当前位置:文档之家› 缺口试样在弹塑性状态下的局部应力和局部应变

缺口试样在弹塑性状态下的局部应力和局部应变

缺口试样在弹塑性状态下的局部应力和局部应变
缺口试样在弹塑性状态下的局部应力和局部应变

缺口试样在弹塑性状态下的局部应力和局部应变

1. 应力重分布

对于塑性较好的材料,随外加载荷的增大,从缺口根部开始出现塑性变形,。而且塑性区逐渐扩大,直至整个截面上都产生塑性变形,应力将重新分布。

以厚板为例,根据Tresca屈服准则,金属屈服的条件是σ

1-σ

3

s

(或

σy-σx=σs)。在缺口根部,σx=0,σy最大,因此,随着载荷的增加,σy增加,

在缺口根部最先满足屈服条件σ

y -σ

x

s

,首先屈服,产生塑性变形,该处应力

σy得到松弛(不考虑硬化,σy=σs),导致应力峰值向内部移动,峰值之前出现

所谓的“塑性区”,峰值成为塑性区和弹性区的分界线(在塑性区中,由于的σ

y

下降,σ

x 、σ

z

也随之下降)。当然,随着峰值的内移,σ

x

≠0,需要更大的σ

y

才能保证塑性变形连续进行下去。随着载荷的增加,塑性变形逐步向内部转移,各应力峰值也逐步向中心移去,直至缺口截面的全面屈服,这时,应力峰值处于试样中心(颈缩就是这样一种状态)。

2. 弹塑性条件下的局部应变

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 一 应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零, 六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。 图1-1 应力应变关系图 图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载,

例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T 、t 的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幂强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示: 理想线弹性模型 理想刚塑性模型

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

关于应力应变状态问题

关于应力应变状态问题(含组合变形) 2009年10月29日星期四 应力应变状态重点公式: 基本公式:ατασσσσσα2sin 2cos 22 xy y x y x --+ += ατασσσσσα2sin 2cos 2 2 90xy y x y x +-- += +ο ατασστα2cos 2sin 2 xy y x +-= y x xy σστα-- =22tan ()2 2 max 4212 xy y x y x τσσσσσ+-++= ()22 min 42 12 xy y x y x τσσ σσσ+-- += 应力圆的绘制及其应用:①、强调单元体的面与应力圆上的点一一对应关系。即:点面 对应,转向相同,转角两倍。②、确定任意斜截面上的应力;②、确定主应力的大小和方向;③、三向应力圆的绘制及其应用。 广义胡可定律及其公式: (){}z y x x E σσμσε+-=1 G xy xy τγ= (){}x z y y E σσμσε+-=1 G yz yz τγ= (){}y x z z E σσμσε+-= 1 G zx zx τγ= (){}32111 σσμσε+-= E ;(){}13221σσμσε+-=E ;(){}21331σσμσε+-=E 习题:P255 7.7、7.9、7.10、7.12、7.14、7.19、7.26、7.27、7.28、7.37、

四种常用强度理论: 最大拉应力理论(第一强度理论)[]σσ≤1 最大伸长线应变理论(第二强度理论)()[]σσσμσ≤+-321 最大切应力理论(第三强度理论)[]σσσ≤-31 畸变能密度理论(第四强度理论) ()()()[] []σσσσσσσ≤-+-+-2132322212 1 01、十、图示为一平面应力状态下的单元体。试证明任意互相垂直截面上的正应力之和为常数。即:ο90++=+αασσσσy x 或min max σσσσ+=+y x 。(7分)(2009吉大) 02、4、已知平面应力状态如图(应力单位MPa ),试计算主应力大小及方位,在图上标出主应力方位。(15分)(2009北工大) 题二.4图 03、5、已知铸铁构件上危险点的应力状态如图3-5所示。若铸铁拉伸许用应力[σ]+= 30MPa ,试校核该点处的强度。(15分)(2008华南理工)

