当前位置:文档之家› 基于C8051F的恒温箱控温系统_张松梅

基于C8051F的恒温箱控温系统_张松梅

基于C8051F的恒温箱控温系统_张松梅
基于C8051F的恒温箱控温系统_张松梅

微处理器应用 电 子 测 量 技 术

EL ECTRONIC M EASUREM EN T TEC HNOLO GY 第31卷第9期2008年9月 

基于C8051F的恒温箱控温系统

张松梅1 梁俊凯2 刘隆吉1

(1.山东科技大学 青岛 266510;2.山东小鸭集团技术中心 济南 250101)

摘 要:介绍了一种以高速单片机C8051F021为核心的高精度恒温箱温度控制系统,阐述了系统的工作原理、硬件设计及软件设计。系统利用基于恒流源的桥式测温电路采样温度值,使用增量式PID算法进行闭环控制,输出16位脉冲宽度调制波(PWM),经滤波后转换为电流信号控制晶闸管调温模块,达到精确调节温度的目的。通过标准仪器的标定,证明系统完全可以满足控制要求,此恒温箱温度控制系统的实际应用表明系统性能可靠、控制精度高、实用性强。

关键词:C8051F;恒温箱;温度控制;PWM;PID

中图分类号:TP273 文献标识码:A

Design of thermo tank temperature control system based on C8051F

Zhang Songmei1 Liang J unkai2 Liu Longji1

(1.Shandong University of Science and Techno log y,Qingdao266510;

2.The Techno log y Center of Shandong Xiaya Group,Ji’nan250101)

Abstract:This paper introduced a high precision thermo tank temperature control system which is constituted by a high speed micro2chip C8051F021,described the principle,the hardware and software design of this system.The system sampled temperature with electrical bridge which is based on constant flow source,implemented a digital PID feedback control,output16b PWM waveforms,then changed into current to control the SCR,so it can adjust the temperature accurately.By the calibration check,it indicated that this system can totally meet the request of the control,the practical application of this thermo tank temperature control system indicates that this system is reliable performance, high precision and practicable.

K eyw ords:C8051F;thermo tank;temperature control;PWM;PID

0 引 言

恒温箱根据控制温度可分为低温(室温以下)恒温箱和高温(室温以上)恒温箱[1],加热控制恒温箱是高温恒温箱的一种,在工业、医疗以及科研实验中有广泛的应用。在一些特殊的恒温箱控制系统中,对温度测量、控制的精度要求非常高,本测控系统测温范围在18℃到60℃之间,测温精度要求优于±0.05℃。采用DSP、ARM等32位CPU可实现实时处理等较高的要求,但普通的控制系统中DSP、ARM的很多资源不能利用,造成资源的浪费、“大才小用”。随着微电子技术的快速发展,单片机的数据处理能力和功能得到了极大地提高,因此设计一个由高速单片机控制的高精度、结构简单并且成本低的温度控制系统有着重要的实际意义和应用价值。

1 恒温箱控温原理

本系统以铂电阻作为温度传感器,通过基于恒流源的桥式测温电路实现对恒温箱内的温度测量,系统将实际温

度值与通过触摸屏设定的温度给定值比较,采用增量式PID算法进行调节,使控制量以16位PWM波的形式输出。通过滤波将PWM信号转换为电压信号,控制晶闸管的导通角,从而控制加热管加热。系统的控制原理如图1所示。

图1 系统控制原理图

考虑到系统对测量精度以及稳定性的要求,本系统的设计特色包括:

1)控制器采用功能强大的高速SOC单片机C8051F021。

2)为提高A/D转换精度,采用CS5532对此模拟电压

?

7

4

1

?

 第31卷电 子 测 量 技 术

进行转换,输出具有24位分辨率。

3)充分利用单片机的片上资源,以16位PWM 形式输出控制信号,提高控制精度。

2 硬件设计

该温度控制系统包括C8051F021单片机、温度采集电路、A/D 转换电路、

彩色液晶触摸屏控制电路、晶闸管驱动电路等。

另外,本系统具有良好的人机对话功能,通过5.6英寸的彩色液晶显示器与触摸屏对系统进行实时监视和控制。该温度控制系统结构如图2所示。

图2 系统结构框图

2.1 温度采集与A/D 转换

在热电阻温度传感器中,铂电阻具有精度高、性能稳

定、耐腐蚀及使用方便等优点,是工业测控系统广泛使用的一种理想的测温元件[2]。在本系统中测温范围在18℃~60℃之间,选用温度传感器Pt1000,其阻值随着温度的改变按一定规律变化,精度、稳定性均较优。

在以铂电阻作为温度传感器的检测电路中,典型的测量方式是采用不平衡电桥测量[3]。但是,铂电阻阻值与温度之间的非线性以及不平衡电桥的非线性导致测量存在一定的误差,为此,在本系统中对桥式测温电路进行了改进。电桥采用恒流源供电,两桥臂通过低噪声、低温度漂移的精密运算放大器连接,使流过铂电阻的电流恒定且等于恒流源的电流,采用4D H2构成恒流源电路,设计输出0.5mA 的恒电流。

A/D 转换电路采用2路模拟量输入,串行数据输出的24位A/D 转换器CS5532与单片机接口,CS5532由多路开关、可编程增益放大器、程控多阶数字滤波器以及串口、时钟发生器、校准控制系统和输出锁存器等组成。2.2 C8051F 片上资源

C8051Fxxx 系列单片机是完全集成的混合信号系统级芯片(SOC ),具有与8051指令集完全兼容的CIP 251内核。它在一个芯片内集成了(包括A/D 转换器、UAR T 、定时器等)构成一个单片机数据采集和控制系统所需要的几乎所有模拟和数字外设及其他功能部件[4]。

本系统采用C8051F021作为MCU ,进行通信、数据处理以及控制输出。下面对本系统中用到的功能部件及应用进行简单介绍。

C8051F021MCU 中有一个片内可编程计数器/定时器

阵列(PCA )。PCA 包括一个专用的16位计数器/定时器

时间基准和5个可编程的捕捉/比较模块。时间基准的时钟可以是系统时钟/12、系统时钟/4、定时器0溢出等6个时钟源之一。每个捕捉/比较模块有6种工作方式,本系统采用16位脉冲宽度调制器方式,即系统可以通过PCA 产生16位PWM 直接输出至MCU 的端口I/O 引脚。

