当前位置:文档之家› 成都热处理厂【大全】

成都热处理厂【大全】

成都热处理厂【大全】
成都热处理厂【大全】

成都的几家热处理厂(精选!)

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

成都热处理厂——成都万可瑞特金属科技有限公司位于成都市青羊开发区,成立于2006年,厂房面积600平方米,现有固定资产600万元,其中热处理设备13台,检测设备7台,专业技术人员7人。公司是成都市独立的专业模具热处理企业,主要从事各种模具及其配件的真空热处理、保护气氛热处理、深冷处理及表面强化处理,拥有专业从事模具热处理的资深专家,训练有素的操作人员、检验人员,和经营管理人员。

成都热处理厂——成都利科精密热处理技术有限公司是一家专业从事金属热处理加工的企业,是成都市在工商部门登记注册的大型热处理公司。公司经过多年的发展,已经形成较大规模的对外加工体系,公司目前拥有多台先进的热处理设备:台车电阻炉、箱式电阻炉、井式回火炉、网带炉热处理生产线、中频设备、高频设备、真空热处理设备、井式渗碳炉、蒸汽发兰炉等热处理设备;备有多种检测仪器:便携式里氏硬度计、台式硬度计、布氏硬度计、超声波探伤仪、金相显微镜等,可为您提供各种产品的渗碳、调质、淬火、正火、退火、发兰(煮黑)、金属表面淬火等热处理加工项目。公司对所有出厂产品都会进行全面检验,确保所有产品合格。

成都热处理厂——成都雄厚热处理工程研究所前身为省科委技术开发中心“材料热处

理工程部”创建于1987年,于1992年10月注册成立研究所。是中国机械工程协会热处理专业委员会会员单位,是西南三省首家具有法人资格的专业研制及生产销售化学热处理材料的单位。现已形成以热处理材料工艺研发、生产及模具、零件热处理加工、机械加工为一体的民营科研企业,由具有高中级技术职称人员进行研发、生产及工艺流程管理。服务宗旨:以科技为主导、以质量求发展愿结交各方专业朋友,立足成都,服务全川,为振兴我国热处理行业携手共进。承接服务:渗碳、碳氮共渗、渗硼、氮化、高频表面淬大、盐浴炉工模具淬火、有色金属及不锈钢、调质、发兰、机械加工、模具技术咨询、攻关。

成都热处理厂——成都科诺热处理有限公司致力于打造中国最大、最专业的高频感应淬火热处理、渗碳淬火热处理、调质,正火,退火、喷砂抛丸表面除锈加工企业,拥有庞大的服务网点,成都科诺热处理有限公司高覆盖、高效率的服务获得多家公司和机构的认可。成都科诺热处理有限公司将以最专业的精神为您提供安全、经济、专业的服务。主要经营高频感应淬火热处理、渗碳淬火热处理、调质、正火、退火、喷砂抛丸表面除锈加工、柔性边坡防护网、SNS被动防护系统、SNS主动防护系统等。

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

金属热处理原理及工艺总结 整理版(精编文档).doc

【最新整理,下载后即可编辑】 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响? 答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。 6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响? 答:①冷却速度越大,则过冷度也越大。②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。 8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。 9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。③机械振动、搅拌。 第二章金属的塑性变形与再结晶 2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊? 答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和

