当前位置:文档之家› 废水处理中改性天然高分子絮凝剂的研究和应用

废水处理中改性天然高分子絮凝剂的研究和应用

废水处理中改性天然高分子絮凝剂的研究和应用
废水处理中改性天然高分子絮凝剂的研究和应用

废水处理中改性天然高分子絮凝剂的研究和应用

潘碌亭, 肖锦

( 华南理工大学造纸与环境工程学院, 广东广州510641)

摘要: 天然高分子改性絮凝剂具有无毒、原料丰富、价廉等优点, 近年来在废水处理中得到广泛的重

视和应用. 本文介绍了近年来国内天然高分子改性絮凝剂在废水处理中的研究和应用情况, 并作了

简要的评述.

关键词: 天然高分子; 絮凝剂; 废水处理

中图分类号: TQ028. 8 文献标识码: A

絮凝法是目前给水和废水处理中应用最普遍的

方法之一, 而新型、高效、无毒的絮凝剂的研制, 则是

絮凝法中的核心问题, 也是目前国内外广泛关注的

热点. 无机絮凝剂投加量大, 产污泥量大; 有机合成

高分子絮凝剂价格高, 生物难降解, 残留的单体有

毒, 所以在实际应用中受到了限制. 由于天然高分子

具有分子量分布广、活性基团多、结构多样化等特

点, 而且来源广泛、价廉、无毒、可生物降解. 因此, 近

年来被国内外广泛用来研制新型絮凝剂.

1 以木质素为原料的絮凝剂

木质素是天然的芳香族化合物, 造纸黑液中大

约含有50% 的木质素, 如果造纸黑液不经处理而直

接排放, 不仅对环境造成严重污染, 而且还造成了天

然资源的极大浪费. 据报道[ 1] , 我国每年因排放而

造成300 万吨木质素的流失. 因此, 以木质素为原

料, 开发和生产新型水处理剂具有十分重要的意义.

1. 1 木质素季铵型阳离子絮凝剂

自70 年代以来, 国外已研究了以木质素为原料

合成季铵型阳离子表面活性剂, 用其处理染料废水

获得了良好的絮凝效果. 我国朱建华等[2] 利用造纸

蒸煮废液中木质素合成了阳离子表面活性剂, 并作

为水处理剂处理阳离子染料、直接染料、酸性染料;

结果表明, 木质素阳离子表面活性剂具有良好的絮

凝性能, 对各种染料的脱色率均超过90% . 清华大

学吴冰艳[ 3] 以造纸黑液中提取的木质素为原料, 合

成了新型脱色絮凝剂木素季铵盐, 通过正交实验, 研

究了对合成的影响因素, 优化出絮凝剂合成工艺条

件, 并用于处理高浓度、高色度染料中间体J 酸废

水, 取得了较好的脱色效果, 最佳投加量为20mg/ l,

色度去除率可达85%以上.

1. 2 木质素接枝共聚物絮凝剂

木质素在温和条件下能与丙烯酰胺发生接枝共

聚反应[ 4] . 改性产物( Lig- CH= CHCONH2) 有明显

的- CONH2 红外吸收谱带, 其分子量在5 万- 100

万之间, 由于- CONH2 与木质素的接枝, 可能削弱

木质素原有的网状结构, 在一定程度上会影响接枝

产物的混凝性能. 据报道, 木质素接枝共聚物絮凝剂

不论在最小投量、残留浊度和絮体平均粒径变化方面, 还是对pH 值波动的适应能力等方面都优于其

它改性木质素.

1. 3 木质素絮凝剂

木质素不仅经过改性制备各种絮凝剂, 而且本

身也可以作为絮凝剂使用. 张芝兰等[ 5] 从草浆黑液

中提取木质素, 研究了木质素絮凝剂的性质, 并将木

质素絮凝剂与聚合氯化铝、聚丙烯酰胺絮凝剂的处

理效果进行了比较, 证实了木质素絮凝剂在处理味

精废液和印染废水中的优越性, 特别是利用木质素

独特的絮凝性能可以将味精浓废液中95% 的菌体

沉降回收并制成高蛋白饲料[ 6] . 雷中方等[7] 研究了

从厌氧处理前后的碱法草浆黑液中提取的木质素作

为絮凝剂, 处理蒙脱土悬浊液和印染废水; 实验发

现, 从厌氧处理后的黑液中提取的木质素比处理前

的木质素絮凝性能好. 在此基础上雷中方等[8] 又研

究了木质素絮凝作用机理, 证明了木质素絮凝剂是

一种对高浊度、酸性废液有特效的水处理剂.

2 以淀粉为原料的絮凝剂

据统计, 自然界中含淀粉的天然碳水化合物年

产量达5000 亿吨, 是人类可以取用的最丰富的有机__ 资源[ 9] , 淀粉分子具有很多羟基, 通过这些羟基的

化学反应生产改性淀粉, 另外, 淀粉还能与丙烯腈、

丙烯酸、丙烯酰胺等起接枝共聚反应生成共聚物.

2. 1 改性淀粉絮凝剂

改性淀粉具有良好的絮凝性能且无毒、可以完

全被生物分解, 因而被广泛关注. 80 年代初期, 我国

学者已开始对淀粉改性研制新型絮凝剂, 近年来, 如

曹炳明等[ 10] 将木薯粉与烯类单体在催化剂作用下

发生反应, 制得新型的阳离子CS- 1 型絮凝剂, 这

种絮凝剂用于污水处理厂二级污水处理, 可缩短泥

水分离的絮凝过程, 为城市污水有效处理提供了保

障. 全易等[ 11] 以玉米淀粉为骨架, 用环氧氯丙烷与

之反应制成高交联淀粉(CCMS) , CCMS 应用于含

重金属离子废水的处理, 取得了较好的效果.

2. 2 淀粉接枝共聚物絮凝剂

近年来, 淀粉的接枝共聚研制新型絮凝剂, 在国

内也取得了长足进展. 李旭祥等[12] 用过硫酸铵为引

发剂, 使菱角粉与丙烯腈接枝共聚, 制得的改性淀粉配以助凝剂碱式氯化铝处理印染废水, 浊度去除率70% 以上. 赵彦生等[13] 在淀粉与丙烯酰胺共聚两步法合成阳离子淀粉絮凝剂的基础上, 进行了淀粉)

丙烯酰胺接枝共聚物一步法改性阳离子絮凝剂CS2 GM的合成及性能研究, 用这种絮凝剂处理毛纺厂

印染废水取得了较好结果. 杨通在等[ 14] 以淀粉为原料, 合成了阳离子型改性高分子絮凝剂, 并用它对印染、酿酒、屠宰和印刷电路板等轻工废水进行处理, 结果表明, 悬浮物、COD、色度去除率较高且产污泥量较少, 处理后的轻工废水水质得到较大改善. 汪玉庭等[ 15] 研究了接枝羧基淀粉对贵金属离子Au( I) 、Pd( II) 、Pt( IV) 的静态吸附性能和选择性, 探讨了其吸附机理, 为贵金属离子的分离提供了理论基础.

2. 3 淀粉氧化制备多功能水处理剂

淀粉除了改性, 接枝制备絮凝剂外, 还可以通过

氧化制取多功能水处理剂, 叶文玉等[ 16] 以高锰酸钾和次氯酸钠为氧化剂, 对淀粉进行适度氧化制得了

高羧含量和适度分子量的羧酸化淀粉, 经磷酸酯化

反应制得羧酸磷酸化淀粉; 实验结果表明, 该药剂除具有絮凝性能外, 还具有优良的阻垢和缓蚀性能, 并具有良好的协同作用.

3 以甲壳素为原料的絮凝剂

甲壳素是自然界中含量仅次于纤维素的第二大

天然有机高分子化合物, 它是甲壳类( 虾、蟹) 动物、昆虫的外骨骼的主要成分; 甲壳素的分子量在2- 5

万之间. 自60 年代起以甲壳素为原料的絮凝剂的研

究在许多国家已取得很大进展, 近年来我国对其开

发和应用也作了大量的研究.