串行外设接口(SPI0)提供访问一个4线、全双工串行总线的能力。SPI0支持在同一总线上将多个从器件连接到一个主器件。当SPI 被配置成主器件时,最大数据传输率(位/秒)是系统时钟频率的二分之一。本系统中C8051F021为主器件,CS5532和触摸屏控制芯片ADS7843为从器件,通过串行外设接口分时与MCU 通信。2.3 滤波、变换电路

为了实现PWM 信号到模拟量输出的转换,在本系统中采用二阶低通滤波器滤掉高频成分,保留直流分量,通过改变PWM 信号的占空比即可得到不同电压的输出。如图3所示,设计巴特沃斯滤波器,使PWM

信号经过滤波后产生0~2.5V 的电压[5],控制晶闸管的导通角,从而实现对加热温度的高精度控制。

图3 巴特沃斯滤波器

3 软件设计

3.1 PID 控制

在本温度控制中采用了PID 控制算法[7],即比例、积

分、微分控制,是工业过程控制中应用广泛的一种基本控制方法。增量式PID 控制算法为:

u k -u k-1=K P (e k -e k-1)+K I e k +K D (e k -2e k-1+e k-2)

但是若直接采用此算法时,在系统启动、停止或大幅调节时,容易产生很大的超调量,引起积分饱和,因此对PID 算法进行了改进,采用积分分离法,可有效抑制这一现象的出现。

积分分离法在开始时(即实际温度与设定温度值e s 偏差较大时)不积分;当控制的实际温度接近设定值时,投入积分算法以消除静差,提高控制精度[8]。积分分离式PID 算法框图如图4所示。3.2 触摸屏软件设计

将触摸屏引入本系统中可以直接在显示屏上输入控

?

841?

张松梅等:基于C8051F 的恒温箱控温系统

第9期

图4积分分离式PID 算法框图

制信息,使系统的人机界面更加友好,操作快捷、方便。本系统选用AM T9532

四线电阻式触摸屏,通过专用控制芯片ADS7843与单片机接口,对触摸信号进行分析、处理。触摸屏的软件设计流程如图5所示。

图5 触摸屏流程图

4 实验结果

为测试实验结果,使用精度为0.001℃的标准温度计

作为标准来标定,测试结果如表1所示。

表1 标定结果

设定温度/℃

显示温度/℃

实际温度/℃18.00

17.98

17.977

30.0030.0029.99840.0040.0140.00950.0050.0050.00260.00

60.01

60.011

5 结 论

通过C8051F021片内的16位PWM 输出,再加上简

单的滤波、转换电路及相应的软件设计以及浮点数运算,可以实现16位的D/A 转换,这是普通单片机控制电路很难实现的高精度控制。

本系统的温度控制范围为18℃~60℃,16位的控制信号分辨率可达千分之一摄氏度,从实际实验结果可以看出本系统完全可以实现测温精度优于±0.05℃的控制要求。实际应用表明,此温度控制系统具有控制精度高、功能强、简单灵活、节约成本、性能稳定等优点,满足于工业场合较高的精度要求。

参考文献

[1] 徐维涛,郝晓弘,杨新华.恒温晶振(OCXO )精密恒

温箱温度控制电路分析[J ].仪表技术与传感器,2005(8):41.

[2] 胡洁微,任国臣,陈晓英.单晶炉温度控制系统中提

高温度测量精度方法[J ].国外电子测量技术,2006,25(10):50252.

[3] 李兆军,纪平,娄晓光.高精度温度控制系统设计

[J ].电子测量技术,2007,30(2):1462148.

[4] 潘琢金,施国君.C8051Fxxx 高速SOC 单片机原理

及应用[M ].北京:北京航空航天大学出版社,2002:

43278,1692171,2052211.

[5] 夏大勇,周晓辉,赵增,等.MCS 251单片机温度控制

系统[J ].工业仪表与自动化装置,2007(1):43.

[6] 邓荣.基于A T89S52单片机的啤酒发酵温度控制系

统[J ].国外电子测量技术,2007,26(11):59261.

[7] 武林,楼恩平,侯冬晴,等.基于PID 算法的无线温湿

度控制系统[J ].仪器仪表学报,2006,27(6):

6192620.

[8] 赵岩,杨光智.基于单片机的氧含量自动恒温测量系

统[J ].仪器仪表学报,2007

,28(4):1372141.

作者简介

张松梅,女,工程师,2004至今,在山东科技大学从事化学工艺研究工作。E 2mail :zhangsongmei728@https://www.doczj.com/doc/9d16231480.html,

梁俊凯,男,工程师,1993年7月毕业于山东矿业学院机电一体化专业,目前任职山东小鸭集团技术中心。E 2mail :junkailiang @https://www.doczj.com/doc/9d16231480.html,

?

941?

恒温箱温度计算机控制系统设计

西南科技大学 计算机控制系统报告 设计名称:恒温箱温度计算机控制系统设计 姓名: XXX 学号: XXX 班级:自动09XX 指导教师:聂诗良 起止日期:2012.10.15--2012.11.15 西南科技大学信息工程学院制

设计任务书 学生班级:自动0903 学生姓名:XXX 学号:2009XXX 设计名称:恒温箱温度计算机控制系统设计 起止日期:10月15日——11月15日指导教师:聂诗良

恒温箱温度计算机控制系统设计 摘要: 本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89C51作为主控芯片,液晶作为显示输出,实现了对温度的实时测量与恒定控制。 关键词:恒温,AT89S52 单片机,温度传感元件

The incubator temperature computer control system design Abstract: The design from the actual application to select a small size, and relatively high accuracy digital temperature sensing element DS18B20 as temperature collector, AT89C51 microcontroller as the master chip, digital tube display output to achieve real-time measurement of temperature and constant control . Keyword:Thermostat. AT89S52 microcontroller;Temperature sensor element;