第四章 有色金属热处理原理与工艺

第四章有色金属热处理原理与工艺 一、概述 热处理是有色加工的重要组成部分 有色金属材料:黑色金属以外的所有金属及其合金。 分类:轻有色、重有色、稀有色、贵金属 作用:改善工艺性能,保证后续工序顺利进行;提高使用性能,充分发挥材料潜力。 类型:退火、淬火、时效、形变热处理 退火:加热到适当温度,保温一定时间,缓慢速度冷却。 有色中的退火:去应力退火、再结晶退火、均匀化退火 二、均匀化退火 对象:铸锭、铸件—→浇铸冷速大,造成成分偏析以及内应力 目的:提高铸件的性能,消除内应力,稳定尺寸与组织,消除偏析枝晶,改善性能。 非平衡铸态组织特征:晶内偏析or枝晶偏析;伪共晶or离异共晶;非平衡第二相;最大固溶度偏移。非平衡组织对性能的影响:枝晶偏析&非平衡脆性相—→塑性↓; 晶内偏析、浓度差微电池—→耐腐蚀性↓; 粗大的枝晶和严重的偏析—→各向异性&晶间断裂倾向↑; 非平衡针状组织—→性能不稳定。 固相线以下100~200℃长时间保温—→也称为扩散退火 组织变化:获得均匀的单相、晶粒长大、过饱和固溶体的分解、第二相聚集与球化 性能变化:塑性↑、改善冷变形的工艺性能、耐蚀性↑、尺寸形状稳定、消除残余应力 缺点:加热温度高,时间长,耗时耗能;高温长时间出现变形、氧化以及吸气缺陷;产品强度下降。制定均匀化推过规程的原则: (1)加热温度:温度越高,原子扩散越快,均匀化过程越快,但不宜过高,易发生过烧。一般为 0.90~0.95T m ①高温均匀化退火:在非平衡相线温度以上但在平衡固相线温度以下进行均匀化退火。 适用:大截面工件or铝合金 ②分级加热均匀化退火:现在低于非平衡固相线温度加热,待非平衡相部分溶解及固溶体 内成分不均匀部分降低,从而非平衡固相线温度升高后,再加热 至更高温度保温,在此温度下完成均匀化退火过程。 目的:均匀化更迅速、更彻底,且避免过烧 适用:镁合金 (2)保温时间:包括非平衡相溶解及消除晶内偏析所需的时间 取决于退火温度:T↑,D↑,时间↓; 铸锭原始组织特征:合金化程度、第二相分散度、尺寸 铸锭的致密程度 (3)加热速度与冷却速度 原则:铸锭不产生裂纹和大的变形,不能过快or过慢 主要采用均匀化退火的合金:Al合金、Mg合金、Cu合金中的锡磷青铜、白铜

各种热处理工艺介绍

第4章热处理工艺 热处理工艺种类很多,大体上可分为普通热处理(或叫整体热处理),表面热处理,化学热处理,特殊热处理等。 4.1钢的普通热处理 4.1.1退火 将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却),的热处理工艺叫做退火。 退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。 退火的目的: z降低钢的硬度,提高塑性,便于机加工和冷变形加工; z均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备; z消除内应力和加工硬化,以防变形和开裂。 退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。 一、退火方法的分类 常用的退火方法,按加热温度分为: 临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不完全退火、球化退火 临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火 碳钢各种退火和正火工艺规范示意图: 1、完全退火 工艺:将钢加热到Ac3以上20~30 ℃℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全A化)。 完全退火主要用于亚共析钢(w c=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。低碳钢完全退火后硬度偏 低,不利于切削加工;过共析钢加热至Ac cm以上A状态缓慢冷却退火时,Fe3C Ⅱ