3. 1 壳聚糖类

壳聚糖是甲壳素脱乙酰化的产物, 故亦称脱乙

酰甲壳素, 它是一种很好的阳离子絮凝剂, 主要用于工业废水的处理. 如陈世清[17] 利用壳聚糖的吸附性

处理食品加工废水, 研究结果表明, 壳聚糖对各种食品加工废水处理均特别有效且投加量较少. 此外, 壳聚糖为絮凝剂回收工业废水中的蛋白质、染料以及

重金属离子也取得了较好的效果. 徐洪峰等[18] 还利

用壳聚糖螯合絮凝除铜, 在Cu2+ 的浓度为20 -

60mg/ l 时, 除铜率可达99. 5% .

3. 2 羧甲基壳聚糖类

羧甲基壳聚糖由壳聚糖经醚化反应制得. 壳聚

糖经羧甲基化后, 在水中具有极好的水溶性, 羧甲基

壳聚糖是新型的高分子絮凝剂; 张秋华等[ 19] 采用研

制的羧甲基壳聚糖絮凝剂处理毛巾厂的印染废水,

结果显示, 羧甲基壳聚糖絮凝剂在废水的脱色和

COD 的去除方面都优于常用的其他高分子絮凝剂.

3. 3 甲壳多聚糖类

甲壳多聚糖废水净化剂系采用高分子化合物为

载体而研制的新型、多功能废水净化剂, 为非溶性颗粒状物质, 主要原料是甲壳素、纤维素、活性炭、矿化石等. 王宁等[20] 采用甲壳多聚糖废水净化剂处理肌

醇废水, 处理后废水COD 去除率达99% 以上, 脱色

率达94% 以上. 甲壳多聚糖废水净化剂还具有再生

容易的特点, 用少量水洗涤后, 在空气中氧化6- 8h

即可恢复吸附功能, 可重复再生12 次.

4 以单宁和F691为原料的絮凝剂

4. 1 单宁为原料的絮凝剂

植物单宁是自然界中十分丰富的天然有机资源

之一, 具有重要应用价值. 赵立志等[ 21] 利用曼尼希

反应制备阳离子单宁絮凝剂, 该絮凝剂与其它混凝

剂复配处理钻井废水, 可以降低处理费用, 提高处理

效果. 肖遥等[ 22] 以落叶松栲胶为原料, 用甲醛和二

甲胺对其中的单宁进行胺甲基化, 再用氯化苄季铵化, 开发出一种新型多功能水处理剂阳离子单宁, 并

对采油污水进行处理, 实验表明, 这种改性水处理剂

不仅具有良好的絮凝效果, 而且对腐蚀和结垢也有

一定的抑制作用.

4. 2 以F691为原料的絮凝剂

F691粉是一种天然高分子的植物胶粉, 分子量

为1500- 1000000, 内含50%左右的纤维素, 20%左

右的水溶性多聚糖, 30%左右的木质素和单宁. 夏晓

74 安徽师范大学学报( 自然科学版) 2001 年

明等[ 23] 以F691为原料进行改性制备阳离子絮凝剂SFC, 并对其絮凝性能进行了研究, 结果表明, 其絮

凝性能优于日本产的DJ- II 型阳离子絮凝剂和国

产的聚丙烯酰胺阳离子絮凝剂. 杨东杰等[24] 以F691

粉为基本原料, 研制合成了具有絮凝、缓蚀、阻垢多功能水处理剂GMT - A2, 对其应用性能进行了充

分研究, 并探讨了GMT- A2 的阻垢、缓蚀机理及絮

凝对阻垢、缓蚀的作用机理. 李琼等[25] 以F691 粉和

丙烯酰胺为基本原料, 以H2O2/ Fe2+ 为催化氧化剂,

通过碱化、氧化等一系列化学改性, 引入- COO- 、

- CONH2 等基团, 制得接枝共聚型天然高分子絮

凝剂CGB- A, 对广州某表面活性剂厂的工业废水

进行处理, 结果表明, CGB- A 产生的絮体沉降速度快, COD 去除率高, 是一种良好的新型絮凝剂.

5 展望

天然高分子资源在我国极为丰富; 近十年来, 国

内应用天然高分子进行改性研制新型絮凝剂发展很快, 但多数处于实验室研究阶段, 这与国外有很大差距. 天然高分子不仅可以用来研制阳离子絮凝剂, 而且还可以开发出具有絮凝、缓蚀、阻垢、杀菌为一体的多功能水处理剂, 以满足复杂水质情况下多种水

质的要求. 随着我国工业用水需求量的增长, 国家对环保事业的更多投入, 废水处理将会大大增加. 因此, 水处理药剂的市场潜力很大, 开发和应用新型天然高分子水处理剂将是水处理发展方向之一.

参考文献:

[ 1] 范秀英, 马瑞霞, 曾文, 等. 木质素播种对作物生长影响的初步

研究[ J ] . 环境科学, 1995, 16( 4) : 42- 45.

[ 2] 朱建华, 曾运生, 朱雁峰, 等. 木质素阳离子表面活性剂的合成

及应用[ J ] . 精细化工, 1992, 9( 4) : 1- 3.

[ 3] 吴冰艳, 余刚. 新型脱色絮凝剂木素季铵盐的研制及其絮凝性

能与机理的研究[ J ] . 化工环保, 1997, 17( 5) : 268- 272.

[ 4] 雷中方. 烧碱法草浆木质素的改性) 混凝作用机理研究[ D] .

同济大学, 1996

[ 5] 张芝兰, 陆雍森. 木质素混凝剂的性质及应用研究. 水处理技

术, 1997, 23( 1) : 38- 44.

[ 6] 佟风兰, 黄文钗. 造纸黑液的治理与利用研究[ J ] . 环境导报, 1991, ( 3) : 5- 8.

[ 7] 雷中方, 陆雍森. 烧碱法草浆木质素的混凝作用实验研究[ J ] .

同济大学学报, 1995, 23( 5) : 547- 551.

[ 8] 雷中方, 陆雍森. 木质素混凝作用分析[ J ] . 中国环境科学,

1997, 17( 6) : 335- 339.

[ 9] 甘光奉, 甘莉. 我国改性淀粉絮凝剂的开发与应用[ J ] . 工业水

处理, 1996, 16( 6): 1- 2.

[ 10] 曹炳明. CS- 1 型絮凝剂的制备及其在污水处理方面的应用

[ J] . 工业水处理, 1987, 7( 6) : 27- 29.

[ 11] 全易, 夏天喜, 顾浩, 等. 羧基高交联淀粉阳离子交换剂的合成

及应用[ J] . 环境工程, 1991, 9( 4) : 57- 59.

[ 12] 李旭祥, 周心艳, 王世驹, 等. 改性淀粉絮凝剂处理印染废水

[ J] . 化工环保, 1994, 14( 5) : 313- 314.

[ 13] 赵彦生, 李万捷, 沈敬之, 等. 淀粉- 丙烯酰胺接枝共聚物的合

成及性能[ J] . 水处理技术, 1994, 20( 5) : 370- 373.

[ 14] 杨通在, 刘亦农, 杨君. 阳离子型改性高分子絮凝剂对轻工废

水的处理[ J] . 工业水处理, 1998, 18( 3) : 27- 29.

[ 15] 汪玉庭, 袁长宏, 程格, 等. 接枝羧基淀粉对贵金属离子吸附性

能研究[ J] . 环境污染与防治, 1999, 21, ( 1) : 12- 15.

[ 16] 叶文玉, 陈卫平, 黄自祥. 淀粉重叠氧化制备羧磷酸化阻后垢

缓蚀剂的研究[ J] . 工业水处理, 1995, 15( 4) : 10- 13.

[ 17] 陈世清. 甲壳素与壳聚糖在工业废水处理中的作用[ J ] . 工业

水处理, 1996, 16( 2) : 1- 2.

[ 18] 徐洪峰, 汤建伟, 程国伟, 等. 壳聚糖螯剂在除水澡Cu2+ 的研

究[ J] . 环境工程, 1994, 12( 6) : 6- 8.

[ 19] 张秋华, 唐小琪, 骆赞春, 等. 羧甲基壳聚糖处理印染废水试验

[ J] . 环境污染与防治, 1995, 17( 5) : 7- 9.

[ 20] 王宁, 胡国祥, 陈卓, 等. 甲壳多聚糖废水净化剂用于肌醇废水

的处理[ J] . 环境工程, 1993, 11( 1) : 19- 27.

[ 21] 赵立志, 赵永鹏, 代家林. 阳离子单宁絮凝剂的制备及性能评

价[ J] . 重庆环境科学, 1993, 15( 6) : 33- 35.