恒温箱温度控制系统的设计任务书

编号: 毕业设计任务书 题目:恒温箱温度控制系统的设计 学院:机电工程学院 专业:电气工程及其自动化 学生姓名:孙卉 学号:1200120304 指导教师单位:机电工程学院 姓名:韦寿祺 职称:教授 题目类型:?理论研究?实验研究?工程设计?工程技术研究?软件开发 2015年12月28日

一、毕业设计(论文)的内容 恒温箱广泛应用在医疗、工业生产和食品加工等领域,其对温度稳定性要求较高,如何实现对温度的精确控制是恒温箱温度控制系统的关键。温度控制系统通常由被控对象、测量装置、调节器和执行机构等组成。目前,测量装置大多采用温度传感器采集温度,但是在常规的环境中,温度受其它因素影响较大,而且难以校准,因此,温度也是较难准确测量的一个参数,常规方法测量温度误差大、测量滞后时间长。当前,普遍使用单片机或者PLC实现恒温箱温度的智能控制,两种控制方式各有优势。本课题要求设计一种智能恒温控制系统,选择合适的控制方式实现温度的智能控制,具体任务如下: 1、收集有关恒温箱的文献资料,了解恒温箱的工作原理、工艺要求等,重点学习掌握恒温箱温度控制系统的构成、运行参数、控制特点等,选择合适的控制方式,制定恒温箱电热温度控制系统的控制方案。 2、建立恒温箱电热温度控制系统的数学模型,应用仿真软件进行仿真,选择调节器参数,分析系统稳态和动态控制性能指标。 3、完成恒温箱电热温度控制系统的硬件电路设计和相关控制软件程序的编写,绘制系统原理图,计算元器件参数,选择元器件型号。 4、制作演示模拟样机,进行软硬件联调。 二、毕业设计(论文)的要求与数据 1、收集恒温箱温度控制系统的工作原理和控制方法的相关文献资料15篇以上,其中英文文献不少于2篇。 2、恒温箱电热温度控制系统的输入电源为单相220V,电加热额定功率5kW,温度调节范围室温~200℃,温度控制精度在±1℃以内。 3、恒温箱对加热电源电流的传递函数为18.4 e ,采用PID调节器或九点 1.2s 控制器设计恒温箱电热温度控制系统,选择单片机或PLC作为控制器。 4、演示模拟样机采用单相220V供电,自行定义加热功率,最高温度100℃,温度控制精度在±1℃以内。 三、毕业设计(论文)应完成的工作 1、完成二万字左右的毕业设计说明书,要求原理正确,数据详实,文理通顺,格式规范;毕业设计说明书的英文摘要要求300个单词以上,内容与中文摘要一致,语句通顺,无语法错误;附15篇以上参考文献,其中英文文献不少于

恒温箱PLC系统控制.

一、题目 恒温箱PLC系统控制 二、指导思想和目的要求 1)通过毕业设计培养学生综合运用所学的基础理论、基础知识、基本技能进行分析和解决实际问题的能力。 2)使学生受到PLC系统开发的综合训练,达到能够进行PLC 系统设计和实施的目的。 3)使学生掌握利用PLC对温度进行PID控制方法。 三、主要技术指标 1、选用三菱FX2N系列可编程控制器作为主机 2、主要参数 温度范围:200—1050℃ 控制精度:±1℃ 输入电压:AC200—240V 消耗功率:2KW 外形尺寸:40×45×45cm 3、系统构成 通过一个温度传感器检测恒温箱的温度值并把它转换成标准电流(或电压)信号后,送到A/D转换模块,转换成的数字信号输送到PLC主机。PLC主机得到一个控制量,该控制量的大小决定PLC输出控制的继电器的导通时间,从而控制温度值的大小。 4、控制要求 采用PID控制算法,使PLC控制的恒温箱的温度变化能按照给定的曲线运行,如图所示

四、要求 1.设计电气控制原理图。 2、进行PLC的选择及I/O分配。 3、设计PLC硬件系统。 4、对系统所需电气元器件选型,编制电气元件明细表。 5、PLC控制程序设计。 五、主要参考书及参考资料 1、自动控制原理及系统 2、PLC及应用 、

目录 摘要 (1) 第1章可编程控制器基础知识 (2) 1.1 PLC的定义 (2) 1.2 PLC的类型选择 (3) 第2章可编程器的系统运用 (5) 2.1恒温箱工艺过程及控制要求 (5) 2.2模块功能指令 (9) 2.2.1展热电阻/热电偶模块用法 (9) 2.2.2系统输入输出控制 (10) 第3章恒温箱工作的基本原理 (13) 3.1恒温箱工作原理 (13) 3.2控制系统温度采集 (17) 3.3恒温控制装置PLC接线图 (19) 3.4系统的配置及I/O地址 (20) 3.5梯形图(附录) (21) 总结 (22) 致谢 (23) 附录 (24) 参考文献 (31)

恒温恒湿系统控制

——您身边的实验室工程专家 恒温恒湿系统控制 南京拓展科技有限公司是专业从事恒温恒湿、生物安全、理化检测等实验室整体规划设计、安装和运行保障为一体的高科技服务型企业,是实验室综合解决方案的提供者。 建设要求: 1、恒温恒湿室技术要求 a) 符合ISO、GB标准。 b) 根据甲方要求恒温恒湿实验室设置精度 c) 风速0.25m/s。 2、建筑要求 a) 建筑物周围无强磁场、震动、热源、异味、污染等。 b) 建筑物层高应在3.0m以上(梁下净空高度)。 3、恒温室建设要求 a) 送风方式为孔板式,上送风,下回风。 b) 室内净空高度为2.35-2.70m。 c) 无窗,减少门的数量。 d) 新建实验室的恒温室内不设上下水、供暖管线设施。改建实验室的恒温室内上下水、供暖管线设施应按规范作隔热防潮处理。 4、空调机房建设要求 a) 应建在有外墙的位置。 b) 独立供电系统和接地系统。 c) 设有上下水,下水作防异味处理。 5、保温墙面要求 λ=0.021~0.12Kcal/m·H·℃(λ=0.0244~0.1395w/m·k)范围内,吸水率不大于10%,热绝缘性能优,耐水性能好,难燃,绿色环保、尺寸稳定性能好的材料. 6、保温材料导热系数λ=0.0267~0.0289w/m·k,满足要求。