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。 许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 在力学上由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的关系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的连系。所以平衡方程与几何方程是两类完全相互独立的方程,它们之间还缺乏必要的联系,这种联系即应力和应变之间的关系。有了可变形材料应力和应变之间关系和力学参数及运动学参数即可分析具体的力学问题。由平衡方程和几何方程加上一组反映材料应力和应变之间关系的方程就可求解具体的力学问题。这样的一组方程即所谓的本构方程。讨论应力和应变之间的关系即可变为一定的材料建立合适的本构方程。 一.典型应力-应变关系 图1-1 典型应力-应变曲线

1) 弹性阶段(OC 段) 该弹性阶段为初始弹性阶段OC (严格讲应该为CA ’),包括:线性弹性分阶段OA 段,非线性弹性阶段AB 段和初始屈服阶段BC 段。该阶段应力和应变满足线性关系,比例常数即弹性模量或杨氏模量,记作:εσE =,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。 2)塑性阶段(CDEF 段) CDE 段为强化阶段,在此阶段如图1中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。CDE 段的强化阶段在E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限 (ultimate strength ),并用σb 表示。超过强度极限后应变变大应力却下降,直到最后试件断裂。这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。这一现象称为“颈缩”(necking )。此时,由于颈缩现象的出现,在E 点以后荷载开始下降,直至在颈缩部位试件断裂破坏。这种应力降低而应变增加的现象称为应变软化(简称为软化)。 该阶段应力和应变的关系:)(ε?σ=。 3)卸载规律 如果应力没有超过屈服应力,即在弹性阶段OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。在应力超过屈服应力后,如果在曲线上任一点D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ′变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用 OD ′表示总应变ε,O ′D ′表示可以恢复的弹性应变εe ,OO ′表示不能恢复的塑性应变εp ,则有 p e εεε+= (1-1) 即总应变等于弹性应变加上塑性应变。 该阶段应力和应变的关系满足εσ?=?E 。 4)卸载后重新加载

ch8 应力应变状态分析(3rd)

第八章 应力、应变状态分析 8-2 已知应力状态如图所示(应力单位为MPa ),试用解析法计算图中指定截面的正 应力与切应力。 题8-2图 (a)解:由题图所示应力状态可知, 45MPa 20MPa 10MPa 30=-===αηζζx y x ,,, 将上列数据代入平面应力状态斜截面应力公式,得 MPa 0.10)MPa 90sin 2 1030( MPa 0.40)MPa 90sin 202 10 30( =-==++= ααηζ (b)解:由题图所示应力状态可知, 5.22MPa 20MPa 10MPa 30===-=αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 )MPa cos4520sin452 1030( MPa 3.38)MPa sin4520cos452 10 3021030( =+--=-=---++-= ααηζ (c)解:由题图所示应力状态可知, 60MPa 15MPa 20MPa 10-==-==αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 MPa 5.20)]MPa 120cos(15)120sin(2 2010[ MPa 490.0)]MPa 120sin(15)120cos(2 20 1022010[ -=-+-+==---++-= ααηζ 8-3 试用图解法(应力圆)解题8-1。 解:题8-1图所示应力状态的应力圆如图8-3所示。

图8-3 由图a 可以量得指定截面上的正应力和切应力分别为 MPa 0.15MPa 0.104545=== ηηζζαα,= 由图b 可以量得指定截面上的正应力和切应力分别为 MPa 3.7MPa 3.473030-===-- ηηζζαα,= 8-6 图示双向拉伸应力状态,应力σσσ ==y x 。试证明任意斜截面上的正应力均等 于σ,而切应力则为零。 题8-6图 证明:由题设条件可知, 0===x y x ηζζζ, 将上述数据代入平面应力状态斜截面应力公式,则有 02sin 2 02cos 2 2=+-==--++= αζ ζηζαζ ζζζζαα 由于式中α为任意值,故原命题得证。 8-7 已知某点A 处截面AB 与AC 的应力如图所示(应力单位为MPa ),试用图解法 求主应力的大小及所在截面的方位。

应力与应变(试题学习)