[ 22] 肖遥, 郭稚弧, 谭晓明. 天然单宁改性水处理剂的制备及应用

[ J] . 工业水处理, 1998, 18( 3) : 20- 22.

[ 23] 夏晓明, 侯文华, 肖锦. 天然改性阳离子絮凝剂SFC 的制备及

其絮凝性能的研究[ J ] . 环境化学, 1990, 9( 1) : 1- 5.

[ 24] 杨东杰, 邱学青, 肖锦. 絮凝) 缓蚀) 阻垢剂GMT ) A2 在循

环冷却水处理中的应用研究[ J ] . 工业水处理, 199313 ( 5) : 12

- 15.

[ 25] 李琼, 肖锦. 接枝共聚天然高分子絮凝性能及应用[ J ] . 工业水

处理, 1997, 17( 4) : 27- 29.

STUDY AND APPLICATION OF NATURAL POLYMER FLOCCULANT

IN TREATING WASTEWATER

PAN Lu2ting, XIAO Jin

( College of Paper and En vironment Engineering, South China University of T echnology, Cuangzhou, Guangdong, 510641, China) Abstr act: Natural polymer flocculant is nonpoisonous, rich in raw material and cheap. recently it is widespread

paid attention to and applied in treating wastewater. The study and application status of treating wastewater us2

ing natural polymer flocculant was introduced in this paper and a brief evaluation was given.

Key words: natural polymer; flocculant; wastewater treatment.

絮凝剂的种类之浅谈_靳侠侠

收稿日期:2008-08-04 作者简介:靳侠侠(1983-),女,工程师,E-mail:jxx8789@https://www.doczj.com/doc/9d9866792.html,. 絮凝剂的种类之浅谈 靳侠侠,张伟才 (海军4805工厂象山修船厂,浙江宁波315718) 摘要:絮凝剂技术是国家“863”和“九五科技攻关”重点项目。污泥固液分离中絮凝工艺对污泥分 离的前处理起着重要的作用,絮凝效果的好坏往往决定了后续流程的运行状况、最终出水水质和费用。按其化学成分,絮凝剂可分为无机盐类絮凝剂、有机高分子絮凝剂和微生物絮凝剂。 关键词:絮凝剂;种类;污水处理应用 中图分类号:TQ051 文献标识码:B 文章编号:1005-8265(2009)01-0044-05 目前使用的絮凝剂按其来源及性质可分为无机絮凝剂、合成有机高分子絮凝剂和天然生物高分子絮凝剂三大类。无机絮凝剂主要是铁盐和铝盐,这类药剂在使用过程中耗量较大,并具有一定的腐蚀性和毒性,对人类健康和生态环境会产生不利影响;合成的高分子絮凝剂,如聚丙烯酞胺、 聚丙烯酸等具有用量少、絮凝速度快等优点,但这类高聚物的残余单体具有“三致”效应(致畸、致癌、致突变),因而使其应用范围受到限制;相比之下,天然生物高分子絮凝剂,如壳聚糖、淀粉衍生物、明胶等,是从自然物质中提取并稍经化学改性处理的物质,这类絮凝剂无毒或低毒、无二次污染,但絮凝活性低,单独用于絮凝净化效果也不理想。现在提出一种新型的微生物絮凝剂。絮凝剂具有可降解某些高分子杂质,降低粘度,或能吸附、包合固体微粒等特性,可加速悬浮粒子的沉降,经滤过除去沉淀而获得澄清药液。吸附澄清技术还在饮料、酱油等食品的生产过程中广泛应用,尤其在中药制剂的工艺改进中及制剂分析中具有很大的实际意义。 1无机盐类 1.1无机低分子絮凝剂 无机低分子絮凝剂是20世纪60年代后期才发展起来的一类新型废水处理剂。与传统絮凝剂相比,它能成倍的提高效能,且价格较低,因而有逐步成为主流药剂的趋势。目前日本、俄罗斯、西欧及我国生产此类絮凝剂已达到工业化、规模化和流程自动化的程度,加上产品质量稳定,无机聚合类絮凝剂的生产已占絮凝剂 总产量的30%~60%[1]。 无机低分子絮凝剂包括硫酸铝、氯化铝、硫酸铁、氯化铁等,其中硫酸铝最早是由美国开发的,并一直沿用至今的一种重要的无机絮凝剂。常用的铝盐有硫酸铝AL 2(SO 4)3·18H 2O 和明矾AL 2(SO 4)3·K 2SO 4·24H 2O,另一类是铁盐有三氯化铁水合物FeCL 3·6H 2O.硫酸亚铁水合物FeSO 4 ·17H 2O 和硫酸铁。无机絮凝剂的优点是比较经济、用法简单;但用量大、絮凝效果低,而且存在成本高、腐蚀性强的缺点。1.2简单的无机聚合物絮凝剂 这类无机聚合物絮凝剂主要是铝盐和铁盐的聚合物。如聚合氯化铝(PAC )、聚合硫酸铝(PAS )、聚合氯化铁(PFC )以及聚合硫酸铁(PFS)等。无机聚合物絮凝剂之所以比其它无机絮凝剂效果好,其根本原因在于它能提供大量的络合离子,且能够强烈吸附胶体微粒,通过吸附、 桥架、交联作用,从而使胶体凝聚。同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,降低了δ电位,使胶体微粒由原来的相斥变为相吸,破坏了胶团稳定性,使胶体微粒相互碰撞,从而形成絮状混凝沉淀,沉淀的表面积可达200~1000m 2/g,极具吸附能力。 1.3改性的单阳离子聚合絮凝剂 除常用的聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁)、聚磷铝(铁)通过引入某些高电荷离子改性以提高电荷的中和能力;如聚硅酸硫酸铝(PASS)、聚硅酸絮凝剂(PSAA )等引入羟基、磷酸根等

改性淀粉的研究及应用

改性淀粉的研究及应用 刘兴孝 (西北民族大学化工学院,兰州,730124) 摘要本文主要总结了改性淀粉的特点,阐述了改性淀粉的研究及应用,展望了改性淀粉的发展前景。 关键词改性淀粉;研究应用;发展前景 the characteristics and adhibitions of modified starch Xingxiao Liu (Chemical Engineering Institute , Northwest University For Nationalities, Lanzhou,730124) Abstract This paper summarizes the characteristics of modified starch, elaborates modified starch’s research and it’s prospects. Keywords modified starch; research and application; prospects 前言 淀粉是天然高分子化合物,多糖类化合物,也是目前广泛使用的一类可降解的不会对环境造成污染的可再生的物质。天然淀粉经过适当化学处理,引入某些化学基团使分子结构及理化性质发生变化,生成淀粉衍生物。未改性的淀粉结构通常有两种:直链淀粉和支链淀粉,是聚合的多糖类物质。通常因为水溶性差,故往往是采用改性淀粉,即水溶性淀粉。可溶性淀粉是经不同方法处理得到的一类改性淀粉衍生物,不溶于冷水、乙醇和乙醚,溶于或分散于沸水中,形成胶体溶液或乳状液体。改性淀粉以天然淀粉为原料经过特定的化学方法、物理方法、酶处理法。改良其原有性能的淀粉, 被广泛应用于食品、医药、皮革、铸造、造纸、纺织、水处理等行业。 改性淀粉的特点 变性淀粉的品种、规格达两千多种,变性淀粉的分类一般是根据处理方式来进行。加工精白淀粉,必须选用淀粉含量高的白薯品种。经加工后的淀粉虽选用了天然原料,但经人为加工,改性淀粉也就不可能算是天然的了。食用类的专用变性淀粉是不会对身体有副作用的。