——您身边的实验室工程专家恒温恒湿空调系统的任务,是将室内的温湿度及洁净度控制在一定的波动范围内,以满足工业生产、科学研究等特殊场合对室内环境的要求。近年来,随着我国生产力的发展和科技水平的不断提高,恒温恒湿空调系统的应用场合越来越多,温湿度要求也不断提高。在电子、医药、计量、纺织、光学仪器和农业育种等领域,恒温恒湿空调系统的精度和可靠性直接关系着产品的品质以及实验结果的准确性。在系统的冷热源配置、空气热湿处理、气流组织和系统控制等方面均与舒适性空调系统存在较大差异。结合近年来典型工程实践,讨论恒温恒湿系统设计中需要注意的若干问题。 1. 室内环境参数的确定 恒温恒湿间室内环境参数的确定取决于产品、实验对像或实验设备的要求。不同的精度和可靠性等要求,往往使恒温恒湿系统的复杂性大不相同,也极大地关系到系统的初投资和运行费用。肓目地提高精度要求,往往会导致初投资和运行费用成倍增加;相反,如果精度要求过低,将可能直接导致生产、实验活动的失败。因此,在系统设计之前,需要暖通专业人员与使用方根据生产和实验对像的要求,准确地提出室内环境的要求。 主要包括: 1)控制区域。在某些生产、实验过程中,需要对整个房间的温湿度进行控制。但更多的情况是只须对特定的生产、实验区域进行严格控制。 2)基准温湿度。很多生产、实验要求基准温湿度为固定不变的值,例如很多计量实验要求的基准温度为22 ℃,一些纺织类的生产、实验要求基准相对湿度为65%。还有一些特殊的实验过程和气候室,要求室内的基准温湿度可以根据实验要求在较大范围内进行调整,此时需要确认其变化范围和变化时间。 3)温湿度精度。温湿度精度一般包括2方面的要求,即单一控制点的时间变化率和均匀度。在参数确认阶段,必须明确精度要求的涵义。均匀度要求一般针对温度精度,可以用垂直方向和水平方向的温度梯度要求的方式提出。 4)新风要求。新风要求一般根据室内工作人员数量提出。新风对室内环境扰动极大,因此新风量的确定应该尽可能合理、准确。由于一般恒温恒湿环境所需要的换气次数较多,因此不能采用最小新风比的方法确定。 5)可靠性要求。某些实验周期较长或重要的场合,对恒温恒湿环境的可靠性有明确要求,如要求系统可连续不间断运行若干时间。此时需要在设备的备用方面加以考虑。

恒温箱自动控制系统设计报告

恒温箱自动控制系统设计 【摘要】 本组设计的恒温箱自动控制系统主要由中央处理器、温度传感器、半导体制冷器、键盘、显示、声光报警等部分组成。处理器采用AVR Mega128单片机,温度传感器采用DS18B20,利用半导体制冷片一面制冷一面发热的工作特性进行升降温,用LCD12864作为显示输出。温度传感器检测到温度数据传送给单片机,单片机再将温度数据与给定值进行比较,从而发出对半导体制冷器的控制信号,使温度维系在给定值附近(偏差小于±2℃),同时单片机将数据送与显示器。【关键字】 单片机温度传感器半导体制冷器控制 一、设计方案比较 1.1总体设计方案 这里利用DS18B20芯片作为恒温箱的温度检测元件。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。单片机从外部的两位十进制拨码键盘进行给定值设定,读入的数据与给定值进行比较,根据偏差的大小,采用闭环控制的方法使控制量更加精准。控制结果通过液晶显示器LCD12864予以显示。 系统整体框图如图一所示: 图一、系统整体框图 1)温度检测元件的选择: 方案一:这里所设计的是测温电路,因此可以采用热敏电阻之类的器件利用其

感温效应,检测并采集出随温度变化而产生的电压或电流,进行A/D转换后送给单片机进行数据处理,从而发出控制信号。此方案需要另外设计A/D转换电路,使得温测电路比较麻烦。 方案二:上网查得温度传感器DS18B20能直接读出被测温度,并可根据实际要求通过简单的编程实现9~12位的数字值读取方式,它内部有一个结构为8字节的高速暂存RAM存储器。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。与方案一比较更加简单实用,因此我们选择方案二。 2)显示方案选择: 方案一:温度的显示可以用数码管,但数码管只能显示简单的数字,它有电路复杂,占用资源较多,显示信息少等缺点。 方案二:LCD12864汉字图形点阵液晶显示模块,可显示汉字及图形,内置 8192个中文汉字,128个字符及64×256点阵显示RAM。可显示内容:128列×64行,多种软件功能:光标显示、画面移位、自定义字符、睡眠模式等。我们设计的系统需要显示更多的信息,所以考虑显示功能更好的液晶显示,要求能显示更多的数据,增强显示信息的可读性,看起来更方便。所以选择方案二。 LCD12864接线方法如图二所示: 图二、LCD12864接线图 3)声光报警系统 采用蜂鸣器及三色LED组成声光报警系统。制冷时LED为红色,温度达到控制要求且上下浮动在1℃以内时为绿色,升温时为黄色。温度到达给定值的同时,蜂鸣器发出报警提示音。 二、理论分析与计算 实现温度的实时显示是由计算温度子程序将 RAM 中读取值进行 BCD 码的转换运算,并进行温度值正负的判定,从DS18B20读取出的二进制值必须先转换成十进制值,才能用于字符显示。因为 DS18B20 的转换精度为 9-12 位可选的,为了提高

单片机恒温箱温度控制系统的设计说明

课程设计题目:单片机恒温箱温度控制系统的设计 本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定围,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。 技术参数和设计任务: 1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。 2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。 3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。 4、温度超出预置温度±5℃时发出声音报警。 5、对升、降温过程没有线性要求。 6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输 7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。