会以网状沿A晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。 目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。 亚共析钢完全退火后的组织为F+P。 实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。 2、等温退火 完全退火需要的时间长,尤其是过冷A比较稳定的合金钢。如将A化后的钢较快地冷至稍低于Ar1温度等温,是A转变为P,再空冷至室温,可大大缩短退火时间,这种退火方法叫等温退火。 工艺:将钢加热到高于Ac3(或Ac1)的温度,保温适当时间后,较快冷却到珠光体区的某一温度,并等温保持,使A?P然后空冷至室温的热处理工艺。 目的:与完全退火相同,转变较易控制。 适用于A较稳定的钢:高碳钢(w(c)>0.6%)、合金工具钢、高合金钢(合金元素的总量>10%)。等温退火还有利于获得均匀的组织和性能。但不适用于大截面钢件和大批量炉料,因为等温退火不易使工件内部或批量工件都达到等温温度。 3、不完全退火 工艺:将钢加热到Ac1~Ac3(亚共析钢)或Ac1~Ac cm(过共析钢)经保温后缓慢冷却以获得近于平衡组织的热处理工艺。 主要用于过共析钢获得球状珠光体组织,以消除内应力,降低硬度,改善切削加工性。球化退火是不完全退火的一种 4、球化退火 使钢中碳化物球状化,获得粒状珠光体的一种热处理工艺。 ℃℃温度,保温时间不宜太长,一般以2~4h 工艺:加热至Ac1以上20~30 为宜,冷却方式通常采用炉冷,或在Ar1以下20℃左右进行较长时间等温。 主要用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。过共析钢经轧制、锻造后空冷的组织是片层状的珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,在以后的淬火过程中也容易变形和开裂。球化退火得到球状珠光体,在球状珠光体中,渗碳体呈球状的细小颗粒,弥散分布在铁素体基体上。球状珠光体与片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易粗大,冷却时变形和开裂倾向小。如果过共析钢有网状渗碳体存在时,必须在球化退火前采用正火工艺消除,才能保证球化退火正常进行。 目的:降低硬度、均匀组织、改善切削加工性为淬火作组织准备。 球化退火工艺方法很多,主要有: a)一次球化退火工艺:将钢加热到Ac1以上20~30 ℃℃,保温适当时间,然后随炉缓慢冷却。要求退火前原始组织为细片状珠光体,不允许有渗碳体网存在。

热处理工艺的分类

热处理工艺的分类 金属热处理工艺大体可分为、表面热处理和化学热处理三大类。根据加热、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和四种基本工艺。 整体热处理工艺的手段 退火是将工件加热到适当温度,根据材料和工件采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的和使用性能,或者为进一步淬火作组织准备。 正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进 行长时间的保温,再进行冷却,这种工艺称为回火。 退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得 一定的强度和韧性,把淬火和结合起来的工艺,称为。某些合金淬火形成后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为。 把形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为;在负压气氛或真空中进行的热处理称为,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。 表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和热处理,常用的热源有氧乙炔或氧丙烷等火焰、、激光和电子束等。 化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层 渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 热处理是和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善的组织和应力状态,以利于进行各种冷、。

金属热处理原理与工艺复习提纲精选版

金属热处理原理与工艺 复习提纲 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.正火:把零件加热到临界温度以上30-50℃,保温一段时间,然后在空气中冷却的热处理工艺。 2.退火:将钢加热、保温后,随炉冷却后,获得接近平衡状态组织的热处理工艺。 3.回火:将淬火钢重新加热到A1线以下某一温度,保温一定时间后再冷却到室温的热处理工艺。 4.淬火:将钢加热到AC1或AC3以上某一温度,保温一定时间,以大于临界冷却速度进行快速冷却,获得马氏体或下贝氏体组织的热处理工艺。 5.淬硬性:钢淬火后的硬化能力。 6.淬透性:钢淬火时获得马氏体的能力。 7.贝氏体:过冷奥氏体中温转变的产物。 8.马氏体:C原子溶入 -Fe形成的饱和间隙固溶体。 9.贝氏体转变:奥氏体中温转变得到贝氏体的过程。 10.马氏体转变:将奥氏体快速冷却到Ms点以下得到马氏体组织的过程。 11.脱溶:从过饱和固溶体中析出第二相(沉淀相)、形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。 12.固溶:将双相组织加热到固溶度线以上某一温度保温足够时间,获得均匀的单相固溶体的处理工艺。 13.固溶强化:当溶质原子溶入溶剂原子而形成固溶体时,使强度、硬度提高,塑性、韧性下降的现象。 14.渗碳:向钢的表面渗入碳原子的过程。