有机高分子絮凝剂的简介以及在水处理中的应用

有机高分子絮凝剂的简介以及在水处理中 的应用 关键词:有机高分子絮凝剂污水处理PAM 应用展望 摘要:絮凝剂按照其化学成分可分为无机絮凝剂和有机絮凝剂两类。其中 有机絮凝剂又包括合成有机高分子絮凝剂、天然有机高分子絮凝剂和微生物絮凝剂。絮凝剂是一种带有正性集团中和水中的带电集团。以降低其电势,使其处于不稳定的状态,然后利用一些聚合的性质利用各种理化方法从中分离出来。而为了达到这种效果使用的药剂一般称为絮凝剂。絮凝剂主要用于污水处理。 我国的无机絮凝剂品种开发较齐全,应用也很广泛,石化企业的炼厂污水处理中,目前普遍采用的絮凝剂为聚合氯化铝等无机絮凝剂。而在有机高分子絮凝剂的品种开发上不如国外齐全,国外研究了各种用途的系列高分子絮凝剂,而国内我们在实际应用中可供筛选的有机絮凝剂不多。有机高分子絮凝剂同无机高分子絮凝剂相比,具有用量少、絮凝速度快、受共存盐类pH值及温度影响小、生成污泥量少、并且容易处理等优点,因而有着广阔的应用前景。今后有待于加强开发、应用。 无机高分子絮凝剂。 近年来,研制和应用聚合铝、铁、硅及各种复合型絮凝剂成为热点。无机高分子絮凝剂的品种在我国已逐步形成系列:阳离子型的有聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合磷酸铝(PAP)、聚合硫酸铁(PPS)、聚合氯化铁(PFC)、聚合磷酸铁(PFP)等;阴离子型的有活化硅酸(AS)、聚合硅酸(PS);无机复合型的有聚合氯化铝铁(PAFC)、聚硅酸硫酸铁(PFSS)、聚硅酸硫酸铝(PASS)、聚合硅酸氯化铁(PFSC)、聚合氯硫酸铁(PFCS)、聚合硅酸铝(PASL)、聚合硅酸铁(PFSB、聚合磷酸铝铁(PAFP)、硅钙复合型聚合氯化铁(SCPAFC)等。⑽ 有机高分子絮凝剂用于污水处理始于50年代末。有机高分子絮凝剂比无机絮凝剂有用量小、絮凝能力强、反应速度快、受外界环境影响小、产生废渣少易处理等优点在发达国家已得到迅速发展,近年来,有机高分子絮凝剂新产品不断问世,产品类型、规格更加齐全;功能也逐步多样化。 有机高分子絮凝剂有天然高分子和合成高分子两大类。从化学结构上可以分为以下3种类型:聚胺型-低分子量阳离子型电解质;季铵型-分子量变化范围大,并具有较高的阳离子性;丙烯酰胺的共聚物-分子量较高,根据含有不同的官能团离解后粒子的带电情况可以分为阳离子型、阴离子型、非离子型3大类。有机高分子絮凝剂大分子中可以带-COO-、-NH-、-SO3、-OH等亲水基团,具有链状、环状等多种结构。⑴ 加入絮凝剂就是使水与杂质快速、比较彻底的分离开来。 天然有机高分子絮凝剂 在近代水处理中,天然高分子絮凝剂由于电荷密度较小,分子量较低,但容易发生生物降解而失去其絮凝活性,所以很少直接应用。所以要对其进行改性七十年代以来,美、英、法、日和印度等国结合本国的天然高分子资源,重视化学改性有机高分子絮凝剂的研究。目前国外大的商品高分子絮凝剂公司近130家.约生产400种不同牌号的商品絮凝剂,其中20%为

纳米SiO_2疏水改性研究及应用进展

纳米SiO2疏水改性研究及应用进展 王 倩1,刘 莉2,张 琴1 (1 四川大学高分子科学与工程学院,成都610065;2 广州吉必时科技实业有限公司,广州510510) 摘要 由于与有机基体之间存在良好相容性,疏水纳米SiO2已成为一种广泛应用于有机材料中的重要无机纳米填料。介绍了纳米SiO2疏水改性的原理方法,综述了纳米SiO2疏水改性最新研究进展及其在硅橡胶、涂料、塑料、化妆品等领域的应用情况,并对今后的研究发展提出了建议。 关键词 纳米SiO2 疏水 改性 中图分类号:TQ424.26 文献标识码:B R esearch and Applications of H ydrophobic N ano Silica WAN G Qian1,L IU Li2,ZHAN G Qin1 (1 College of Polymer Science and Engineering,Sichuan University,Chengdu610065; 2 Guangzhou G BS High2Tech&Industry Co.Ltd.,Guangzhou510510) Abstract For the fairly good compatibility with organic matrix,hydrophobic nano silica is now one of the most important inorganic nano fillers widely used in organic materials.The mechanism of hydrophobic modification of nano silica is introduced.The current research and applications in silicone rubbers,coatings,plastics and cosmetics,etc are summarized.Some advices for civil researchers are put forward. K ey w ords nano silica,hydrophobic,modification   纳米SiO2具有小尺寸效应、量子隧道效应、特殊光电性等特点,是一种无毒、化学稳定、耐高温的无机纳米填料,在橡胶、塑料、涂料、油墨、化妆品等领域有着重要应用[1]。纳米SiO2的制备方法主要有气相法(Chemical vapor deposition)[2,3]、水解沉淀法(Hydrolysis2precipitation)[4~8]、溶胶2凝胶法(Sol2gel)[9]和微乳液法(Micro2emulsion)[10],其中气相法属于干法,其余方法属于湿法。气相法与水解沉淀法是工业上纳米SiO2成熟的生产方法。由于表面大量存在硅羟基,纳米SiO2在贮存和使用过程中易团聚,难分散,在有机基体中的分散性和浸润性尤其不好。为改善和拓宽纳米SiO2的应用领域,必须设法减少其表面硅羟基数量浓度,使之由强亲水性转为一定程度的疏水性,从而与有机基体之间具有良好相容性。疏水处理后的纳米SiO2具有明显的特点:既能通过疏水基团在有机相良好分散,又能通过硅羟基与有机相形成强相互作用,从而在本不相容的无机相与有机相之间建立稳固联系,达到补强目的[11]。本文就纳米SiO2的疏水原理、国内外疏水纳米SiO2的研发现状及其在橡胶、涂料、塑料、化妆品等领域的应用研究现状进行分析介绍,以期对国内的研发与生产有所帮助。 1 疏水改性原理及方法 纳米SiO2因为粒度极小,表面能极高,且表面有大量硅羟基,故极易团聚。无论何种方法制备的纳米SiO2均含3种结构:①粒径仅十几纳米的原生粒子;②原生粒子相互粘接、缩聚而成的数百纳米大小的聚集体;③聚集体彼此依附而成的微米级的附聚体。原生粒子由于极高的表面能和强烈的缩聚趋势,在成品纳米SiO2中基本不存在;靠微弱范德华力维系而存在的附聚体结构十分疏松,受外力作用很容易分散;而聚集体是原生粒子通过化学键结合在一起而成的具有一定强度的结构,不易破坏。故一般认为聚集体是纳米SiO2在填充体系中最终能够保持的状态。 为解决纳米SiO2在贮存和使用过程中的分散问题,提高与有机基体之间的相容性,采用氯硅烷、硅氮烷、硅氧烷和醇等对其表面硅羟基进行部分或全面“屏蔽”,使之由亲水转为一定程度的疏水甚至完全疏水,同时达到抑制粒径增长、提高分散性的目的,此为疏水改性原理。疏水改性方法分为两种:传统的成品疏水改性法(即对由干法或湿法制得的成品纳米SiO2进行疏水改性)和原位疏水改性法(即在纳米SiO2的制备过程中原位进行疏水改性)。疏水改性处理的作用在于使纳米SiO2的表面结构和化学性质发生改变,既减少亲水硅羟基的数量,又通过疏水基在纳米SiO2表面形成空间位阻,从而阻止颗粒之间相邻硅羟基因缔合而形成结构紧凑的聚集体,达到控制粒度的目的。成品疏水改性的对象是附聚体和聚集体,而原位疏水改性的对象则是初生成的原生粒子和正在生长中的聚集体,故一般认为原位疏水更有利于抑制聚集体增长、改善分散、控制粒度及粒度分布。 2 疏水改性研究进展 粒径与表面性质是决定纳米SiO2应用性能的基本属性。  王倩:女,1975年生,博士生,工程师,主要从事纳米复合材料的研究 Tel:028********* E2mail:salicyl@1631com

