箱缆线的线芯不得接触任何部件或本机的金属部位。 如果这样,则可能损坏本机或音箱。如果音箱缆线短路,则 当本机开机时,“CHECK SP WIRES!”会出现在前面板显示 屏上。 本机(后部) 3

音频功率放大电路设计(附仿真)

南昌大学实验报告 学生姓名: 学号: 专业班级: 实验类型:□验证□综合□设计□创新 实验日期: 实验成绩: 音频功率放大电路设计 一、设计任务 设计一小功率音频放大电路并进行仿真。 二、设计要求 已知条件:电源9±V 或12±V ;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干 基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截 止频率f L =300Hz ,f H =3400Hz 扩展性能指标:P o ≥1W (功率管自选) 三、设计方案 音频功率放大电路基本组成框图如下: 音频功放组成框图 由于话筒的输出信号一般只有5mV 左右,通过话音放大器不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L (扬声器)提 供一定的输出功率。 应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于 运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的 OTL (Output Transformerless )功率放大电路和OCL (Output Capacitorless )功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。

对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8 电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。 四、电路仿真与分析 黄色为输入信号,蓝色为输出信号。输出信号峰峰值放大,且波形基本不失真。 输出阻抗用8Ω电阻替代,输出功率为236mW>200mW

相关主题
文本预览
相关文档 最新文档