15.渗氮:向钢的表面渗入氮原子的过程。 16.化学热处理:将零件放在特定的介质中加热、保温,以改变其表层化学成分和组织,从而获得所需力学或化学性能的工艺总称。 17.表面淬火:在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。 二、简答题 1.材料的强韧化机制及其应用 答:固溶强化; 位错强化; 第二相强化; ④细晶强化。 2.相变应力/组织应力是什么对组织性能有什么影响 3. 答:组织应力又称相变应力:金属制品在加热和冷却时发生相变,由于新旧相之间存在着结构和比容差异,制品各部分又难以同时发生相变,或者各部分的相变产物有所不同,也会引起应力,这种因组织结构转变不均均而产生的应力称为组织应力。 热应力:金属制品在加热和冷却过程中,由于各部分加热速度或冷却速度不同造成制品各部分温度差异,从而热胀冷缩不均匀所引起的内应力。4.奥氏体化的形成及控制(形成过程、机理、及控制措施)其中包含的化学反应有哪些? 答:奥氏体:C溶于γ–Fe的八面体间隙形成间隙式固溶体

热处理-方式--介绍

热处理 开放分类:工艺、机械、冶金、金属材料、材料加工 热处理是将材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的组织结构,来控制其性能的一种综合工艺过程。 热处理名词: 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%) 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号(GB/T12693-90) 1.分类:热处理分类由基础分类和附加分类组成. (1)基础分类 根据工艺类型、工艺名称和实践工艺的加热方法,将热处理工艺按三个层次进行分类,见附录表 1-1. (2)附加分类 对基础分类中某些工艺的具体条件的进一步分类.包括退火、正火、淬火、化学热处理工艺加热介质(附录表1-2);退火冷却工艺方法(附录1-3);淬火冷却介质或冷却方法(附录表(1-4);渗碳和碳氮共渗的后续冷却工艺(附录表1-5),以及化学热处理中非金属、渗金属、多元共渗、熔渗四种工艺按元素的分类. 2.代号 (1)热处理工艺代号标记规定如下: 5热处理 X工艺类型 X工艺名 称 X 加热方法 附加分类工艺代号 (2)基础工艺代号 用四位数字表示.第一位数字“5”为机械制造工艺分类与代号中表示热处理的工艺代号;第二,三,四位数字分别代表基础分类中的第二,三,四层次中的分类代号。当工艺中某个层次不需分类时,该层次用0代号。 (3)附加工艺代号 它用英文字母代表。接在基础分类工艺代号后面。具体代号见附录表1-2至附录表1-5。 (4)多工序热处理工艺代号

多工序热处理工艺代号用破折号将各工艺代号连接组成,但除第一工艺外,后面的工艺均省略第一位数字“5”,如5151-331G表示调质和气体渗碳。 (5)常用热处理工艺代号见附录表1-6。 附录表1-1.热处理工艺分类及代号 工艺总称代号工艺类 型代 号 工艺名称代 号 加热方法代号 热处理 5 整热处理 体 1 退火 1 加热炉 1 正火 2 淬火 3 感应 2 正火和淬火 4 调质 5 火焰 3 稳定化处理 6 固溶处理,水韧处理7 固溶处理和时效8 表面热处 理 2 表面淬火和回火 1 电阻 4 物理气相沉淀 2 化学气相沉淀 3 激光 5 等离子体化学气相沉淀 4 化学热处 理 3 渗碳 1 电子束 6 碳氮共渗 2 渗氮 3 等离子体 7 氮碳共渗 4 渗其他非金属 5 其他8 渗金属 6 多元共渗7 溶渗8 附录表1-2.加热介质及代号 加热介质固体液体气体真空保护气氛可控气氛流态床代号S L G V P C F

热处理实习报告2篇_工作报告

热处理实习报告2篇 昨天参观了工具加工的车削、磨、铣的精加工车间,今天我们开始了,热处理的学习。到底在精加工和刃磨角度之前或者在冷拔、冲压之前,工具经过了怎样的热处理呢?今天工具厂的老厂长,为我们做了详细的介绍。 热处理是指将钢在固态下加热、保温和冷却,以改变钢的组织结构,从而获得所需要性能的一种工艺。世界工业发展表明,制造技术的先进性是产品竞争能力的保证,而热处理技术的先进程度,则是保证机械产品质量的关键性因素。老师提到了美国历经数年形成并制订的“美国热处理2020年技术发展路线图”,这是目前国际上最先进的热处理技术发展路线,资料显示,美国对于热处理技术设想目标是能源消耗减少80%,工艺周期缩短50%,生产成本降低75%,热处理实现零畸变和最低的质量分散度,加热炉使用提高到原先的10倍(增加9倍),加热炉价格降低50%,实现生产零污染。而我国的热处理相对于制造业发达的美国仍然存在20年的差距。 在上工具厂,主要的产品有:齿轮刀具、螺纹刀具、拉销刀具、孔加工刀具、硬质合金刀具、铣刀、铰刀类刀具、量具类刀具、非标准特殊刀具。而每一种产品在加工过程中都要依据其材料及工艺要求的不同接受不同方式的热处理。根据加热、冷却的方式及钢组织性能的变化特点不同,热处理可以分为以下几种:1、普通热处理:退火、1 / 10

