当前位置:文档之家› 基与维数的几种求法.(精选)

基与维数的几种求法.(精选)

基与维数的几种求法.(精选)
基与维数的几种求法.(精选)

线性空间基和维数的求法

方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1Λ满足:

(1)n ααα,2,1Λ线性无关。

(2)V 中任一向量α总可以由n ααα,,21,Λ线性表示。 那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为

dim v n =,并称n ααα,,2,1Λ为线性空间V

的一组基。

如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。

例1 设{}0V X AX ==,A 为数域P 上m n ?矩阵,X 为数域P 上

n 维向量,求V

的维数和一组基。

解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。

2 数域P 上全体形如0a a b ??

?-??

的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。

解 易证0100,1001????

? ?-????为线性空间0,a V a b p a b ????=∈?? ?

-????

|的一组线性无关的向量组,且对V 中任一元素0a a b ??

?-??

有00100+1001a a b a b ??????

= ? ? ???????

按定义0100,1001????

? ?????

为V 的一组基,V 的维数为2。

方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。

例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多

项式所形成的线性空间,证明:()()()21

1,1,1,,1n x x x ----L 构成[]n R x 的

基。

证明 考察()()1121110n n k k x k x -?+-++-=L

由1n x -的系数为0得0n k =,并代入上式可得2n x -的系数

10n k -=

依此类推便有110n n k k k -====L ,

故()()11,1,,1n x x ---L 线性无关

又[]n R x 的维数为n ,于是()()11,1,,1n x x ---L 为[]n R x 的基。

方法三 利用定理:数域p 上两个有限维线性空间同构的充分必要条件是它们有相同的维数。

4 设0110A -??

= ???

,证明:由实数域上的矩阵A 的全体实系数多项式()f A 组成的空间()

0110V f A A ?-?

??==?? ????

?

|与复数域C 作为实数域R 上的线性空间{}'V a bi R =+∈|a,b 同构,并非求它们的维数。

证明 V 中任一多项式可记为()()=,,f A aE bA a b R +∈,建立'V 到

V

的如下映射()()11111111:,a bi f A a E b A a b R σα=+→=+∈

易证σ是'V 到V 上的单射,满射即一一映射。 再设222,a b i α=+ 22,,a b R K R ∈∈,则有

()()()()()()()121212121212a a b b i a a E b b A σαασσασα+=+++=+++=+????

()()()111111k ka kbi ka E ka A k x σασσ=+=+=

故σ是'V 到V 的同构映射,所以V 到'V 同构 另外,易证'V 的一个基为1,i ,故'dim 2V =

'V V Q ;

dim 2V ∴=

方法四 利用以下结论确定空间的基:

设12,,,n αααL 与12,,,n βββL 是n 维线性空间V 中两组向量,已知

12,,,n βββL 可由12,,,n αααL 线性表出:

11112121n n a a a βααα=+++L 21212222n n a a a βααα=+++L 1122n n n nn n a a a βααα=+++L

令11

12121

2221

2n n n n nn a a a A a a a a a a ?? ?= ? ???

L L L

如果12,,,n αααL 为V 的一组基,那么当且仅当A 可逆时,

12,,,n βββL 也是V

的一组基。

例5 已知231,,,x x x 是[]4p x 的一组基,证明()()231,1,1,1x x x +++也是[]4p x 的一组基。

证明 因为

23111000x x x =?+?+?+? 23111100x x x x +=?+?+?+?

()2

23111210x x x x +=?+?+?+? ()

3

23111331x x x x +=?+?+?+?

1111

0123000120001

A =

所以()()231,1,1,1x x x +++也为[]4p x 的一组基。

方法五 如果空间V 中一向量组与V 中一组基等价,则此向量组一定为此空间的一组基。

例6 设[]2R x 表示次数不超过2的一切实系数一元多项式添上零多项式所构成的线性空间的一组基,证明22,,1x x x x x +-+为这空间的一组基。

证明 ()()()2212310k x x k x x k x ++-++= 则1212330

00k k k k k k +=?

?

-+=??=?

解得3210k k k ===

于是22,,1x x x x x +-+线性无关,它们皆可由2,,1x x 线性表示,因此22,,1x x x x x +-+与2,,1x x 等价,从而[]2R x 中任意多项式皆可由

22,,1x x x x x +-+线性表示,故22,,1x x x x x +-+为[]2R x 的基。

方法六 利用下面两个定理:

定理一:对矩阵施行行初等变换和列变换,不改变矩阵列向量间的线性关系。

定理二:任何一个m n ?矩阵A ,总可以通过行初等变换和列变换它为标准阶梯矩阵:0

0r I B ??

???