无机絮凝剂

分类和性质 无机絮凝剂包括硫酸铝、氯化铝、硫酸铁、氯化铁等,其中硫酸铝最 早是由美国开发的,并一直沿用至今的一种重要的无机絮凝剂。常用的铝 盐有硫酸铝AL2(SO4)3.18H2O和明矾AL2(SO4)3.K2SO4.24H2O,另一类是铁盐有三氯化铁水合物FeCL3.6H2O.硫酸亚铁水合物FeSO4.17H2O和硫酸铁。 无机絮凝剂的优点是比较经济、用法简单;但用量大、絮凝效果低,而且存在成本高、腐蚀性强的缺点。无机高分子絮凝剂无机高分子絮凝剂是 20世纪60年代后期才发展起来的一类新型废水处理剂。与传统絮凝剂相比,它能成倍的提高效能,且价格较低,因而有逐步成为主流药剂的趋势。目 前日本、俄罗斯、西欧及我国生产此类絮凝剂已达到工业化、规模化和流 程自动化的程度,加上产品质量稳定,无机聚合类絮凝剂的生产已占絮凝 剂总产量30%~60%。 简单的无机聚合物絮凝剂,这类无机聚合物絮凝剂主要是铝盐和铁盐 的聚合物。如聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合氯化铁(PFC)以及聚合硫酸铁(PFS)等。无机聚合物絮凝剂之所以比其它无机絮凝剂效果好,其根本原因在于它能提供大量的络合离子,且能够强烈吸附胶体微粒,通 过吸附、桥架、交联作用,从而使胶体凝聚。同时还发生物理化学变化, 中和胶体微粒及悬浮物表面的电荷,降低了δ电位,使胶体微粒由原来的相斥变为相吸,破坏了胶团稳定性,使胶体微粒相互碰撞,从而形成絮状 混凝沉淀,沉淀的表面积可达(200~1000)m2/g,极具吸附能力。 改性的单阳离子无机絮凝剂 除常用的聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁)、聚磷铝(铁)。改性的目的是引入某些高电荷离子以提高电荷的中和能力, 引入羟基、磷酸根等以增加配位络合能力,从而改变絮凝效果,其可能的 原因是:某些阴离子或阳离子可以改变聚合物的形态结构及分布,或者是 两种以上聚合物之间具有协同增效作用。 近年来国内相继研制出复合型无机絮凝剂和复合型无机高分子絮凝剂。聚硅酸絮凝剂(PSAA)由于制备方法简便,原料来源广泛,成本低,是一种 新型的无机高分子絮凝剂,对油田稠油采出水的处理具有更强的除油能力,故具有极大的开发价值及广泛的应用前景。聚硅酸硫酸铁(PFSS)絮凝剂, 发现高度聚合的硅酸与金属离子一起可产生良好的混凝效果。将金属离子 引到聚硅酸中,得到的混凝剂其平均分子质量高达2×105,有可能在水处 理中部分取代有机合成高分子絮凝剂。聚磷氯化铁(PPFC)中PO43-高价阴离子与Fe3+有较强的亲和力,对Fe3+的水解溶液有较大的影响,能够参与Fe3+的络合反应并能在铁原子之间架桥,形成多核络合物;对水中带负电的硅 藻土胶体的电中和吸附架桥作用增强,同时由于PO43-的参与使矾花的体积、密度增加,絮凝效果提高。聚磷氯化铝(PPAC)也是基于磷酸根对聚合铝(PAC)

水溶性高分子絮凝剂及其在污泥脱水方面的应用

水溶性高分子絮凝剂及其在污泥脱水方面的应用 US 200502300319 发明背景及摘要 本发明涉及一种新型水溶性共聚物,可有效用作助留剂、纸张增强剂、稠化剂,特别是用作高分子絮凝剂,本发明将叙述该类物质的制备工艺及其在以上几方面的应用。 这种水溶性聚合物包括由一种阴离子单体如(甲基)丙烯酸盐聚合而成的均聚物,或者是由阳离子单体如二甲氨基乙基(甲基)丙烯酸酯的季铵盐聚合而成的产物,再或者由非离子单体如(甲基)丙烯酰胺聚合而成的产物,另外也可能是各种类型单体的共聚物。 有多种高分子絮凝剂被广泛用于污水处理过程中产生的污泥的絮凝脱水处理。例如,日本专利JP58-51988用聚合硫酸铁作为无机絮凝剂并单独加入一种高分子有机絮凝剂来对污泥进行絮凝脱水处理。日本专利JP56-16599用一种无机絮凝剂和一种两性高分子絮凝剂对污泥进行处理。另外,人们为了改进聚合物的性能,也作了许多尝试,日本专利JP11-156400开发了一种新的污泥脱水剂,主要成分为一种两性高聚物,是由一种阳离子单体、阴离子单体,及一种水溶性非离子单体和一种溶解度不超过1g的疏水性丙烯酸衍生物共聚反应制备而成的。 上述专利文献中开发的聚合物可有效用作污泥脱水剂,但问题却发生在单体的聚合过程中,主要是有凝胶的现象。如果想在聚合过程中避免凝胶现象的发生,结果却只能制得低分子量的聚合物。再者,由于各单体的共聚反应活性差别较大,按照单体的初始配比进行共聚反应后,所得产物并不是理想的结果。所以,很难达到预期的改进效果,即使得到了想要的共聚物,在处理污泥时也无法达到充分的效果。 而且,由于生活环境的变化,市政及工业废水产生的污泥量越来越多,随之絮凝剂的消耗量越来越大,人们对絮凝剂效能的要求越来越高,要求能用少量的药剂达到较好的处理效果。 鉴于上述情况,本发明研究了一种高聚物可用作絮凝剂,并且在污泥脱水处理中生成的矾花有良好的性能,包括絮凝强度、过滤速度及含水率。通过以上研究,发明们开发了一种嵌段共聚物,是由一种水溶性单体与一种含有聚环氧烷基团的混合物共聚反应而成的。 而且,发明者们继续研究了一种能够提供优秀絮凝效果的水溶性共聚物。该聚合物具有极佳的絮凝特性并且对各种类型的污泥均有良好的脱水性能,即使是处理剩余污泥也可获得满意效果。 再者,发明者们还发现了一种新型高分子量水溶性聚合物,其基本组成为一种端基带有烯类不饱和基的聚环氧烷低聚物,该产品在生产过程中不会出现诸如凝胶此类的问题。当用于污泥脱水处理,该水溶性聚合物可以使生成的矾花在絮凝强度、含水率及过滤速率个方面表现极佳。而且该聚合物还可有效用作助留剂、纸张增强剂、增稠剂。 同样,本发明也制备了带有不同阳离子度的上述新型水溶性共聚物,并且发现混合使用可以获得更佳的污泥脱水效果。换句话说,发明者们发现在对含有原泥与剩余污泥的混合污泥进行脱水处理时可获得更加充分的效果。 发明的最佳实施方案 下面将详细介绍一种由水溶性共聚物组成的高分子絮凝剂及其在污泥脱水

聚氯乙烯的阻燃改性研究及应用

目录 1PVC 的组成结构 (3) 2PVC 改性方法 (4) 3PVC 改性的性能指标 (5) 3.1着色性 (5) 3.2迁移性 (5) 3.3耐候性 (6) 3.4稳定性 (6) 3.5电性能 (7) 4 阻燃PVC 的概述 (8) 4.1阻燃PVC的发展 (8) 4.2阻燃PVC 结构与特点 (8) 4.3阻燃PVC性能 (9) 4.4阻燃PVC 加工成型 (10) 4.5阻燃PVC应用 (10) 5PVC 共混阻燃改性材料研究 (12) 5.1二元共混阻燃材料 (12) 5.1.1 PVC/CPE (12) 5.1.2 PVC/CPVC (12) 5.1.3PVC/NBR (13) 5.1.4PVC/EVA (14) 5.2三元共混阻燃材料 (15) 6 结语 (16)

聚氯乙烯的阻燃改性研究及应用 摘要:PVC材料具有成本低、易加工、韧性好等优点, 被广泛使用在建筑中。但由于PVC材料在户外使用过程会受到紫外线照射而发生老化, 所以PVC材料的加工过程会添加一些增塑剂等助剂, 导致材料的阻燃性能降低, 而无法满足建筑材料防火阻燃等级的要求。因此通过添加阻燃剂来改善材料PVC的阻燃性就显得十分重要。 本文首先介绍了PVC的主要结构其碳原子为SP3杂化,其次介绍了PVC的常用改性方法有:化学改性、填充改性、增强改性、共混改性以及纳米复合改性,引申出了PVC的 阻燃改性的研究,其中阻燃PVC的性能研究当中研究了不同温度下阻燃PVC的形态以及性能趋势。探究了二元共混阻燃材料与三元共混阻燃材料的区别,阐述了PVC阻燃改性 的重要性以及生活中应用在必要性。 关键词:阻燃改性PVC