正火、淬火和回火;2、表面热处理:表面淬火、化学热处理;3、其他热处理:真空热处理、变形热处理、控制气氛热处理、激光热处理等。 随后,师傅为我们介绍了上海工具厂的热处理设备。在上海工具厂,有四台真空炉。热处理真空炉是具有高压(压力0.6-1.0mpa)气冷功能的真空热处理设备,适用于高速钢、高合金工模具钢、不锈钢等精密零件的真空气淬、退火、钎焊以及磁性材料的烧结及快速冷却等。在机床厂这四台真空炉中,有三台是91年从波兰引进的、美国技术制造的高压气淬真空炉,它由5bar的氮气进行冷却;有效零件炉塞尺寸为600600900mm、可承受最大重量为500kg;加热方式为高频辐射加热;真空度达到50~100pa(大气压为11000000pa。而另外一台真空炉是ipsen的12bar高温气淬真空炉,这台设备属于国际领先技术,由着名的德国ipsen公司生产。其特点有:1、低温对流循环加热,温度范围是150~850℃;循环加热对于型号大的模具便能达到均匀处理的效果。2、分级等温冷却,可以减少工件的变形和开裂;3、冷却风机可以在真空状态下启动,以达到快书冷却的目的。(普通的风机要在冲气0.4bar以后才能启动);4、功率因数高,普通炉在升温时功率因数0.85、保温时0.5而ipsen在升温时功率因数也是0.85而保温的功率因数可以达到0.83;5、ipsen的水冷风机可以超载250%,正常装机容量为115kw在最大超载状态下可以达到287.5kw。ipsen 公司是国际上知名的工业炉制造公司,总部设在德国kleve,在欧洲、美洲、亚洲多个国家设有制造厂,在我国上海也设有制造厂,在北京2 / 10

金属热处理及表面处理工艺规范

北京奇朔科贸有限公司 部分金属材料热处理及表面处理工艺规范 第一版 编写:赵贵波 审核: 批准: 北京奇朔科贸有限公司 二零一二年六月

目录 1.0 热处理的工艺分类及代号---------------------------------------------------------------------3 1.1 基础分类-----------------------------------------------------------------------------------------------3 1.2 附加分类-----------------------------------------------------------------------------------------------3 1.3 热处理工艺代号--------------------------------------------------------------------------------------4 1.4 图样中标注热处理技术条件用符号--------------------------------------------------------------7 2.0 金属材料的热处理方法和应用目的-------------------------------------------------------8 2.1 钢的淬火-----------------------------------------------------------------------------------------------8 2.2 热处理的过程方法和应用目的--------------------------------------------------------------------9 3.0 部分金属材料的热处理规范-----------------------------------------------------------------17 3.1 渗碳钢的热处理工艺--------------------------------------------------------------------17 3.2 渗氮钢的热处理工艺--------------------------------------------------------------------------------20 3.3 调质钢的热处理工艺-------------------------------------------------------------------------------21 3.4 -弹簧钢的热处理工艺------------------------------------------------------------------------------23 3.5 轴承钢的热处理工艺-------------------------------------------------------------------------------25 3.6 合金工具钢的热处理工艺------------------------------------------------------------------------- 26 3.7 碳素工具钢的热处理工艺--------------------------------------------------------------------------29