,其中r I 表示r 阶单位矩阵。 依据这两个定理,我们可以很方便地求出12V V I 的一个基,

从而确定了维数。

例7 设()()112212,,,V L V L ααββ==是数域F 上四维线性空间的子空间,且()()()()12121,2,1,0,1,1,1,1;2,1,0,1,1,1,3,7.ααββ==-=-=-求12

V V I 的一个基与维数。

解 若12r V V ∈I

,则存在1212,,,x x y y F --∈,使

11221122r x x y y ααββ=+=-- (1)

即有112211220x x y y ααββ+++= (2)

若1212,,,ααββ线性无关,(2)仅当2120x x y y ====时成立 那么12V V I 是零子空间,因而没有基,此时维数为0,12V V +是

直和

若存在不全为零的数1212,,,x x y y 使(2)成立,则12V V I 有可能

是非零子空间

若为非零子空间,由(1)便可得到基向量r 。

以1212,,,ααββ为列向量作矩阵A ,经行初等变换将A 化为标准阶梯形矩阵A 。

11211001211101041103001301170000A A --????

? ?-- ? ?

=????→

= ? ? ? ?????

行初等变换 212143βααβ=-++

()1212435,2,3,4r ααββ∴=-+=-+=-是12V V I 的一个基 ()12dim 1V V =I

同时知,12,αα是1V 的一个基,1dim 2V =

12,ββ是2V 的一个基,2dim 2V =

1212,,,ααββ是12V V +的一个基,()()12dim =3V V A +=秩

方法七 在线性空间V 中任取一向量α,将其表成线性空间

V

一线性无关向量组的线性组合的形式,必要的话需说明向量组

是线性无关的。这一线性无关向量组就是我们要找的基。

例8 求112()V L αα=,与212()V L ββ=,的交的基和维数。 设12(1,2,1,0)(11,1,1)αα=??

=-?,,12

(21,0,1)(11,3,7)ββ=-??=-?,

解 任取12

V V α∈I

,则11122V x x αααα∈=+,,且

21122V y y ααββ∈=+,,

1122112x x y y αααββ=+=+(注:此时α虽然已表成一线性组合的

形式,但它仅仅是在1V 、2V 中的表示,并非本题所求,即要在空间21V V I

中将α线性表出)

11221120x x y y ααββ∴+--=,求1212,,,x x y y

12121212

1222122020300

x x y y x x y y x x y x y y ---=??+-+=??

+-=??--=?

7 解得1212(,,,)(,4,3,)x x y y k k k k =--

1212(4)(3)(5,2,3,4)k k k αααββ∴=-=-+=-

故12V V I 是一维的,基是(5,2,3,4)-

易知(5,2,3,4)-是非零向量,是线性无关的。

方法八 按维数公式求子空间的交与和的维数和基 维数公式:如果1,2V V 是有限维线性空间V 的两个子空间,那么()()()()121212dim dim dim dim V V V V V V +=++I

例9 已知()()123,1,2,1,0,1,0,2αα=-=()()121,0,1,3,2,3,1,6ββ==--求由向量12,αα生成的4p 的子空间()112,V L αα=与向量1,2ββ生成的子空间()212,V L ββ=的交与和空间的维数的一组基。

解 因为()121212,,,V V L ααββ+=,对以1212,,,ααββ为列的矩阵施行

行初等变换:3

01

200

011031

10320110

0111

2360003A B ???? ?

?

---- ? ?

=→

= ? ?

- ?

?

--????

秩A =秩3B =,所以12V V +的维数是3

且1212,,,ααββ为极大线性无关组,故它们是12V V +的一组基。 又由12,αα线性无关知1V 的维数为2,同理2V 的维数也为2,由维数公式知12V V I

的维数为()2231+-=。

从矩阵B 易知12122ββαα+=-,故()123,3,2,3ββ+=--是12,V V 公有的非零向量,所以它是交空间12V V I

的一组基。

方法九 由替换定理确定交空间的维数。

替换定理:设向量组12,,,r αααL 线性无关,并且12,,,r αααL 可由向量组12,,,s βββL 线性表出,那么

()1r s ≤

()2必要时可适当对12,,,s

βββL

中的向量重新编号,使得用

12,,,r αααL 替换12,,,r βββL 后所得到的向量组121,,,,,,r r s αααββ+L L 与

向量组12,,,s βββL 等价。

特别,当r s =时,向量组12,,,s αααL 与向量组12,,,s βββL 等价。 例

10

()()()()12342,0,1,3,0,3,1,0,1,2,0,2,2,6,3,3,αααα====设它们是向量组

1,23,βββ的线性组合,又设向量组12,,,m r r r L 与向量组123,,βββ等价,

试求12,,,m r r r L

生成的空间的交空间的基和维数。

解 201304

1107

01031003

1003

101202

1202

12022

63306200000----??????