一、本课程设计系统概述 1、系统原理 选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。2、系统总结构图 总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图: 图1系统总体框图 二、硬件各单元设计 1、单片机最小系统电路 单片机选用Atmel公司的单片机芯片AT89C2051 ,完全可以满足本系统中要求的采集、控制和数据处理的需要。单片机的选择在整个系统设计中至关重要,该单片机与MCS-51系列单片机高度兼容、低功耗、可以在接近零频率下工作等诸多优点,而广泛应用于各类计算机系统、工业控制、消费类产品中。 AT89C2051是AT89系列单片机中的一种精简产品。它是将AT89C51的P0口、P2口、EA/Vpp、ALE/PROG、PSEN口线省去后,形成的一种仅20引脚的单片机,相当于早期Intel8031的最小应用系统。这对于一些不太复杂的控制场合,仅有一片AT89C2051就足够了,是真正意义上的“单片机”。AT89C2051为很多规模不太大的嵌入式控制系统提供了一种极佳的选择方案,使传统的51系列单片机

恒温箱的控制设计毕业设计论文

摘要 温度与生物的生活环境密切相关,不同的生物或物体对温度的要求都不同。随着智能控制技术不断的发展,在现代工业生产以及科学实验的许多场合,为了获取生物或物体所需求的温度,需要及时准确的获取温度信息,同时完成对温度的预期控制,这时候温度检测与控制系统就显得尤其的重要。因此,温度检测系统的设计与研究一直备受广大科研者重视。 本次课题设计了一个低成本,高精度的恒温箱。该设计主要从硬件和软件两个方面出发: 1)在硬件上,选择AT89C52单片机为核心,采用了TL431组成2.5V的恒流源,并以Pt100温度传感器作为温度检测仪器,通过ICL7135模数转换器采集数据,用LED数码管作为显示器,构成了一个恒温箱; 2)在软件上,设计了温度检测算法,并在C语言编程环境下,编写了相应的程序来实现所设计的算法。最后通过Proteus ISIS与Keil的联合仿真,保证了算法的可行性。 通过仿真实验可以发现所设计的系统可以较好的检测、控制并且保持温度。但是由于温度调节的迟滞性以及设计上的不足,该系统具有一定的局限性。 关键词:温度检测;AT89C52单片机;恒温箱;C语言编程

ABSTRACT Temperature is closely related to life and environment. Different creature or object have different requirements to temperature. With the development of the intelligent-control- technology, and in order to arrive to the creature's or object's temperature-demand, we should take the information of temperature timely and accuratly, and control the temperature to the expected degree, in the modern industrial production and scientific experiment many occasions . I n this situation, the testing and controlling system for temperature is especially important. Therefore, the designs for temperature detection system attract researchers' attentions. In this dissertation, we designed a box with constant temperature which has low cost as well as high accuracy. We designed the system mainly from two aspects: hardware and software 1)Hardware's design: At first, we chosed AT89C52 SCM as the core of the system. And then we selected TL431 to compose the 2.5 V constant and Pt100 temperature sensor for testing temperature. At last, we collecte data througn the ICL7135 ADC and display data them on the LED. All of this consists of a the constant-temperature-box; 2)Software's design: In this papar, we designed a algorithm detecte temperature and implemented it based on the C programming language's environment. Finally we did a series of simulation experiment through the Proteus ISIS and Keil to ensure that the algorithm is feasible. Simulation results show that the system designed had a very good effect on temperature's detection, controlling and keeping . Because of the adjustmentand of the temperature and the insufficiency of the design, this system has some limitations. Keywords:Temperature detection;AT89C52 SCM; Box of constant temperature ; C language programming

恒温恒湿控制系统设计

生化处理的恒温恒湿控制系统设计 2007年第11期(总第108期) 宋奇光,伍宗富,梅彬运(湖南文理学院,湖南常德415000 ) 【摘要】以PLC为控制器,结合温度传感变送器、LED显示器等,组成 一个生化处理的恒温恒湿控制系统。使用温度传感变送器获得温度的感应电压, 经处理后送给PLC。PLC将给定的温度与测量温度的相比较,得出偏差量,然后 根据模糊控制算法得出控制量。执行器由开关频率较高的固态继电器开关担任, 采用PWM控制方法,改变同一个周期中电子开关的闭合时间。从而调节高温电 磁阀开关的导通时间,达到蒸汽控制目的。 【关键词】生化处理;PLC;恒温恒湿 引言 生化处理系统是食品工艺的关键设备。在此以米粉生产工艺中的生化处理系统的蒸汽温湿度控制进行实用设计,其温度控制在0~100℃,误差为±0.5℃,可用键盘输入设置温度及LED实时显示系统温度,采用模糊算法进行恒温控制,将数字处理控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,可以很大程度的提高控制效果和控制精度[1]。 1米粉生化处理的恒温恒湿系统现状与分析 1.1 现状 由于国内米粉生产设备厂家尚未掌握米粉的关键技术,使其制造的设备无法满足米粉生产的工艺要求。我们经过现场堪察,发现原有的连续式米粉生化处理恒温恒湿控制系统具有如下现状。 一是连续式米粉生化处理恒温恒湿箱的控制基本上是手动调节; 二是箱内各部位温度分布不均匀,实际温度波动太大(40-70℃),远远达不到生产要求(62.5℃±2.5℃),影响米粉的抗老化效果; 三是实际湿度也达不到生产要求,容易出现湿度偏高(米粉发泡)或者偏低(米粉起壳)的现象,严重影响米粉生产质量; 四是上层辅助加热管道分布不合理,容易使散落米粉焦化,影响产品质量。