机械加工常见热处理工艺解读

渗碳 渗碳热处理 渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 概述 渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 分类 按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。

气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。 固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。 液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。 碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解 渗碳介质的分解产生活性碳原子。 ②吸附 活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散 表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 渗碳工艺流程 1、直接淬火低温回火 组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低

热处理种类应用

1.热处理工艺的分类 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 8.5补充手段之二 1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 3.淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 4.回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

热处理分类

热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。按照热处理不同的目的,热处理工艺可分为两大类:预备热处理和最终热处理。 1. 预备热处理 预备热处理的目的是改善加工性能、消除内应力和为最终热处理准备良好的金相组织。其热处理工艺有退火、正火、时效、调质等。 (1)退火和正火 退火和正火用于经过热加工的毛坯。含碳量大于0.5%的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于0.5%的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理。退火和正火尚能细化晶粒、均匀组织,为以后的热处理作准备。退火和正火常安排在毛坯制造之后、粗加工之前进行。 (2)时效处理 时效处理主要用于消除毛坯制造和机械加工中产生的内应力。

为避免过多运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可。但精度要求较高的零件(如座标镗床的箱体等),应安排两次或数次时效处理工序。简单零件一般可不进行时效处理。 除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工、半精加工之间安排多次时效处理。有些轴类零件加工,在校直工序后也要安排时效处理。 (3)调质 调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形作准备,因此调质也可作为预备热处理。 由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序。 2. 最终热处理 最终热处理的目的是提高硬度、耐磨性和强度等力学性能。 (1)淬火 淬火有表面淬火和整体淬火。其中表面淬火因为变形、氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高、耐磨性好,而内部保持良好的韧性、抗冲击力强的优点。为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理。其一般工艺路线为:下料--锻造--正火(退火)--粗加工--调质--半精加工--表面淬火--精加工。 (2)渗碳淬火 渗碳淬火适用于低碳钢和低合金钢,先提高零件表层的含碳量,经淬火后使

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号(GB/T12693-90) 1.分类:热处理分类由基础分类和附加分类组成. (1)基础分类 根据工艺类型、工艺名称和实践工艺的加热方法,将热处理工艺按三个层次进行分类,见附录表1-1. (2)附加分类 对基础分类中某些工艺的具体条件的进一步分类.包括退火、正火、淬火、化学热处理工艺加热介质(附录表1-2);退火冷却工艺方法(附录1-3);淬火冷却介质或冷却方法(附录表(1-4);渗碳和碳氮共渗的后续冷却工艺(附录表1-5),以及化学热处理中非金属、渗金属、多元共渗、熔渗四种工艺按元素的分类. 2.代号 (1)热处理工艺代号标记规定如下: 5热处理X工艺类型X工艺名称X 加热方法 (2)基础工艺代号 用四位数字表示.第一位数字“5”为机械制造工艺分类与代号中表示热处理的工艺代号;第二,三,四位数字分别代表基础分类中的第二,三,四层次中的分类代号。当工艺中某个层次不需分类时,该层次用0代号。 (3)附加工艺代号

它用英文字母代表。接在基础分类工艺代号后面。具体代号见附录表1-2至附录表1-5。 (4)多工序热处理工艺代号 多工序热处理工艺代号用破折号将各工艺代号连接组成,但除第一工艺外,后面的工艺均省略第一位数字“5”,如5151-331G表示调质和气体渗碳。 (5)常用热处理工艺代号见附录表1-6。 附录表1-1. 热处理工艺分类及代号

附录表1-2. 加热介质及代号 附录表 1-3 退火工艺代号 附录表1-4 淬火冷却介质和冷却方法及代号 附录表1-5 渗碳,碳氮共渗后冷却方法及代号 附录表1-6 常用热处理工艺及代号

金属热处理基础知识

金属热处理基础知识

金属热处理基础知识一 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)

莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%) 金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~