?

?

?

? ? ?

→→ ? ? ? ?

?

???????

显然1234,,,αααα线性相关,123,,ααα线性无关 由替换定理知123,,ααα与123,,βββ等价,进而知12,,,m r r r L 与123

,,ααα等价

于是()12,,,m L r r r L 维数为3,基为()123124,,;,,L αααααα维数为2,基

为12,,αα

因此,()()12412,,,,,m L L r r r ααα?L

故()124,,L ααα与()12,,,m L r r r L 的交空间的基为12,,αα维数为2

最新文件 仅供参考 已改成word 文本 。 方便更改

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快 捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩 阵中的位置。比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称 为单位矩阵,记为,即:。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个阶下三角矩阵,而则是一个阶上三角矩阵。今后我们用表示数域上的矩阵构成

第二讲 速算与巧算(乘除法)

第二讲速算与巧算(乘除法) 一、乘法凑整 (1)8×23×125 (2)25×(200+4)(3)625×64×25 1、43×20×5 25×91×4 43×76+76×57 125×32×49×25 【拓展提高】 1、(1)25×25×25×32 (2)125×24×25 2、119×17+42×119+119×41 3999×222+333×334

二、乘法速算 (1)73×77 (2)63×43 (3)25×99 (4)36×11 【拓展提高】 1、(1)317×11 (2)5613×11 2、(1)93×97 (2)49×69 3、(1)924×999 (2)485×999 4、(1)63×37 (2)21×67 游戏一:奇妙的数37 游戏二:神奇的37,67

三、除法凑整 1、(1)6300÷25÷4 (2)88000÷125÷8 2、(1)(860+215)÷43 (2)(5000-375)÷25 3、(1)9750÷25 (2)2000÷125 【拓展提高】 1、(1)56560÷8÷7 (2)6300÷25÷7÷4 2、(1)135÷(15÷8)(2)625÷(100÷16) 3、(1)54÷26+115÷26+65÷26 (2)1560÷(78÷4) (2)(1234567+2345671+3456712+4567123+56712345+6712345+7123456)÷4

四、乘除法的简便运算 (1)204×108÷18 (2)10000÷(625÷8)(3)44000÷25 1、(1)160×24÷6 (2)78×352÷176 2、(1)400÷(25÷4)(2)1920÷(64÷4) 3、(1)3600÷25 (2)64000÷125 【拓展提高】 1、(1)777×75÷15 (2)145×584÷292 2、(1)648÷(18×3)(2)945÷(7×9)

基与维数的求法

线性空间基和维数的求法 (邓云斯、李秀珍、高华艳) 方法一(定义法):根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1Λ满足:(1)n ααα,2,1Λ线性无关;(2)V 中任一向量α总可以由 n ααα,,21,Λ线性表示. 那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =, 并称 n ααα,,2,1Λ为线性空间V 的一组基.如果在V 中可以找到任意多个线性无关的向 量,那么V 就成为无限维的. 例1 数域P 上全体形如0a a b ?? ?-?? 的二阶方阵, 对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基. 解 易证0100,1001???? ? ?-????为线性空间0,a V a b p a b ????=∈?? ? -???? |的一组线性无关的向量组,且对V 中任一元素0a a b ?? ?-??有00100+1001a a b a b ?? ????= ? ? ??? ???? 按定义0100,1001???? ? ????? 为V 的一组基,V 的维数为2. 方法二(维数确定基法):在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基. 例2 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明: ()()() 21 1,1,1,,1n x x x ----L 构成[]n R x 的基. 证明 ()()1 121110n n k k x k x -?+-++-=L 由1 n x -的系数为0得0n k =,并代入上式可得2n x -的系数10n k -= 依此类推便有110n n k k k -====L , 故()() 1 1,1,,1n x x ---L 线性无关

分数乘除法速算巧算.教师版

gillie 教学目标 分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。 分数基本运算的常考题型有 (1)分数的四则混合运算 (2)分数与小数混合运算,分化小与小化分的选择 (3)复杂分数的化简 (4)繁分数的计算 知识点拨 分数与小数混合运算的技巧 在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。 技巧1:一般情况下,在加、减法中,分数化成小数比较方便。 技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。此时要将包括循环小数在内的所有小数都化为分数。 技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。 技巧4:在运算中,使用假分数还是带分数,需视情况而定。 技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。 目归例题精讲 【例1】5 的分母扩大到32,要使分数大小不变,分子应该为_________________________________ 。 8 【考点】分数乘除法【难度】2星【题型】填空 【关键词】走美杯,五年级,初赛 【解析】根据分数的基本性质:分母扩大倍数,要使分数大小不变,分子应该为扩大相同的倍数。分母扩大:32-8=4 (倍),分子为:4X5=20。 【答案】20 【巩固】小虎是个粗心大意的孩子,在做一道除法算式时, 这道算式的正确答案是 ____________________ 。 【考点】分数乘除法【难度】2星 【关键词】走美杯,初赛,六年级 一 5 5 【解析】根据题意可知,被除数为120 5 =75,所以正确的答案为75一:一 5=90。 8 6 分数乘除法速算巧算 把除数 5 看成了 5 来计算,算出的结果是 6 8 【题型】填空 120,