第三章 应力与强度计算 一.内容提要 本章介绍了杆件发生基本变形时的应力计算,材料的力学性能,以及基本变形的强度计算。 1.拉伸与压缩变形 1.1 拉(压)杆的应力 1.1.1拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1) 杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;如果是偏 心受压或受拉的轻质杆件,那么必然存在靠近轴力的一侧受压,远离轴力的一侧受拉,应力肯定不同,方向相反。并存在中和轴。(即应力在中和轴处为0) (2)适用于离杆件受力区域稍远处的横截面;(大于截面宽度的长度范围内——圣维南) (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀(即应力集中); (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时,可应用式(3-1)计算,所得结果的误差约为3%。 1.1.2拉(压)杆斜截面上的应力(如图3-1) 图3-1 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1sin 22 ατσα= (3-4) 式中σ为横截面上的应力。

正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。 两点结论: (1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=090=0。 (2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα τ=。 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为

粘弹塑性模型的基本概念

第七章 粘弹塑性模型的基本概念 7 . 1 引言 为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。 弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F 独自反映材料本构关系的一个方面的特性。理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。实际工程材料的本构关系可以用这些简单模型的各种组合来构成。 理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图 7-1( a ))。其本构方程为虎克定律。一维条件下,如单轴压缩和纯剪清况下,表达式分别为: E σε= (7.1.1) G τγ= (7.1.2) 式中E —— 弹性模量、 G ——剪切模量。 剪切模量与弹性模量和泊松比的关系如下式所示: () 21E G ν=+ (7.1.3) 式中 ν ——泊松比。 三维条件下本构方程可表示为下述形式: m K νσε= (7.1.4) 式中 K ——体积弹性模量。 (a ) (b ) 图7-1 理想弹性模型

体积弹性模量与弹性模量和泊松比的关系如下式所示: () 312E K ν=- (7.1.6) 理想粘性模型又称牛顿粘滞体模型。通常用一粘壶(或称阻尼器)表示(图7-2 ( a ) )。粘壶内充满粘滞液体和一个可移动的活塞。活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。一维条件如单轴压缩或纯剪情况下,表达式分别为: σ?ε= (7.1.7) τηγ= (7.1.8) 式中 ?、η ——粘滞系数。 由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。 与理想弹性体的方程相对应,类似式7.1.3,存在下述关系: ()*21? ην=+ (7.1.9) 式中 *ν ——粘性应变速率的横向比值。 (a ) (b ) 图7-2 理想粘性模型 理想粘性体的体积变化与形状变化速率无关, 即不具有体积粘性。因此,*ν应等于0.5 。于是式7.1.9成为: 3?η= () 这与弹性不可压缩时的E=3G 相对应。 在三维条件下理想粘性体本构方程可表示为:

应力应变关系

应力应变关系 我所认识的应力应变关系 一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 ,E ,,XX 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: ,,,,,,,CCCxxyz111213 ,,,,,,,CCCyxyz212223 ,,,,,,,CCCzxyz313233 (2-3) ,,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有 ,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为: CCCa==,112233 CCCCCCb=====,122113312332 (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 ,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz 2GE,,

应力状态与应变状态分析

第8章典型习题解析 1. 试画出下图所示简支梁A 点处的原始单元体。 图8.1 解:(1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A 点偏上和偏下的一对与xz 平行的平面。截取出的单元体如图(d)所示。 (2)分析单元体各面上的应力: A 点偏右横截面的正应力和切应力如图(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为: z M y I σ= b I QS z z *= τ 由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A 点单元体如图(d)。 2.图(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解:(1)求斜截面上的正应力 ?30-σ和切应力?30-τ