金属热处理原理复习参考

《金属热处理原理及工艺》习题一 (参考答案) 1.金属固态相变有哪些主要特征?哪些因素构成了相变阻力? 主要特征:①界面能-惯习面 ②界面能-位向关系 ③弹性应变能 ④缺陷的影响 ⑤原子迁移率低 ⑥有亚稳过渡相形成 相变阻力:界面能+弹性应变能。 2.固态相变的形核位置有哪些?为什么非均匀形核成为固态相变的主要形核方式? 均匀形核、晶界形核(界面、界棱、界隅)、位错、空位等。 原因:1)固态下原子激活能大,均匀形核率低; 2)非均匀形核降低了临界形核功,提供补充能量。 3.试计算奥氏体含2.11%的碳(wt%)时,平均几个γ-Fe晶胞才有一个碳原子? 设n个晶胞有一个碳原子: = n .2 48 4.以共析钢为例,说明奥氏体是怎样形成的。并讨论为什么在铁素体消失的瞬间,还有 部分渗碳体未溶解? 奥氏体形成驱动力:奥氏体与珠光体自由能差值,转变通过扩散进行,分以下4个阶段: 1)奥氏体核在铁素体和渗碳体交界处通过C原子扩散形成; 2)奥氏体核通过渗碳体溶解、C在奥氏体中扩散以及在奥氏体两侧边界向铁素体、渗碳体推移进行;

3)渗碳体溶解; 4)奥氏体均匀化。 铁素体消失的瞬间,还有部分渗碳体未溶解的原因:奥氏体/渗碳体界面处的碳浓度差远远大于奥氏体/铁素体界面处的浓度差,所以只需溶解一小部分渗碳体就可以使其相界面处的奥氏体达到饱和,而必须溶解大量的铁素体才能使其相界面处奥氏体的碳浓度趋于平衡。故在共析钢中总是铁素体先消失,有剩余渗碳体残留下来。 5.快速加热时奥氏体的形成与恒温下的奥氏体形成对比,有哪些不同?为什么? ①快速加热A形成是在一定温度范围内形成。 ②加热速度越快,A晶粒越细小,但易长大。 ③随加热速度加快,A成分不均匀性增大。 6.什么叫组织遗传?如果淬火过热,应如何返修? 组织遗传:相变后,新相仍保持旧相晶粒的大小和形状。 返修:1)中速加热; 2)采用快速或慢速加热到高于临界点150~200℃,使粗晶粒通过再结晶细化; 3)先进行一次退火以获得平衡组织,然后再进行加热。 7.试计算奥氏体八面体间隙大小。 8.试讨论Fe-Fe3C状态图所给出临界点与实际加热冷却时临界点的关系。 在平衡点有ΔGv=0,实际加热过程中过冷(热)度提供了相变的驱动力。且随着加热温度或加热速度的提高,相变临界点升高;随冷却温度或冷却速度的降低,临界点降低。有A C1>A1>A r1、A C3>A3>A r3、A Ccm>A cm>A rcm。

热处理检验报告

热处理检验报告 产品名称2BE1253产品编号 部件名称材质件数热处理方式热处理工艺要求冷却方式 起始温度 ℃升温速度 ℃/h 保温温度 ℃ 保温时间 h 出炉温度 ℃ 侧端盖H2508退火20100500 2160空冷热处理结论: 2BE1253侧端盖产品(零件),热处理符合工艺要求,同意验收。 检验员: 日期: 审核: 日期: 质检专用章热处理检验报告 产品名称2BE1253产品编号

部件名称材质件数热处理方式热处理工艺要求冷却方式 起始温度 ℃升温速度 ℃/h 保温温度 ℃ 保温时间 h 出炉温度 ℃ 泵体Q235B4退火20100720 3720空冷热处理结论: 2BE1253泵体产品(零件),热处理符合工艺要求,同意验收。 检验员: 日期: 审核: 日期: 质检专用章热处理检验报告 产品名称2BE1253产品编号 部件名称材质件数热处理方式热处理工艺要求冷却方式 起始温度 ℃升温速度 ℃/h 保温温度 ℃ 保温时间 h 出炉温度 ℃