巧算分数乘法

巧算分数乘法 运用运算定律和性质可以简算分数乘法,常用的主要有以下几种。 1.移 运用乘法交换律,移动运算中数的位置,使之便于“凑整”计算。 如:141×101×8=14 1×8×101 =10×101=1。 2.并 运用乘法结合律,把两个数合并起来,进行“凑整”计算。如:821 ×61×12=821×(61×12)=82 1×2=17。 3.配 运用乘法分配律,一一相配进行简算。如:60×(101+1001 )=60×101+60×1001=6+0.6=6.6。 4.提 反用乘法分配律,提取公因数进行简算。如:107×52+52 ×103=(107+103)×52=52。 5.拆 把一个数拆成两个数,以便于“凑数”计算。如:7323 ×8=(7+32 3)×8=7×8+323 ×8=56+43=564 3。 解题小魔棒 巧用估算定范围 题目下面哪两个数的积在13和5 6 之间? 112313? 5263? 223 ? 分析我们可以先计算出每组分数乘法的积,然后通过通分比较积是否在13 和 56之间。比如,112313?=413,而413=1239,13=1339,所以1239<1339 ,于是112 313?的积不在13和5 6之间。其实,不用算出准确结果,通过估算也能确定积的范围。 在112313?中,由于1213比1小,所以112313?的积小于13,不在13和5 6之间。 在5263?中,23比1小,所以5263?的积小于56;同时56比12大,所以5263?的积大于13,因此在13和5 6 之间。

223 的积大于1,所以不在13和5 6 之间。 同学们,怎么样?估算的作用不小吧!对待不同的问题要学会采用不同的方法! 解题小魔棒 解决问题六步骤 在解决分数乘法实际问题时,可以按照“定、画、找、列、算、答”六个步骤来分析解答。 例:某校绘画小组有男生15人,女生比男生多5 1,绘画小组有女生多少人? 一、定,即确定单位“1”。从题中“女生比男生多5 1 ”可知,男生人数是单 位“1”。 二、画,即画出线段图。根据题中的已知条件,画出线段图。 三、找,即找等量关系。根据已知条件和问题,结合线段图,等量关系是: 男生人数+女生比男生多的人数=女生人数,即男生人数+男生人数×5 1=女生人数, 或者男生人数×(1+5 1 )=女生人数。 四、列,即根据等量关系列算式。根据上面的等量关系,把男生人数代入等 量关系式,列式为15+15×51或15×(1+5 1 )。 五、算,即根据列出的算式求结果。15+15×51=18(人)或15×(1+5 1 )=18 (人)。 六、答,即写出答案。答:绘画小组有女生18人。 同学们,上面的方法你们学会了吗?快找些题来练习一下吧! IQ 博士 小虎说得对吗 星期天,小虎和爸爸去电子商城买彩电,他们看中了一台彩电。前段时间,由于商城周年庆,这种彩电降价 201,周年庆后,该彩电又提价20 1 。爸爸灵机一动,便问小虎:“这台彩电是原价高?还是现价高?” 小虎不假思索地说:“这台彩电‘降价 201后,又提价20 1 ’降提正好抵消,

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

小升初数学专项题-第十八讲 速算与巧算(除法与乘除混合运算)通用版

第十八讲速算与巧算(除法与乘除混合运算) 【知识梳理】计算方法: 1.在除法计算中利用商不变性质,使除数变成整十、整百、整千……的数,再除。 2.在乘除混合运算中去掉括号与添上括号的方法:括号前面是乘号的,去掉括号后,括号内的运算符号不变,括号前面是除号的,去掉括号后,括号内的运算符号要变化;添括号的方法与去括号类似。用字母表示: a×(b÷c)= a×b÷c; a÷(b×c)= a÷b÷c; a÷(b÷c)= a÷b×c 3. 在乘除混合运算中,乘数与除数移动位置时,要与前面的运算符号一起移动。 【典例精讲1】330÷5 思路分析:本题可以利用商不变性质,把330与5同时乘2,把除数5变成10,然后再相除,从而使计算简便。 解答:330÷5 =(330×2)÷(5×2) =660÷10 =66 小结:解决此类问题要根据除数确定被除数、除数同时乘或除以哪一