组合式空调恒温恒湿的自动控制

组合式空调恒温恒湿的自动控制 【关健词】组合式空调恒温恒湿除湿 【摘要】如何符合特殊的生产线温湿度的使用要求,是空调系统及其控制系统设计的难题。组合式空调的自控系统较好地解决了这难题,它采用了除湿优先的控制方法,利用最小能量能使该系统达到恒温恒湿控制精度。 我国为了更加快速与国际形势市场接轨,在原加入WTO的基础上,历经金融风暴后,大多数医疗手术室、电子、烟草、化工、制药、食品、民用建筑、商场、工业厂房及印刷等洁净空间,都感觉到无形的压力。这样强迫他们不断地更新设备、更新工业、更新观念,不断提高产品档次,提高产品质量。特别是国内的喷涂生产线,他们从国外引入先进的机器人喷涂生产线替代即将淘汰残旧的设备。这种机器人喷涂生产线对环境要求很高,温湿度不稳均会影响产品的外观及喷涂率,甚至导致涂料成本增加、喷涂不匀等质量问题。面对这烦恼的问题,恰好遇到了组合式空调,它完全可以满足工艺要求。按国家相关标准要求,室内温度要求±1℃,相对湿度要求±5%。如何符合特殊的生产线温湿度的使用要求,成为了空调系统及其控制系统设计的难题。组合式空调的自控系统较好地解决了这难题,它典型结构如图1所示。 图1 组合式空调结构示意图 根据喷涂生产线对空气的质量精度要求不同、南北方气候差异,选配较合理功能段的组合式空调对空气进行混合、加热、冷却、加湿、除湿、过滤等处理也相当重要,满足车间温湿

度时积极提倡节能回收。除湿是恒温恒湿系统空气处理过程中必不可少的环节,在空调系统中常采用冷冻除湿技术。因为制冷系统既要控制温度又要控制湿度,而被控制室内的温湿度也是密切关联,所以较难符合被控制生产线所要求达到理想的温湿度精度。空气成分的温湿度是密切关联,如:温度精度≤±1℃与湿度精度≤±1%相比,湿度较难控制。因此±1%湿度所对应的温度精度≤±1℃。假设在12℃结露点上空气的含水率保持恒定,但空气温度在1.0℃之间变化,那么相对湿度就在47%和53%之间波动,0.2℃的空气温度变化将引起大于0.5%的相对湿度的变化。这一点可查空气H-D图(焓湿图)可以得到证明。组合式空调系统中表冷器有降温和除湿双重功能,致它接受两个控制量的控制,至于它在某一时刻接收那个信号控制,需要看哪个参数先满足要求而定。对于室内有散湿负荷,特别是湿负荷变化大的对象(生产线),无疑是十分合适的,因为它不是控制固定露点温度来确保室内相对湿度。虽然有人称它为无露点控制方式,但是这并不意味着经表冷器处理后的空气不必再处理到相应的露点温度。要除湿从原理上说,必须把空气处理到相应的露点.这样的控制方式把它称为不定露点温度控制。这样经此处理的冷气进入房间后,除非室内有大量显热负荷,在大多数情况下,都会导致室内过冷,相对湿度显得过高。实际运行过程中控制器选择的控制信号多半是来自湿度控制器的信号,于是避免冷热抵消,该系统将在消耗最低能量下运行。组合式空调是针对室外空气的经过过滤处理后用风机以一定的风量送往室内,来调节室内的空气。F6、F9袋式及G4板式的过滤器作用是除去空气中的细菌来提高空气洁净度;调节冰水比例阀控制表冷器冰水流量对空气进行制冷和除湿;调节加湿比例阀控制干蒸汽加湿器过热蒸汽流量对空气进行加湿处理;调节加热比例阀控制加热盘管过热蒸汽流量进行加热处理。自控系统采用西门子CPU226CN为控制核心的PLC,由温湿变送器采集0-10V的温湿度信号送到A/D模EM235,通过PLC的PID运算,输出D/A模块EM232由信号0-10V调节控制比例阀的运行控制温湿度;风量变送器采集0-10V的风量信号经过变换和计算,输出控制变频器的运行控制风量。所有控制状态和有关数据可以在触摸(HMI)监控显示。控制系统构成如图2所示,I/O接线示意图如图3所示,触摸屏(HMI)监控图如图4所示。

恒温箱控制系统

学科代码:080601 学号:101401010078 贵州师范大学(本科) 毕业论文 题目:恒温箱自动控制系统 学院:机械与电气工程学院 专业:电气工程及其自动化 年级:2010级 姓名:周康 指导教师:吴志坚(讲师) 完成时间:2014年5月5日

摘要 恒温箱主要是用来控制温度,它为农业研究、生物技术测试提供所需要的各种环境模拟条件,因此可广泛适用于药物、纺织、食品加工等无菌试验、稳定性检查以及工业产品的原料性能、产品包装、产品寿命等测试。恒温箱供科研机关及医院作细菌培养之用;也可以作育种、发酵以及大型养殖孵化等用途。恒温箱控制系统能够自动温度控制、人工干预温度控制、远程温度控制等多功能的高性能装置。可以形成规模化和产业化,大范围的应用到现代化工业生产。本论文结合工厂中如何实现恒温箱控制,讨论大多数工业生产情况下对恒温箱中的温度进行有效控制的方法。因此采用以单片机为基础的恒温箱控制系统,单片机系统包括89C52处理器、扩展存储器27512及6264,并行接口芯片8255、8253、ADC0809、8279、掉电保护和复位以及看门狗电路等。具体方法是使用铂锗-铂热电偶进行温度数据采集,经过放大和滤波电路进行A/D转换,转换后的值再根据标准分度表转换成温度值,同时显示出来。并且通过CAN总线传输控制参数 关键词: 单片机、恒温箱、热电偶、CAN总线 Abstract The thermostat is mainly used to control temperature. It can provide many kinds of simulated conditions which are needed for agricultural research and biological technology