由公式 MPa 5.64)60sin()60()60cos(2100 5021005030-=?---?---++-= ?-σ MPa 95.34)60cos()60()60sin(2100 5030=?--+?---= ?-τ (2)求主方向及主应力 8 .010050120 22tan -=----=-- =y x x σστα ?-=66.382α ?=? -=67.7033.1921αα 最大主应力在第一象限中,对应的角度为 070.67α=?,主应力的大小为 1 5010050100cos(270.67)(60)sin(270.67)121.0MPa 22σ= ??--??=-+--+ 由 y x σσσσαα+=+2 1 可解出 2 1 (50)100(121.0)71.0MPa x y ασσσσ=+=-+-=-- 因有一个为零的主应力,因此 )33.19(MPa 0.7133?--=第三主方向=ασ 画出主单元体如图8.2(b)。 (3)主切应力作用面的法线方向 25 .1120100 502tan =---= 'α ?='34.512α ?='? ='67.11567.2521αα 主切应力为 ' 2 ' 1 MPa 04.96)34.51cos()60()34.51sin(2100 50ααττ-=-=?-+?--= 此两截面上的正应力为 MPa 0.25)34.51sin()60()34.51cos(2100 502100501 =?--?--++-= 'ασ MPa 0.25)34.231sin()60()34.231cos(2100 502100502 =?--?--++-= 'ασ 主切应力单元体如图所示。

弹塑性力学 应力和应变之间的关系

我所认识的应力和应变之间的关系 在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。 所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。这类线性弹性体独立的唐兴常数只有两个。 各向同性体本构关系特点:1.主应力与主应变方向重合。2.体积应力与体积应变成比例。 3.应力强度与应变强度成比例。 4.应力偏量与应变偏量成比例。工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ???=-+=???????=-+=???????=-+=???? ,式中分别为弹性模量、泊松比和剪切模量。在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为() 21E G μ=+。 屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。对于加载过程如图1 OA: 比例阶段;线性弹性阶段 AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段 EF : 颈缩阶段;应变弱化,软化阶段 s σσ≥ C 点为初始屈服点具有唯一性。在应力超过屈服应力后,如果在曲线上任意一点D 处卸 载,应力和应变之间将不再遵循原有的加载曲线规 律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变e ε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。若在卸载后重新加载,则曲线基本上仍沿直线O ’D 变化,直至超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化现象。为了与初始屈服相区别,我们把机箱发生新的塑性变形时的材料的再次屈服称为后

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d 20 (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0 ττσ==; (B )AC AC /2,/2τ τσ==; (C )AC AC /2,/2τ τσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关

于它们的正确性,现有四种答案,正确答案是( D )。 (b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。 τ (a) (b) (c) (A)三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)( a)和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45o的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料;

ANSYS弹塑性分析

ansys弹塑性分析的例子(载自互联网) 2010-10-20 20:03:29| 分类:材料科学初探 | 标签: |字号大中小订阅 弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的 介绍分为以下几个方面: · 什么是塑性 · 塑性理论简介 · ANSYS程序中所用的弹塑性选项 · 怎样使用塑性 · 塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说 ,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低 于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消 失。 由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应 变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变 强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与 路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分 布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。

率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种 塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围 ,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力( )与工程应变(),也可能是真实应力(P/A)与真实应变()。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力 、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服 应力本身可能是下列某个参数的函数。 · 温度 · 应变率 · 以前的应变历史 · 侧限压力 · 其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: · 屈服准则 · 流动准则 · 强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有 塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此 ,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。