个数。 【举一反三】1. 6600÷25 2. 2200÷125 3. 4400÷50 【典例精讲2】320×500÷250 思路分析:500是250的2倍,因此可以加上括号先计算除法,然后再计算乘法。 解答:320×500÷250 =320×(500÷250) =320×2 =640 小结:解决这类问题的关键是,首先看哪些数有倍数关系还是可以凑整,再确定是否加括号。 【举一反三】4. 4000×600÷300 5. 2000÷125÷8

6. 372÷324×108 答案及解析: 1.【解析】除数是25,25乘4可以使除数变成100,因此除数与被除数要同时乘4,再计算可以使计算简便。 【答案】:6600÷25 =(6600×4)÷(25×4) =26400÷100 =264 2.【解析】:除数是125,25乘8可以使除数变成1000,因此除数与被除数要同时乘8,再计算可以使计算简便。 【答案】:2200÷125 =(2200×8)÷(125×8) =17600÷1000 =17.6 3.【解析】被除数与除数同时乘2即可。

基与维数的几种求法复习过程

基与维数的几种求法

线性空间基和维数的求法 方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1Λ满足: (1)n ααα,2,1Λ线性无关。 (2)V 中任一向量α总可以由n ααα,,21,Λ线性表示。 那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为 dim v n =,并称n ααα,,2,1Λ为线性空间V 的一组基。 如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。 例1 设{}0V X AX ==,A 为数域P 上m n ?矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。 解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。 例 2 数域P 上全体形如0a a b ?? ?-?? 的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。 解 易证0100,1001???? ? ? -????为线性空间0,a V a b p a b ????=∈?? ?-???? |的一组线性无关的向量组,且对V 中任一元素0a a b ?? ?-?? 有00100+1001a a b a b ?????? = ? ? ??????? 按定义0100,1001???? ? ????? 为V 的一组基,V 的维数为2。

方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。 例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()()211,1,1,,1n x x x ----L 构成[]n R x 的基。 证明 考察()()1121110n n k k x k x -?+-++-=L 由1n x -的系数为0得0n k =,并代入上式可得2n x -的系数 10n k -= 依此类推便有110n n k k k -====L , 故()()11,1,,1n x x ---L 线性无关 又[]n R x 的维数为n ,于是()()11,1,,1n x x ---L 为[]n R x 的基。 方法三 利用定理:数域p 上两个有限维线性空间同构的充分必要条件是它们有相同的维数。 例4 设0110A -?? = ??? ,证明:由实数域上的矩阵A 的全体实系数多项式()f A 组成的空间() 0110V f A A ?-? ??==?? ???? ? |与复数域C 作为实数域R 上的线性空间{}'V a bi R =+∈|a,b 同构,并非求它们的维数。

乘除法中的速算与巧算

乘除法中的速算与巧算 知识储备 整数乘除法的速算与巧算,一条最基本的原则就是“凑整” 。要达到“凑整”的目的, 就要将一些数分解、 变形,再运用乘法的交换律、 结合律、分配律以及四则运算中的一些规 则,把某些数组合到一起,使复杂的计算过程简便化。 1、 乘法的运算定律 乘法交换律:a>b=b 冶 乘法结合律:(a >b) >c=a >(b >C) 乘法分配律:(a + b) >C=ac + bc 2、 除法的运算性质 (1) a -b=a >C 说b > c) (c 工 0) (2) a — b=(a 十 c)十(b 十 c 芳(0) (3) a — b — c=a —(t )) (4) a — (b — c)=a -> 3、 乘除分配性质 (1) (a + b ) X c=a X c + b c (2) (a — b ) X c=a X c — b X c (3) (a + b ) —c=a —+ b — c (4) (a — b ) —c=a —— b — c 注意: 除数不能为零。 4、 两数之和乘以这两数之差的积等于这两个数的平方差。 2 . 2 (a + b) > (a — b)= a — b 5、 乘法凑整法:这是利用特殊数的乘积特性进行速算, 如5> 2 = 10, 25 X 4 = 100, 125 > 8 = 1000, 625X 8= 5000 , 625X 16= 10000等等。大家要记住这些结果。 思维引导 例1、计算: (1) 999+ 999X 999 (2) 1111X 9999 (3) 125X 25X 32 (4) 576X 422 + 576 + 577 X 576 跟踪练习:计算:(1) 9999 + 9999 X 9999 (2) 140X 299 (3) 808X 125 (4) 461 + 5 X 4610 + 461 X 49 例 2、计算:34X 172— 17X 71 X 2— 34