水溶性高分子简介

水溶性高分子简介 摘要:本文介绍了水溶性高分子的分类,物理性能,制造以及未来的发展前景。关键词:水溶性高分子聚乙烯醇聚乙二醇 引言 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。是一种亲水性的高分子材料,在水中能够溶解或溶胀而形成溶液或分散液。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;②阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。这些集团不但使得高分子有亲水性,而且还带来很多宝贵的性能,如粘合性,成膜性,润滑性,分散性,减磨性等等。 1水溶性高分子的分类 1.1天然水溶性高分子。 以天然动植物为原料,通过物理过程或者物理化学的方法提取而成。最常见的如淀粉类、纤维素、植物胶、动物胶等。天然高分子虽然受到合成高分子的不断冲击,产量逐渐下降,但是仍然有很大一部分市场被其牢牢统治着。 1.2改性天然高分子。 主要有改性纤维素和改性淀粉两大类。如羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素等。这类高分子兼有天然高分子和合成高分子的优点,拥有广泛的市场,因此产量很大。 1.3合成高分子。 合成高分子材料分为聚合类和缩合类两类,如聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM))、聚乙烯吡咯烷酮(PVP)等。按大分子链连接的水化基团分为:非离子型和离子型。按荷电性质分为:非离子、阳离子、阴离子和两性离子高分子,其中后三类为聚电解质。按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物。 2水溶性高分子的物理性能 2.1溶解性 溶解性是达到平衡的溶液便不能容纳更多的溶质,在特殊条件下,溶液中溶解的溶质会比正常情多,这时它便成为过饱和溶液。每份溶剂所能溶解的溶质的最大值就是“溶质在这种溶剂的溶解度”。 为了提高水溶性,一是在分子中引入足够的亲水基团到大分子上面变为水溶性高分子。二是降低聚合物的结晶度。三是利用聚电解质的反离子力作用促进溶解。

有机高分子絮凝剂的研究与发展

有机高分子絮凝剂的研究与发展 摘要:有机高分子絮凝剂的研究、生产和应用已成为一门迅速发展的科学和技术。对絮凝机理进行了系统的总结,并分析了有机高分子絮凝剂在废水处理中的有关应用以及发展前景。 关键词:,絮凝化学,絮凝机理,污水处理, 1简介 絮凝剂按照其化学成分总体可分为无机絮凝剂和有机絮凝剂两类。其中无机絮凝剂又包括无机凝聚剂和无机高分子絮凝剂;有机絮凝剂又包括合成有机高分子絮凝剂、天然有机高分子絮凝剂和微生物絮凝剂。 有机絮凝剂的优点是比较经济、用法简单;但用量大、絮凝效果低,而且存在成本高、腐蚀性强的缺点。有机高分子絮凝剂是20世纪60年代后期才发展起来的一类新型废水处理剂。与传统絮凝剂相比,它能成倍的提高效能,且价格较低,因而有逐步成为主流药剂的趋势。加上产品质量稳定,有机聚合类絮凝剂的生产已占絮凝剂总产量30%~60%。 某些天然的高分子有机物例如含羧基较多的多聚糖和含磷酸基较多的淀粉都有絮凝性能。用化学方法在大分子中引入活性基团可提高这种性能,如将一种天然多糖进行醚化反应引入羧基、酰胺基等活性基团后,絮凝性能较好,可加速蔗汁沉降。 将天然的高分子物质如淀粉、纤维素、壳聚糖等与丙烯酰胺进行接枝共聚,聚合物有良好的絮凝性能,或兼有某些特殊的性能。国内研制的一些产品,主要应用于污水处理和污泥脱水。 由于大多数有机高分子絮凝剂本身或其水解、降解产物有毒,且合成用丙烯酰胺单体有毒,能麻醉人的中枢神经,应用领域受到一定限制,迫使絮凝剂向廉价实用、无毒高效的方向发展。 2絮凝机理 目前,认为絮凝作用机理是凝聚和絮凝两种作用过程的总和。在对高分子的絮凝

模式及作用机理进行大量研究后,主要提出了“架桥”絮凝模式并加以解释,但仅仅是定性地解释了高聚物的“架桥”絮凝机理。电子显微镜技术的不断发展促使人们从絮体的真实结构去研究絮凝过程。Attia,采用染色法、包埋法、投影法等在透射电子显微镜下观察了孔雀石在PAM作用下的絮团,由于浓度高,所得图像并不十分清晰和直观。宋少先等,采用沉降分析法,以Stoks直径来表征絮团的粒度,但所获得的粒度并不是絮团真正意义上的粒度。Ching等人,采用流动脉动絮凝检测技术,检测絮体颗粒瞬时增长状态及其变化,所获得的絮凝指数仅是个参数,不能表示絮团的真实粒度。郭玲香、胡明星,采用透射电子显微镜拍摄煤泥“架桥”絮凝图像,并应用数学形态学图像处理理论,提取与煤泥絮凝过程相关的微观结构参数,定量地研究了高聚物的絮凝作用机理。 2.1非离子有机高分子絮凝剂 非离子有机高分子絮凝剂包括常用的聚丙烯酰胺和聚氧化乙烯。通过分子链中 -CONH2官能团与悬浮物发生吸附架桥作用,增大絮体矾花的尺寸,有利于其快速沉降而除去,其絮凝效果与聚合物的相对分子质量密切相关。提高聚合物相对分子质量,有利于增大絮凝剂在水相的流体力学尺寸或体积,从而提高其絮凝网捕能力,有效降低絮凝剂的使用浓度,提高絮凝效率。长春应用化学研究所研制的优质聚丙烯酰胺相对分子质量已达12×106。,游离丙烯酰胺含量低于0.05%,产品水溶性良好,逐步缩小了与国外同类产品的差距。该类絮凝剂是一种无机物或悬浮物的絮凝助剂,具有明显的非选择性。 2.2阴离子有机高分子絮凝剂 阴离子絮凝剂既可以是非离子絮凝剂聚丙烯酰胺的水解产物,也可以是丙烯酰胺与乙烯类磺酸盐或丙烯酸盐、马来酸盐等的共聚产物。絮凝剂分子中存在适量的阴离子基团,有利于絮凝剂分子链的伸展,提高其网捕絮体的能力,增强其絮凝效果;该作用与絮凝剂对混凝絮体的吸附作用及方式相互制约,阴离子有机高分子絮凝剂中阴离子基团含量存在最佳值。但阴离子有机高分子絮凝剂相对分子质量增加,往往使其最佳用量增加。由于阴离子有机高分子絮凝剂本身带负电,所以仍主要用作无机混凝剂的絮凝助剂,且受介质的pH值、矿化度、高价金属离子含量影响较大;介质pH值下降、矿化度和高价金属盐含量增加,则其絮凝效果明显变差,甚至失效。所以阴离子型聚丙烯酰胺主要用于选矿、冶金、洗煤、食品行业和石油钻井过程中的固液分离或其他中、碱性条件下高浊度水的处理。