我所认识的应力和应变

我所认识的应力和应变 应力和应变这两个概念对我来说并不算陌生,在之前材料力学中学习了平面应力状态以及平面应力状态下的应变分析,而这学期的弹塑性力学则主要研究空间应力应变状态。 一. 应力 1. 应力的定义 应力表示内力在截面上某一点的分布集度,它是一个矢量,不仅有大小和方向,而且和点的位置以及通过该点截面的方向有关。应力的国际单位为N /㎡,简写为Pa 。 2. 一点的应力状态 由于一点的应力矢量与该点的位置以及通过该点截面的方向有关,所以只是描述应力,应同时指明它是对物体内的哪个点,并过该点的哪一个微分面,物体内同一点各微分面上的应力状况,即一点的应力状态。 过物体内某一点M 分别截取三个互相垂直的微分面,并使这三个微分面的外法线方向分别与三个坐标轴的方向一致,不失一般性地假设为与三个坐标轴的正方向一致。则三个微分面上的应力矢量可分别表示为: x x xy xz P i j k σττ=++ y y x y y z P i j k τστ=++ z z x x y z P i j k ττσ=++ 上式中出现了9个应力分量,这9个应力分量作为一个整体组成了一个所谓的二阶张量,而上式中的9个应力分量组成了一个33?的矩阵 ??????????=z zy zx yz y yx xz xy x ij στττστττσσ 称为应力张量。在三维空间中,9个元素组成的张量称为二阶张量。三个应力张量的不变量均可由三个主应力表示。由于该点各个截面的应力情况确定了,主应力也就确定了,并且主应力是不随坐标改变的,从而应力张量不变量也唯一确定了。应力张量是一个二阶张量,应力张量的各个分量在坐标变换时,服从二阶张量的坐标变换规律。 3. 应力满足条件 应力是一个二阶对称张量。处于平衡状态的物体的物体内部个点需要满足平

常用弹塑性材料模型

常用弹塑性材料模型下表列出了ANSYS/LS-DYNA材料模型以及相应的LS-DYNA命令 ANSYS Material Model LS-DYNA Command LS-DYNA MAT # Example Isotropic Elastic*MAT_ELASTIC1Yes Bilinear Isotropic Plasticity *MAT_PLASTIC_KINEMATIC 3 Yes Bilinear Kinematic *MAT_PLASTIC_KINEMATIC 3 Yes Plastic Kinematic *MAT_PLASTIC_KINEMATIC 3 Yes Piecewise Linear Plasticity *MAT_PIECEWISE_LINEAR_PLASTICITY24 Yes Rigid *MAT_RIGID 20 Yes 7.2.1.1各向同性弹性模型 各向同性弹性模型。使用MP命令输入所需参数: MP,DENS—密度 MP,EX—弹性模量 MP,NUXY—泊松比 此部分例题参看B.2.1,Isotropic Elastic Example:High Carbon Steel。 B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3 7.2.3.1 双线性各向同性模型 使用两种斜率(弹性和塑性)来表示材料应力应变行为的经典双线性各向同性硬化模型 (与应变率无关)。仅可在一个温度条件下定义应力应变特性。(也有温度相关的本构模型; 参看Temperature Dependent Bilinear Isotropic Model)。用MP命令输入弹性模量(Exx), 泊松比(NUXY)和密度(DENS),程序用EX和NUXY值计算体积模量(K)。用TB和TBDATA 命令的1和2项输入屈服强度和切线模量: TB,BISO TBDATA,1, Y σ(屈服应力) TBDATA,2, tan E(切线模量) 例题参看B.2.7,Bilinear Isotropic Plasticity Example:Nickel Alloy。

ANSYS弹塑性分析教程

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面: ? 什么是塑性 ? 塑性理论简介 ? ANSYS 程序中所用的性选项 ? 怎样使用塑性 ? 塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也 就 是说,当 移 走 载 荷 时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS 程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静 力分 析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力(P A )与工程应变(?l l ),也可 能是真实应力(P/A )与真实应变( n L l l ()0 ) 。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ? 温度 ? 应变率 ? 以前的应变历史 ? 侧限压力 ? 其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: ? 屈服准则 ? 流动准则 ? 强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。 屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是Von Mises 屈服准则,当等效应力超过材料的屈服应力时,将会发生塑性变形。 可以在主应力空间中画出Mises 屈服准则,见 图3-1。 在3-D 中,屈服面是一个以 1 2 3 σσσ ==为轴的圆柱面,在2-D 中,屈服面是一个椭圆,在屈服面内部的任 何应力状态,都是弹性的,屈服面外部的任

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学 弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。 一绪论 1、弹塑性力学的概念和研究对象 弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。 2、弹塑性简化模型及基本假定 在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。 3、研究方法及其与初等力学理论的联系和区别 一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。 弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

相关主题
文本预览
相关文档 最新文档