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

分数的巧算和速算

分数的速算与巧算 【专题解析】 在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。 (1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。两个整数相除(后一个不为0)可以直接写成分数的形式。两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。 (2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。 【典型例题】 例1. 计算:(1)569 8 ÷8 (2)16620 1÷41 分析与解:(1)直接把5698拆写成(56+9 8),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。(2)把题中的166 20 1 分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。 (1)569 8÷8=(56+9 8)÷8=(56+9 8)×8 1=56×8 1+9 8×8 1=7+9 1=7 9 1 (2)166201÷41 = (164 +20 41)×411= 164×411+2041× 41 1= 4201 【举一反三】 计算:(1)64 17 8 ÷8 (2)145 7 5 ÷12 (3)545 2÷17 (4)170 12 1 ÷13

例2. 计算:20041 20042004 20052006 ÷+ 分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。分母200420052004?÷,这算式可以运用乘法分配律等于20042006?,又可以约分。 聪明的同学们,如果你的数感很强的话,不难看 出÷2004 20042005 2005 的被除数与除数都含有2004,把他们同时除于2004得到11÷1 2005 也是很好算的,这一方 法就留给你们吧! 1 2006 ?÷ +20042006原式=20042005 1 200620051 200620061 ? + ?=+=2005=200420042006 【举一反三】 计算:(5)2000÷200020012000+2002 1 (6)238÷238 239238+240 1 例3. 计算: 1994 199219931 19941993?+-? 分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。1993×1994-1 =(1992+1)×1994-1 = 1992×1994+1994-1 = 1992×

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

小学三年级数学乘法除法速算与巧算

第二讲乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000 例1计算①123×4×25 ② 125×2×8×25×5×4 2.分解因数,凑整先乘。 例 2计算① 24×25 ② 56×125 ③ 125×5×32×5 3.应用乘法分配律。 例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6 例4 计算① 123×101 ② 123×99 4.几种特殊因数的巧算。 例5一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000; 以此类推:如:15×10=150 15×100=1500 15×1000=15000 例6一个数×9,数后添0,再减此数; 一个数×99,数后添00,再减此数; 一个数×999,数后添000,再减此数;… 以此类推。 如:12×9=120-12=108 12×99=1200-12=1188 12×999=12000-12=11988 例7 222×11 2456×11 [分析]为了速算,可以记一句口诀:“两头一拉,中间相加”。 2 2 2 2 4 4 2 222×11=2442 2 4 5 6 2 7 0 1 6 2456×11=27016 例8、16×5 [分析]一个数×5,可以除以“2”添上“0”。 16×5=(16÷2) ×10=80

例924×15 [分析]一个数×15,“加半添0”。 24×15=(24+12)×10=360 例4 从10到20×之间的两位数相乘(十几×十几) 13×14 [分析]个位数相加后再加“10”,然后乘“10”,个位数相乘后,所得两个数相加。 13×14=182 想:(3+4+10)×10=170 3×4=12 170+12=182 例5 62×68 81×89 [分析] 62×68,一首数6+1=7,头×头是: 7×6=42,尾×尾是2×8=16, 42与16在一起:4216 81×89,一首数8+1=9,头×头9×8=72, 尾×尾是1×9=9,因为9小于10,所以72与9相联时,在9的前面添一个0。答案是81×89=7209 例6 72×32 68×48 [分析] 72×32头乘头+尾是7×3+2=23 尾×尾是:2×2=4 因为4小于10,所以23与4相联时,在4前边补一个0,答案是: 72×32=2304 68×48头乘头+尾是6×4+8=32 尾×尾8×4=64 答案是: 68×48=3264 练习: 14×5 114×5 19×17 3728×11 1295×11 16×18 36×15 72×15 78×72 84×86 62×42 31×71 43×25×4125×(19×8) 50×13×2 25×32×125 125×64 9×37+9×63 102×43 65×99+65 125×798 45×123-45×23

分数乘除法巧算练习

六年级思维数学分数巧算测试卷 姓名 分数 一 填空题(2*10=20分) 5387 (1) 一个数的是35,这个数的的是( )。 ( )(2)将3米长的绳子平均截成8段,第三段是全长的,每段长( )米。( ) 265 (3)一辆车行驶千米耗油升,它行驶1千米耗油的( )升;1升油可以行驶( )千米。 4 3 54(4)一个数的是80,这个数的的是( )。 2 5(5)一本书有200页,第一天读了,第二天应从( )页开始看起。 1 5 4 4 ===,,,02257b c d a b c d ??÷?(6)已知a 1,并且都不等于, 那么a,b,c,d 四个数从大到小的关系是( )。 二 简便计算(3*6=18分) 11 27+796624?????(1)1.250.25.70.32 (2)337.9 +7++15÷??2 2 5 5 5 7 1 7 (3)(9)() (4)79796156 2019 2018 20202019??( 5)2019 (6)2020 11986 8619991999?÷(7)2001 (8)1998