温度控制恒温箱的设计和分析研究

1引言 恒温箱智能控制系统已广泛应用于社会和生活中的各个领域,在恒温箱的发展过程过程中,温度控制对恒温箱的设计是人类长期以来研究的重要课题。此论文主要研究恒温箱温度控制,硬件采用Proteus ISIS 7.8进行仿真,程序采用Keil 进行仿真。最后,硬件仿真与程序仿真结合便测试出所设计的效果。 1.1 研究背景及现状 温度控制是恒温箱的重要环节,对温度智能控制系统有重大意义。在日常生活中,可以用来保存食物;在工业中,可以保存工业原料以及一些产品的测试,其控制效果的好坏会对产品有直接影响;在农牧业中,可以育苗,可以饲养生物;在科研机构可以培养细胞;在生物研究中,可以为无菌试验创造有利的条件;一些高端电子设备的正常运行需要一定的温度环境。 上世纪70年代,温度控制系统在国外开始被研究。大约在80年代,国外温度控制系统发展迅猛,智能化等在科技中也有较大的成就。程美枫2014年在干燥箱温度中系统误差的分析中提出了用一定的方法发现和减小或消除系统误差[1];李颖2015年在0℃恒温装置的设计中提出一种便携式无线监控0℃恒温箱[2];孙宏健2016年在一种数字温度计的设计和校准中提出了由单片机与温度传感器组成的硬件设计方案[3];王一帜2017年在便携智能恒温箱的设计中研究了半导体制冷材料以及单片机的相互连接与信号转换,实现恒温控制及温度显示功能。 [4];赵静2018年在一种外循环式温度恒温箱设计中提出了用微小压力流体压强原理进行测量水介质外循环控温的恒温箱[5]。 本论文重点研究恒温箱温度的智能控制,首先对器件进行选择,然后通过仿真,分析恒温箱温度的设计以及应用领域。在研究温度控制系统时,对温度的参数设置进行分析对比,以达到最优效果。 1.2 本人主要工作 本论文首先对恒温箱硬件和软件的器件进行了选择。然后,选择并使用合适的软件进行温度测量,通过Proteus ISIS和Keil仿真,并对比温度的参数,来回控制,使温度控制在设置温度的上下。

恒温恒湿控制软件..

富田恒温恒湿控制软件 目录 一、引言 1、编写目的........................................3 2、参考资料.......................................3 3、术语和缩写词...................................3 二、软件概述..........................................4 1、产品介绍.......................................4 2、使用对象.......................................4 3、产品特点.......................................4 三、运行环境..........................................4 1、硬件环境..........................................4 2、软件环境.........................................5 四、系统软件安装、缷载................................5 1、安装程序.......................................5 2、卸载程序........................................8 五、软件功能介绍.......................................9 六、软件控制系统简介...................................9 1、温度控制程序简述..............................11 2、风机控制程序简介...............................13 3、PID控制系统程序简介............................13

基于单片机恒温箱控制器设计

唐山学院 测控系统原理课程设计 题目恒温箱控制器的设计 系 (部) 机电工程系 班级 姓名 学号 指导教师 2014 年 03 月 02 日至 03 月 13 日共两周 2014年 03 月 13 日

测控系统原理课程设计任务书 一、设计题目、内容及要求 1、设计题目:恒温箱控制器的设计 2、设计内容:运用所学单片机、模拟和数字电路、以及测控系统原理与设计等方面的知识,设计出一台以AT89C52为核心的恒温箱控制器,对恒温箱的温度进行控制。完成恒温箱温度的检测、控制信号的输出、显示及键盘接口电路等部分的软、硬件设计,A/D和D/A 转换器件可自行确定,利用按键(自行定义)进行温度的设定,同时将当前温度的测量值显示在LED上。 恒温箱控制器要求如下: 1)目标稳定温度范围为100摄氏度——50摄氏度; 2)以PID控制算法实现控制精度为±1度; 3)温度传感器输入量程:30摄氏度——120摄氏度,电流4——20mA; 4)加热器为交流220V,1000W电炉。 3、设计要求: 1)硬件部分包括微处理器(MCU)、D/A转换、输出通道单元、键盘、显示等; 2)软件部分包括键盘扫描、D / A转换、输出控制、显示等; 3)用PROTEUS软件仿真实现; 4)用Protel画出系统的硬件电路图; 5)撰写设计说明书一份(不少于2000字),阐述系统的工作原理和软、硬件设计方法,重点阐述系统组成框图、硬件原理设计和软件程序流程图。说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及硬件电路图和软件程序框图等材料。 二、设计原始资料 Proteus 及KEIL51仿真软件,及软件使用说明。 三、要求的设计成果(课程设计说明书、设计实物、图纸等) 设计说明书一份(不少于2000字)。

恒温箱温度控制系统设计

恒温箱温度控制系统设计 This model paper was revised by the Standardization Office on December 10, 2020

一·设计任务 恒温箱工作在70℃-80℃,精度℃,有越线报警。具有断电保护,报警等功能。 二·原理框图 三.总体方案 本次设计的以“AT89C52单片机”为核心,模数转换器和LED数码管为主的硬件电路。用C语言编写程序为软件。做成一个自动控制的恒温箱。其主要功能是通过数字温度传感器DS18B20实时测量箱内的温度,并及时的显示。并通过报警功能实时监控恒温箱的工作状态,同时采用后备电源实现断电保护功能。 四·系统器件分析 1、温度传感器 本实验采用数字温度传感器DS18B20,与传统的热敏电阻相比, 他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在和750ms内完成9位和12位的数字量, 并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线( 单线接口) 读写, 温度变换功率来源于数据总线, 总线本身也可以向所挂接的DS18B20供电, 而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高,成本更低。测量温度范围为~55℃~+125℃。C,在一10℃~+85℃。C 范围内,精度为±℃。DS1822的精度较差为±2℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。 2.单片机 本次设计选择AT89C52作为单片机,AT89C52是美国的ATMEL公司生产的CMOS8位单片机有着低电压,高性能的特性,片内含有8k bytes的可反复擦写 的只读程序存储器Flash和256 bytes的随机存取数据存储器,器件采用的是ATMEL公司的高密度、非易失性存储的技术生产,还兼容标准MCS-51系统指令,片内置通用Flash存储单元和8位中央处理器 3.报警 报警功能由蜂鸣器实现,当由于意外因素导致电阻炉温度高于设置温度时,单片机驱动蜂鸣器鸣叫报警。报警上限温度值为预置温度+5℃,即当前温度上升到高于预置温

基于单片机的恒温箱温度控制系统的设计

课程设计题目:单片机恒温箱温度控制系统的设计本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定范围内,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。 技术参数和设计任务: 1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。 2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。 3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到℃。 4、温度超出预置温度±5℃时发出声音报警。 5、对升、降温过程没有线性要求。 6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输 7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。 一、本课程设计系统概述 1、系统原理 选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。2、系统总结构图 总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图: 图1系统总体框图 二、硬件各单元设计 1、单片机最小系统电路

恒温箱的恒温控制系统 (2)