主轴(调质)45#4淬火60080870 5870油冷 回火35060 640 8 350 空冷 热处理结论: 2BE1253主轴产品(零件),热处理符合工艺要求,同意验收。 检验员: 日期: 审核: 日期: 质检专用章热处理检验报告 产品名称2BE1253产品编号 部件名称材质件数热处理方 式 热处理工艺要求冷却方式起始温度 ℃ 升温速度 ℃/h 保温温度 ℃ 保温时间 h 出炉温度 ℃ 轴套304(0Cr18Ni9)8退火20100350 4300空冷分配器304(0Cr18Ni9)8 退火20 100 350 4 300 空冷

钢件热处理种类及其硬度的检测方法

钢件热处理种类及其硬度的检测方法 热处理工件的硬度使用硬度计检测。PHR系列便携式表面洛氏硬度计十分适用于检测表面热处理工件的硬度,可以测试有效化深度超过0.1mm的各种表面热处理工件。操作简单、使用方便、价格较低,可直接读取硬度值。 表面热处理分为两大类,一类是表面淬火回火热处理,另一类是化学热处理,其硬度检验方法如下:化学热处理是使工件表面渗入一种或几种化学元素的原子,从而改变工件表面的化学成分、组织和性能。经淬火和低温回火后,工件表面具有高的硬度、耐磨性和接触疲劳强度,而工件的芯部又具有高的强韧性。 化学热处理工件的主要技术参数是硬化层深度和表面硬度。硬化层深度还是要用维氏硬度计来检测。检测从工件表面到硬度降到50HRC那一点的距离。这就是有效硬化深度化学热处理工件的表面硬度检测与表面淬火热处理工件的硬度检测相近,都可以用维氏硬度计、表面洛氏硬度计或洛氏硬度计来检测,只是渗氮厚的厚度较薄,一般不大于0.7mm,这时就不能再采用洛氏硬度计了。 零件如果局部硬度要求较高,可用感应加热等方式进行局部淬火热处理,这样的零件通常要在图纸上标出局部淬火热处理的位置和局部硬度值。零件的硬度检测要在指定区域内进行。硬度检测仪器可采用洛氏硬度计,测试HRC硬度值,如热处理硬化层较浅,可采用表面洛氏硬度计,测试HRN硬度值。 表面淬火回火热处理通常用感应加热或火焰加热的方式进行。主要技术参数是表面硬度、局部硬度和有效硬化层深度。硬度检测可采用维氏硬度计,也可采用洛氏或表面洛氏硬度计。试验力(标尺)的选择与有效硬化层深度和工件表面硬度有关。这里涉及到三种硬度计。维氏硬度计是测试热处理工件表面硬度的重要手段,它可选用0.5~100kg的试验力,测试薄至0.05mm厚的表面硬化层,它的精度是最高的,可分辨出工件表面硬度的微小差别。另外,有效硬化层深度也要由维氏硬度计来检测,所以,对于进行表面热处理加工或大量使用表面热处理工件的单位,配备一台维氏硬度计是有必要的。 表面洛氏硬度计也是十分适于测试表面淬火工件硬度的,表面洛氏硬度计有三种标尺可以选择。可以测试有效硬化深度超过0.1mm的各种表面硬化工件。尽管表面洛氏硬度计的精度没有维氏硬度计高,但是作为热处理工厂质量管理和合格检查的检测手段,已经能够满足要求。况且它还具有操作简单、使用方便、价格较低,测量迅速、可直接读取硬度值等特点,利用表面洛氏硬度计可对成批的表面热处理工件进行快速无损的逐件检测。这一点对于金属加工和机械制造工厂具有重要意义。当表面热处理硬化层较厚时,也可采用洛氏硬度计。当硬化层厚度在0.4~0.8mm时,可采用HRA标尺,当硬化层厚度超过0.8mm时,可采用HRC标尺。 维氏、洛氏和表面洛氏三种硬度值可以方便地进行相互换算,转换成标准、图纸或用户需要的硬度值。相应的换算表在国际标准ISO、美国标准ASTM和中国标准GB/T中都已给出。

相关主题
文本预览
相关文档 最新文档