三 计算(5*4=20分) 1488624+148+148149149149? ??(1)39 1127+26272728 ????(2)26() 1111+2+3+4+612209900?????1(3)1992 1324+2648+3972124+248+3612 ????????????(4) 12025050513131313+++21212121212121212121(5) 222222+++++35577991111131719??????(5)…… 11111+++++1447710101397100 ?????(6)…… 1111111998+19971996++1232323--???????-(7)1999

乘除法中的速算与巧算教学内容

乘除法中的速算与巧算 知识储备 整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。 1、乘法的运算定律 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=ac+bc 2、除法的运算性质 (1)a÷b=(a×c)÷(b×c) (c≠0) (2)a÷b=(a÷c)÷(b÷c) (c≠0) (3)a÷b÷c=a÷(b×c) (4)a÷(b÷c)=a÷b×c 3、乘除分配性质 (1)(a+b)×c=a×c+b×c (2)(a-b)×c=a×c-b×c (3)(a+b)÷c=a÷c+b÷c (4)(a-b)÷c=a÷c-b÷c 注意:除数不能为零。 4、两数之和乘以这两数之差的积等于这两个数的平方差。 (a+b)×(a-b)=a2-b2 5、乘法凑整法:这是利用特殊数的乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。大家要记住这些结果。 思维引导 例1、计算:(1)999+999×999 (2)1111×9999 (3)125×25×32 (4)576×422+576+577×576 跟踪练习:计算:(1)9999+9999×9999 (2)140×299 (3)808×125 (4)461+5×4610+461×49 例2、计算:34×172-17×71×2-34

跟踪练习:计算:42×68+61×2×34-3×68 例3、用简便方法计算:8700÷25÷4 跟踪练习:9600÷25÷4 例4、用简便方法计算:625÷25 跟踪练习:42800÷25 例5、简算:29×31 跟踪练习:简算:68×72 例6、计算:11111×11111 跟踪练习:计算:22222×22222 例7、计算:63×275÷7÷11 跟踪练习:计算:123×456÷789÷456×789÷123 例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334 跟踪练习:计算:9999×7778+3333×6666 例10、计算:98989898×99999999÷10101010÷11111111 跟踪练习:计算:199999998×2200220022÷18÷100010001

向量空间的基与维数

向量空间的基与维数 结论1 设,当下述三个条件有两条满足时,{}就是V的一个基. (i)零向量可由唯一地线性表示; (ii)V中每个向量都可由唯一地线性表示; (iii). 结论 2 设,都是F上向量空间V的子空间. 若,,则 ,且. 例 1 设和都是数域,且,则是上的向量空间. 域F是F上向量空间,基是{1},. C是R向量空间,{ 1 , i} 是基,. R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里. 令,则F是一个数域,F是Q上的向量空间. 1)1,线性无关: 设,. 则(否则,,矛盾),因此. 2) 1,,线性无关: 设,,i=1,2,3 . ( 1 ) , 两端平方得 , 由于1,线性无关,故

假如,则,且,即. 矛盾. 因而故假如,则得,这与是无理数相矛盾. 因而 将代入(1),便得这说明1,,线性无关. 3) 1,,,线性无关: 设,,i=1,2,3,4 . 则有 . ( 2 ) 假如不全为零,则 得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得 又由1,线性无关得. 这样,我们证得了1,,,线性无关. 故{1,,,}是F的一个基.. 例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间. 对任意的正整数n,可证得线性无关: 设,使( 3 ) 取n+1个实数,使 a b. 由(3)知 . 即 其中

而 . 用左乘(4)两端,得 这说明线性无关. 故C[a,b]是R上无限维向量空间. 引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明 证对s作数学归纳. 当s=1 时,结论显然成立. 设,且对个V的不等于V的子空间结论成立. 下考虑V的子空间,,. 由归纳假设知故存在 1) 当时,,故; 2) 当时,由于,因此显然,,…,.且存在, 使(否则,如果,,…,,, , ,使,,所以,即有,这与矛盾).这样 ,故 例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基. 证取V的一个基,令. 对任意从中删 去后剩下的个向量生成的V的子空间记为,则 由引理知, 故存在 令, 中任n个不同的向量线性无关,是V的基. 设,有,且中任意n个不同的向量构成V的一个基. 对任意,有 .