引言 (2) 1、恒温箱的简介 (4) 1.1 恒温箱的概况 (4) 1.2 恒温箱的工作过程 (6) 1.3恒温箱恒温控制原理 (6) 2、恒温箱恒温控制系统硬件分析 (8) 2.1 PLC结构与工作原理分析 (8) 2.1.1 PLC 的基本结构 (8) 2.1.2 PLC 各部分的作用 (8) 2.1.3 PLC工作原理 (9) 2.1.4 PLC控制系统的设计基本原则 (10) 2.2恒温箱恒温控制系统输入/输出电路分析 (11) 2.3温度检测模块分析 (13) 2.4模数转换模块分析 (14) 2.4.1 FX2N-4A/D的外部接线 (14) 2.4.2 FX2N-4A/D缓冲寄存器(BFM) (15) 2.4.3 FROM和TO指令说明 (15) 2.5数模转换模块分析 (16) 2.5.1 FX2N-4D/A的外部接线 (16) 2.5.2 FX2N-4D/A缓冲寄存器(BFM) (17) 3 恒温箱恒温控制系统软件分析 (17) 3.1恒温箱恒温控制流程分析 (17) 3.2模数转换控制程序分析 (19) 3.3 模数转换控制程序分析 (21) 3.4数码管显示程序分析 (21) 3.5 加热功率程序分析 (22) 感谢信 (26) 参考文献 (27)

引言

PLC,乃是一种电子装置,早期称为顺序控制器“Sequence Controller”,1978 NEMA美国国家电气协会正式命名为Programmable Logic Controller,PLC),其定义为一种电子装置,主要将外部的输入装置如:按键、感应器、开关及脉冲等的状态读取后,依据这些输入信号的状态或数值并根据内部储存预先编写的程序,以微处理机执行逻辑、顺序、定时、计数及算式运算,产生相对应的输出信号到输出装置如:继电器(Relay)的开关、电磁阀及电机驱动器,控制机械或程序的操作,达到机械控制自动化或加工程序的目的。并藉由其外围的装置(个人计算机/程序书写器)轻易地编辑/修改程序及监控装置状态,进行现场程序的维护及试机调整。而普遍使用于PLC程序设计的语言,即是梯形图(Ladder Diagram)程序语言。 PLC具有可靠性高,配套齐全,功能完善,适用性强,体积小,重量轻,能耗低等特点,易学易用,深受工程技术人员欢迎。PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。 而随着电子科技的发展及产业应用的需要,PLC的功能也日益强大,例如位置控制及网络功能等,输出/入信号也包含了DI、AI、PI及NI ,DO、AO 、PO 及NO,因此PLC在未来的工业控制中,仍将扮演举足轻重的角色。 我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。最初是在引进设备中大量使用了可编程控制器。接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。目前,我国自己已可以生产中小型可编程控制器。上海东屋电气有限公司生产的CF系列、杭州机床电器厂生产的DKK及D系列、大连组合机床研究所生产的S系列、苏州电子计算机厂生产的YZ系列等多种产品已具备了一定的规模并在工业产品中获得了应用。此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较著名的PLC生产厂家。可以预期,随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。

恒温恒湿控制

摘要:某恒温实验室的恒温精度为27±0.2℃,但是由于实验室的特殊性,恒温室的内外扰量多且某些随机扰量的大小难于确定,而导致了其恒温精度很难达到预期效果。为了解决这个问题,通过建立恒温室被控对象的数学模型求出其传递函数,然后采用参数寻优方法确定PID控制器的参数,最后采用MA TLAB仿真的方法,研究恒温室内外扰量对房间温度的影响。通过研究,可以得出,当设备散热干扰量为14.7℃以及送风温度干扰量为0.1℃,渗透风干扰量不大于0.3℃时,PID控制才能保证恒温室的恒温精度。 关键词:恒温室,PID控制渗透风干扰量参数寻优温度 1 前言 随着科学技术的发展,各类精密产品的生产制造以及特种科学实验都要求具有特定的工作环境,恒温就成为了不可缺少的条件之一。目前我国常见的恒温室的恒温精度为±1℃及±0.5℃,也有±0.1℃。而一些高精度的恒温室如光学仪器厂的刻线室恒温精度已达到了±0.0056℃。但是在某些特殊的科学实验室不仅恒温精度很高,而且干扰量多如渗透风、设备散热、送风温度波动以及电热器供电电压的波动等,且某些干扰量如渗透风其最大值难于确定而没有采用相应的措施控制渗透风扰量,导致了房间温度的波动过大,结果使恒温室的恒温精度很难达到要求。如何使这些特殊的科学实验室恒温精度达到使用要求,也成为了恒温室的空调系统和控制系统设计的一个巨大的难题。 由于传统的PID控制算法,其运算简单、调整方便、鲁棒性强, 在过程控制中, 这种控制算法仍占据相当重要的地位.故目前恒温室的空调系统大部分采用PID控制。但PID控制的效果如何, 在很大程度上是取决于控制器参数的正确整定。为此, 人们提出了各种不同的参数整定方法, 如误差积分最小、固定衰减比、极点配置等方法. 这些方法主要是用经典控制理论中的一些设计方法或者依靠现场试验方法来进行PID控制器参数的计算与整定. 显然, 这就要求操作人员具有较高的理论基础和现场调试经验. 而且, 被控对象模型参数难以确定以及系统性能稳定性较差, 则需频繁地进行参数整定, 这必将影响系统的正常运行。对于这些特殊的空调房间温度的控制,由于被控对象具有较大的惯性和迟延,且受各种因素变化的影响,因此对象的传递函数具有非线性和时变特性,采用传统的PID控制难于取得较好的控制效果。 本文采用单纯形法寻优PID参数,然后采用MATLAB仿真确定渗透风干扰量的最大值,PI D控制才能保证恒温室的恒温精度。 2 工程概况 恒温室建筑面积625m2, 层高2.8m,总送风量27500 m3/h, 送风温度13.5℃,房间设计温度27±0.2℃,设备散热量135KW,恒温室建筑墙体、地板采用绝热材料,渗透风来自外部房间其设计温度26±1℃。 3 恒温室空调过程建模 3.1 恒温室空调系统被控对象的数学模型

相关主题
文本预览
相关文档 最新文档