纤维素的改性及应用研究进展_罗成成

2015年第34卷第3期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS?767? 化工进 展 纤维素的改性及应用研究进展 罗成成,王晖,陈勇 (中南大学化学化工学院,湖南长沙410083) 摘要:植物纤维素是天然的可再生资源,对纤维素的改性利用一直是研究的热点。本文简要介绍了纤维素的结构与性质,综述了纤维素的改性方法,包括物理改性、化学改性和生物改性等,其中化学改性是最主要的方法,包括酯化、磺化、醚化、醚酯化、交联和接枝共聚等,通常涉及其结构中羟基的一系列反应。通过改性,引进了一系列离子型基团,有利于增强纤维素的亲水性。经改性后的纤维素与之前相比,结晶度和聚合度明显降低,可及度明显提高,无论物理性质还是化学性质都表现出更大的优越性。其后回顾了纤维素衍生物在食品、造纸以及建筑行业中的一些研究应用成果,阐述了其在医药及废水处理等方面的研究进展,并展望了纤维素衍生物的发展前景。 关键词:纤维素;纤维素衍生物;化学改性 中图分类号:TQ072文献标志码:A文章编号:1000–6613(2015)03–0767–07 DOI:10.16085/j.issn.1000-6613.2015.03.028 Progress in modification of cellulose and application LUO Chengcheng,WANG Hui,CHEN Yong (School of Chemistry and Chemical Engineering,Central South University,Changsha410083,Hunan,China)Abstract:Plant cellulose is a natural renewable resource,and application of the modified cellulose has been a research focus.The structure and properties of cellulose are described,and cellulose modification methods are reviewed,including physical,chemical and biological methods.The main method is chemical modification,including esterification,sulfonation,etherification,ether esterification,crosslinking and graft copolymerization,which involve the reactions of hydroxyl groups in the cellulose.Hydrophilcity of cellulose could be enhanced by introduction of ionic groups. Compared with non-modified cellulose,crystallinity and degree of polymerization of modified cellulose decrease significantly,whereas accessibility is improved remarkably,with superior physical and chemical properties.Finally,the research achievements of cellulose derivatives in food,paper and construction industries are reviewed.Research progresses in pharmaceuticals,wastewater treatment and other areas are presented.Future applications of cellulose derivatives are prospected. Key words:cellulose;cellulose derivatives;chemical modification 纤维素是植物细胞壁的主要成分,在自然界中分布甚广,是取之不尽、用之不竭的天然高分子化合物。由于纤维素具有无毒无害、可生物降解、相容性好、价格低廉且可再生等优点,人类对纤维素的利用一直在不断推陈致新,广泛用于食品、医药、建筑、造纸、废水处理、印刷、电子、日化等各个方面,纤维素的消耗一直呈递增趋势。随着人类环保意识的不断加深,纤维素及其衍生物的推广应用还将继续成为热点。 1纤维素的结构与性质 纤维素环状结构是由D-吡喃葡萄糖环以β-1,4 收稿日期:2014-08-20;修改稿日期:2014-10-15。 第一作者:罗成成(1990—),女,硕士研究生。联系人:王晖,教授,博士生导师。E-mail huiwang1968@https://www.doczj.com/doc/9d9866792.html,。

变性玉米淀粉的性质及其应用研究(DOC)

谷物化学与 品质学论文 题目: 变性玉米淀粉的性质及其应用研究 院系名称: 专业: 学生姓名: 学号: 课程老师姓名: 2009年12月10 日

摘要 本文主要介绍了淀粉的概念、结构和性质。主要综述了由于变性淀粉通过引进了羟丙基、羧甲基、磷酸基团等亲水性基团使其结构、性质等发生变化;变性玉米淀粉的功能特性对面制品的食用和加工品质的影响,还简单的说明了糯玉米变性淀粉的一些特性。 关键词:玉米淀粉;改性淀粉;功能特性;品质;

Title The Applied Studies and properties of the Modified Maize Starch Abstract This paper introduces the concept, structure and properties of starch. Because modified starches had introduced hydrophilic radical, such as hydroxypropyl, carboxymethyl and phosphoric groups which change the structure and properties of starch. Effects of functional properties of modified corn starch on eating and processing quality of flour produce. And simple introduction the properties of modified waxy starch. Keywords :corn starch;;modified starch;functional properties;quality;

絮凝剂的种类及作用

絮凝剂的种类及作用 1 无机絮凝剂无机絮凝剂也称凝聚剂,主要应用于饮用水、工业水的净化处理以及地下水、废水淤泥的脱水处理等。无机絮凝剂主要有铁盐系和铝盐系两大类, 按阴离子成分又可分为盐酸系和硫酸系, 按相对分子量又可分为低分子体系和高分子体系两大类。 1.1 无机低分子絮凝剂 传统的无机絮凝剂为低分子的铝盐和铁盐, 其作用机理主要是双电层吸附[4]。铝盐中主要硫酸铝(Al(SO4)3·18H2O)、明矾(Al2(SO4)3·K2SO4·24H2O)、铝酸钠(NaAlO3)。铁盐主要有三氯化铁(Fe-Cl3·6H2O)、硫酸亚铁(FeSO4·6H2O)和硫酸铁(Fe2(SO4)3·2H2O )。硫酸铝絮凝效果较好, 使用方便,但当水温低时, 硫酸铝水解困难, 形成的絮凝体较松散, 效果不及铁盐。三氯化铁是另一种常用的无机低分子絮凝剂, 具有易溶于水, 形成大耳中的絮体、沉降性能好、对温度、水质和pH 的适应范围广等优点, 但其腐蚀性较强, 且有刺激性气味, 操作条件差[5~9]。无机低分子絮凝剂的优点是经济、用法简单, 但用量大、残渣多。絮凝效果比高分子絮凝剂的絮凝效果低 1.2 无机高分子絮凝剂无机高分子絮凝剂是20 世纪60 年代以来在传统的铁盐和铝盐基础上发展起来的一类新型水处理药剂。其絮凝效果好, 价格相对较低, 已逐步成为主流絮凝药剂。在日本、西欧和中国, 目前都已有相当规模的无机高分子絮凝剂的生产和应用, 其产量约占絮凝剂总产量的30%~60%[10]。近年来, 我国高分子絮凝剂的发展趋势主要是向聚合铝、铁、硅及各种复合型絮凝剂方向发展, 并已逐步形成系列: 阳离子型的有聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合磷酸铝(PAP)、聚合硫酸铁(PFS)、聚合氯化铁(PFC)、聚合磷酸铁(PFP)等; 阴离子型的有活化硅酸(AS)、聚合硅酸(PS);无机复合型的有聚合氯化铝铁(PAFC)、聚硅酸硫酸铁(PFSS)、聚硅酸硫酸铝(PFSC)、聚合氯硫酸铁(PFCS)、聚合硅酸铝(PASI)、聚合硅酸铁(PFSI)、聚合磷酸铝铁(PAFP)、硅钙复合型聚合氯化铁(SCPAFC)等。生物聚合铁(BPFS) 2