小学三年级数学-乘法除法 速算与巧算讲课教案

第二讲速算与巧算(二) 一、乘法中的巧算 1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000 例1计算①123×4×25 ② 125×2×8×25×5×4 解:①式=123×(4×25) =123×100=12300 ②式=(125×8)×(25×4)×(5×2) =1000×100×10=1000000 2.分解因数,凑整先乘。 例 2计算① 24×25 ② 56×125 ③ 125×5×32×5 解:①式=6×(4×25) =6×100=600 ②式=7×8×125=7×(8×125) =7×1000=7000 ③式=125×5×4×8×5=(125×8)×(5×5×4) =1000×100=100000 3.应用乘法分配律。 例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6

解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) = 67×100=6700 (原式中最后一项67可看成 67×1) 例4 计算① 123×101 ② 123×99 解:①式=123×(100+1)=123×100+123 =12300+123=12423 ②式=123×(100-1) =12300-123=12177 4.几种特殊因数的巧算。 例5一个数×10,数后添0; 一个数×100,数后添00; 一个数×1000,数后添000; 以此类推。 如:15×10=150 15×100=1500 15×1000=15000 例6一个数×9,数后添0,再减此数; 一个数×99,数后添00,再减此数; 一个数×999,数后添000,再减此数;… 以此类推。 如:12×9=120-12=108 12×99=1200-12=1188

分数乘除法巧算教案资料

分数乘除法巧算

分数乘除法巧算 【知识点播】 分数乘法:分数乘以整数,分母不变,分子乘以整数,最后结果化成最简分数; 分数乘以分数,分子与分子相乘,分母与分母相乘,最后结果化成最简分数。 分数除法:除以一个分数,等于乘以这个数的倒数。 【经典例题】 (1)乘法: 例1 84×(43-31) 70 453635107?? 例2 )(213 439+? (2)57 ×49+27 ×49 (2)除法: 例1 713 ÷9+19 ×613 6÷67 ÷25 例2 239238238 238÷ 1667 166616661666÷

(3)乘除混合运算: 例1 1615 22.3÷? 23- 89 × 34 ÷127 例2 524.16.55.2÷+? 1211 ÷81+12 13×8 课堂小测 姓 名 成 绩 1. 55144233? 200920082008200720072006?? 2. 1211 ÷81+1213×8 )(10111099+? 3. 63608435÷ 2005200420042004÷ 4. 1312×73+74×1312+1312 1815 26.3÷?

课后作业 月 日 姓 名 成 绩 1. 5034×74-74×509 3278458039?? 2. 288928882887? 2 113.0321.66.35.1?+÷+? 3.(45 -23 )×152 718 ÷115 +518 ×511 (38×14 +17×14 )÷78 3.解方程。 5X - 65=125 32X -51X =1 X +97X =3 4 解决实际问题 1、织一批布,第一天织了总数的51,第二天织了100米,还剩下总数的15 7。这批布一共多少米?

最新三年级奥数-速算与巧算:乘法与除法

二、速算与巧算:乘法与除法 【例1】 ①21×5×2 ② 17×4×25 ③ 125×19×8 ④24×25 ⑤125×72 ⑥16×16×25×125 巩固练习1: 125×23×8 5×37×20 32×25×125 【例2】 ①526×9 ② 123×99 ③ 2004×25 巩固练习2: 31×99 378×9 808×125 【例3】 ①45×11 ② 56×11 ③ 2222×11 ④2456×11 巩固练习3: 37×11 78×11 333×11 3245×11 【例4】 ①225÷9÷5 ②(81 + 72)÷9

②(2046-1059-735)÷3 ④ 211÷50 + 89÷50 巩固练习4: 450÷2÷5 (70+56)÷7 (2000-650-75)÷5 173÷30 + 427÷30 【例5】 ①136×5÷8 ②125×(16÷10) ③4032÷(8×9) ④2560÷(10÷4)⑤527×15÷5 ⑥2460÷5÷2 ⑦(54×24) ÷(9×4) 巩固练习5: ①49×2÷7 ②250×(4÷10) ③315÷(3×7) ④1000÷(10÷4)⑤25×32÷8 ⑥2300÷25÷4 ⑦(24×63) ÷(3×7) 二、速算与巧算:加法与减法(练习题) 练习一、 4×73×252×17×508×13×125 5×25×64×125 625×32 625×16 120×9 387×99 89×999

34×11×11 555×11 503×11 (497-210)÷7 3÷10 + 17÷10 (1000-688-136)÷8 2352÷(7×8)1200×(4÷12)1250÷(10÷8)3000×800÷400 636×35÷7 练习二、 16×12525×33×4 88×125 625×3×32 5×32 8×250 83×9 71×99 29×99 257×999 701×999 66×9999 427×11 24×11×1183×11 (54×24)÷(9×4)(126×56)÷(7×18)

相关主题
文本预览
相关文档 最新文档