天然高分子改性材料及其应用-考场重点资料

变性淀粉在造纸上的应用:1.湿部应用机理技术:提高纸张物理强度,提高细小纤维和填料的留着率,提高滤 层间喷雾机理及技术:提高纸和纸板的挺度,表面强度,环压强度等;3.表面施胶 中的应用技术:增加纸业抗水性、表面强度,提高耐破、耐折等物理强度指示;4.在涂布粘合中的应用技术: 变性淀粉作涂布的优点①具有良好的溶性②具有良好的保水性③能提供刮刀涂布的流变性④有较宽的粘度范 围⑤与合成胶乳具有良好的相容性;5.在涂布白板纸中的协同应用技术;6.纸制品淀粉粘合剂:瓦楞纸、纸袋 纸、瓶标签淀粉、胶粘带淀粉、信封邮票用淀粉。阳离子淀粉在造纸上的应用:1.能改善纸的耐破性,抗张力, 耐折度、抗掉毛性等许多物理性能;2. 4.能提高 各种染料的填料的保留率,从而降低造纸成本;5.作为胶乳,合成树脂,AKD等的固定剂和乳化剂,效果良好; 6.减少废水污染的程度。甲壳素、壳聚糖在造纸上的应用:1.施胶:溶解性差2.增强:氢键3.助流助滤:天然 7.其他助剂。 高分子材料分类:1.来源:天然高分子材料(淀粉、纤维)半合成高分子材料(消化纤维)合成高分子材料(有 2.用途:塑料、橡胶、纤维、涂料、粘合剂、高分子基复合材料 3.组成和功能:有机高 分子(聚乙烯)无机高分子(SiO2)复合高分子(橡胶)生物高分子(蛋白质)4.受热后变化:热固性(聚乙 烯、聚丙烯)、热塑性(酚醛树脂、环氧树脂)。天然高分子材质来源:1.植物:纤维素、半纤维素、木素、树 胶类、果胶、淀粉、蛋白质、天然橡胶、生漆 3. 微生物:①由微生物直接得到,黄原胶、真菌多糖②发酵得到,聚乳酸、聚乙内酯。天然高分子种类:多聚糖 类(淀粉),多聚肽类(蛋白质)遗传信息物质(DNA、RNA。天然高分子材料优 点:价格低,来源广、绿色清洁、可降解可再生。缺点:加工性很差,难以通过常用的塑料加工方法成型,力 学性能、耐环境性存在缺陷,应用范围窄。改性途径:①天然高分子的溶解和熔融②衍生化改性③接枝共聚④ 物理共混⑤互穿聚合物网络 三大热分析差别:1. TGA热重分析影响曲线因素①仪器因素:浮力、试样盘、挥发物的冷凝等②实验条件: 应用:聚合物热稳定性的评价、聚合物组成的剖析、研 热差分析3.DSC示差扫描量热法应用:聚合 物玻璃化转变的研究、聚合物熔融\结晶转变的研究、两相聚合材料结构特征的研究、 用DSC曲线确定加工条件。 布拉格方程(2dsinθ=nλ,θ半衍射角、d晶面距离、λ波长)应用:1.结构分析:用已知λ的X-ray照射晶体, :用已知d的晶体来反射从 样品发射出来的X-ray通过θ测量求得未知X-ray的波长λ。X射线衍射:光遇到障碍物或小孔后,偏离直线传 播,且强度随物质变化,在屏幕上出现明暗条纹。应用:1 积酚比,是体系聚集态结构的清晰表征3测定晶粒尺寸:大量晶粒个别尺寸的一种平均统计。产生X射线方法: 平板照射法、衍射仪法。红外光谱定义:样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐 -转能级从基态跃迁到激发态,而形成的分子吸收光谱,称为红 外光谱。红外光谱仪分类:1色散型红外光谱仪:光源、样品室、单色器、检测器、记录显示装置(利用单色涉作用进行测定,无色散元件) 纤维素改性材料:1纤维素的接枝共聚改性材料(接枝共聚反应的类型:自由基聚合、离子型共聚及缩聚与开 常用的引发方法:辐射引发、光引发、化学引发。应用:高吸水性材料、吸附重金属材料、吸油材料); 2纤维素的交联改性材料(应用:进一步提高纤维及其衍生物的吸水性改变和织物的性质,提高纤维的抗皱性,并可用作色谱柱的填充材料)3纤维素共混改性材料(熔融共混、溶液共混。应用:由于强的氢键作用,可以 得到性能优异的共混材料,不仅有良好的力学性能,还能保持共混组分的功能)4纤维素复合材料(麻纤维和 竹纤维复合有较高的比强度和比刚度。1共混:两种聚合进行混合2复合:采用颗粒,纤维或织物对聚合物进 行增强)纤维材料改性途径:酯化、醚化、交联改性、接枝共聚物、复合改性、共混改性 纤维素的溶解:1.衍生化溶剂:溶解过程中与纤维反应生成部分取代的反应中间体①NaOH/CS2:18%左右的强碱 N-N-二甲配胺2 /N2O4体系:N2O4与纤维素反应生成亚硝酸酯中间衍生物,溶于DMF中③二甲亚砜DMSO/多聚甲醛(PF)体系:PF受热分解产生的甲醛与纤维素的-OH反应生成羟甲基纤维素,羟甲基纤维素溶解在DMSO中。 2.非水相非衍生化溶剂:不与纤维发生反应①N-N-二甲基乙酰化胺(DMAC)体系②N-甲基氧化吗啉(NMMO) N→O上氧原子的两对弧对电子和水分子或纤维素大分子的羟基形成强的 氢键,生成纤维素-NMMO络合物 3.水相非衍生化溶剂①金属络合物:铜氨中的Cu2+可以优先与纤维素的吡喃环C2、C3位的-OH形成五元螯合环,间的相互作用,破坏纤维素分子内和分子间存在的大量氢键。 甲壳素、壳聚糖、纤维素的结构式:(淀粉单体为纤维素右半部分) 物理性能:外观、溶解性、结晶度、黏度(以1%壳聚糖乙酸溶液)>1000x10^-3Pa?S 高黏度100~100中粘度<100 低粘度。脱乙酰度和黏度是壳聚糖的主要性质指标,甲克素的基本单位是乙酰氨基葡萄糖,壳聚糖的基本单位 是氨基葡萄糖。脱乙酰度:乙酰化与脱乙酰化之间的平衡程度,其大小影响甲壳素和壳聚糖的溶解性,影响壳聚 糖溶解度(乙酰度>50%溶解性好)等级55~70%低脱乙酰度壳聚糖70~85%中??80~95%高??95~100%超高??。 造纸工业中的界面作用1氢键:羟基、氨基官能团中的氢与纤维素中的羟基形成氢键2离子键:纸浆纤维-有羧 二者有NH3—OOC结合3共价键:纤维素有醛基和氨基,作用较弱4范德华力: 分子间作用力。造纸中的应用:施胶剂(浆内施胶,表面施蜡),增强剂,主流助滤剂(增加纸浆在纤维上的 留着率),废水处理,特种纸(以壳聚糖为主要材料或配料所制成的食品包装纸、绝缘纸、复印纸、无碳复写 纸)纸张具有吸水性原因:1氢键2纤维间的孔隙造成毛细管现象。

两性高分子絮凝剂

两性高分子絮凝剂 关键词:絮凝剂新进展两性高分子絮凝剂 在广泛的污泥处理系统中,通过输送进行集中处理下水污泥或粪尿污泥。为了改善絮凝脱水性或脱磷而添加了金属凝集剂的各种污泥以及对于传统的阳离子型絮凝剂效果不佳的 难处理污泥,分子内含有阳离子基和阴离子基的分子内两性型絮凝剂表现了优秀的絮凝性能。 两性型絮凝剂有阴离子、阳离子聚合制的的分子内两性型和阴离子型、阳离子型絮凝剂混合制得的混合两性型两类。人们发现,分子内两性型有着混合型所不具备的友谊絮凝性能。 此外,阴离子、阳离子、非离子基的不同比例对于絮凝性能有很大影响。被处理污泥的种类和性状不同,其适应性也是不一样的。目前在脱水处理中使用最多的是阳离子、阴离子两性絮凝剂,离子比例在中等程度的产品推断为阴离子基比阳离子基少的品种。 此外,两性高分子在下水处理中以污泥浓缩为目的的造粒浓缩法中也与金属凝集剂并用,在此使用的是阴离子基比阳离子基多的品种。 1,带有磺酸基团的两性高分子聚合物 将AMPS、N‐乙烯基‐N‐甲基乙酰胺和DADMAC悬浮于丁醇中,在氮气保护下用偶氮二异丁腈于75‐80℃聚合2H,合成了带有磺酸基和强碱性基团的两性高分子聚合物。 2,带羧酸基的两性高分子聚合物 带有季铵盐基团的单体与丙烯酸共聚可合成带有强碱性基团和弱酸性基团的絮凝剂。 丙烯酸在离解的状态下混合时,在聚合以前形成季铵盐和粒子络合物,得不到共聚物,因此,使其在丙烯酸不解离的PH值范围内聚合。 3,两性聚丙烯酰胺的溶液行为 两性聚丙烯酰胺不同于聚丙烯酰胺,除了其分子中含有酰胺基外,还含有正、负电荷基团,因而具有良好的水溶性。但两性聚丙烯酰胺的水溶性还依赖于溶液的PH值,由于其分子链上同时含有正,负电荷基团,使得分子链内的静电作用力即可为排斥力,也可为吸附力。通过调节溶液的PH值可对正、负电荷的相对数目加以控制。在强酸或强碱溶液中,两性高聚物上存在大量静电荷,分子链扩展,其行为与阳离子或阴离子聚电解质相似,聚合物均表现出良好的水溶性。但在等电点时两性聚合物的分子链发生收缩,因而经常出现其在水的溶解性变差的特征。 4,两性聚丙烯酰胺的开发现状 两性聚丙烯酰胺是一类多功能的水溶性高分子材料,可望在水出。石油钻井、造纸、选矿、流体输送和皮革复鞣等方面得到应用。 两性聚丙烯酰胺分子中带有阴离子基团和阳离子基团,其阳离子基团可以捕捉带负电荷的有机悬浮物,阴离子及软可以促进无机悬浮物的沉降。两性聚丙烯酰胺絮凝剂因其结构的特点而比较适宜于处理其他絮凝剂难以处理的场合,而且还可在大范围PH值内使用。采用两性聚丙烯酰胺处理废水,具有较高的滤水量、较低的滤饼含水率,综合性能优于高效粉状阳离子聚丙烯酰胺絮凝剂。 两性聚丙烯酰胺也可用于矿物的筛选。当用强酸侵提矿石或从含金属的酸性催化剂中回收有价值的金属时,金属成分溶解于酸中,不溶的杂质形成酸性悬浮液。此时,选用两性聚丙烯酰胺絮凝去除杂质具有显著的效果。 以上文章出自https://www.doczj.com/doc/9d9866792.html,转载请注明出处!

相关主题
文本预览
相关文档 最新文档