当前位置:文档之家› 线性规划实例

线性规划实例

线性规划实例
线性规划实例

线性规划实例

例1

任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?

解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型:

编写M 文件lp1.m 如下:

f = [13 9 10 11 12 8];

A = [0.4 1.1 1 0 0 0

0 0 0 0.5 1.2 1.3];

b = [800; 900];

Aeq=[1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1];

beq=[400 600 500];

vlb = zeros(6,1); %产生一个6行、1列的零矩阵

vub=[];

[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

结果:

x =

0.0000

600.0000

6543218121110913min x x x x x x z +++++= ???????????=≥≤++≤++=+=+=+6,,2,1,09003.12.15.08001.14.0500600400x ..6543216352

41 i x x x x x x x x x x x x t s i

0.0000

400.0000

0.0000

500.0000

fval =1.3800e+004

即在甲机床上加工600个工件2,在乙机床上加工400个工件1、500个工件3,可在满足条件的情况下使总加工费最小为13800。

例2

某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?

解 设需要一级和二级检验员的人数分别为x1、x2人,则应付检验员的工资为:

因检验员错检而造成的损失为:

目标函数为:

约束条件为:

作业:

212124323848x x x x +=??+??21211282)%5158%2258(x x x x +=????+???2121213640)128()2432(m in x x x x x x z +=+++=???????≥≥≤??≤??≥??+??0

,0180015818002581800158258212121x x x x x x 213640m in x x z +=???????≥≥≤≤≥+0

,015

945

35 ..2121

21x x x x x x t s

编写M 文件lp2.m 如下:

c = [40;36];

A=[-5 -3];

b=[-45];

Aeq=[];

beq=[];

vlb = zeros(2,1);

vub=[9;15];

%调用linprog 函数:

[x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)

结果为:

x =

9.0000

0.0000

fval =360

即只需聘用9个一级检验员。

作业:

某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:

1)若投资0.8万元可增加原料1千克,问应否作这项投资.

2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.

()???

? ??=213640min x x z s.t. ())45(3521-≤???? ??--x x 改写为:

线性规划案例

附录2 线性规划案例 Appendix 2 Projects of Linear Programming 案例1 食油生产问题(1) 食油厂精炼两种类型的原料油——硬质油和软质油,并将精制油混合得到一种食油产品。硬质原料油来自两个产地:产地1和产地2,而软质原料油来自另外三个产地:产地3,产地4和产地5。据预测,这5种原料油的价格从一至六月分别为: 产品油售价为200元/吨。 硬质油和软质油需要由不同的生产线来精炼。硬质油生产线的每月最大处理能力为200吨,软质油生产线最大处理能力为250吨/月。五种原料油都备有贮罐,每个贮罐的容量均为1000吨,每吨原料油每月的存贮费用为5元。而各种精制油以及产品无油罐可存贮。精炼的加工费用可略去不计。产品的销售没有任何问题。 产品食油的硬度有一定的技术要求,它取决于各种原料油的硬度以及混合比例。产品食油的硬度与各种成份的硬度以及所占比例成线性关系。根据技术要求,产品食油的硬度必须不小于3.0而不大于6.0。各种原料油的硬度如下表(精制过程不会影响硬度):

假设在一月初,每种原料油都有500吨存贮而要求在六月底仍保持这样的贮备。 问题1:根据表1预测的原料油价格,编制逐月各种原料油采购量、耗用量及库存量计划,使本年内的利润最大。 问题2:考虑原料油价格上涨对利润的影响。据市场预测分析,如果二月份硬质原料油价格比表1中的数字上涨X%,则软质油在二月份的价格将比表1中的数字上涨2X%,相应地,三月份,硬质原料油将上涨2X%,软质原料油将上涨4X%,依此类推至六月份。试分析X从1到20的各情况下,利润将如何变化? 案例2 食油生产问题(2) 在案例1中,附加以下条件,求解新的问题: 1.每一个月所用的原料油不多于三种。 2.如果在某一个月用一种原料油,那么这种油不能少于20吨。 3.如果在一个月中用了硬质油1或硬质油2,则在这个月中就必须用软质油5。案例3 机械产品生产计划问题 机械加工厂生产7种产品(产品1到产品7)。该厂有以下设备:四台磨床、两台立式钻床、三台水平钻床、一台镗床和一台刨床。每种产品的利润(元/件,在这里,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的工时(小时)如下表。表中的短划表示这种产品不需要相应的设备加工。

怎么利用EXCEL求解线性规划

利用线性回归方法求解生产计划 方法一: 1、建立数学模型: ①设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润 ②确定目标函数及约束条件 目标函数:y = max+ 115 P90 x 约束条件:200 x .....................⑴ +y 10≤ 20 x .....................⑵ 4≤ +y 16 128 x .....................⑶ +y 10 15≤ 220 y x ..........................⑷ ,≥ 2、在Excel中求解线性规划 ①首先,如图1所示,在Excel工作表格输入目标函数的系数、约束方程的系数和右端常数项: 图1 ②将目标方程和约束条件的对应公式输入各单元格中 F2=MMULT(B6:C6,F6:F7); F3=MMULT(B3:C3,F6:F7); F2=MMULT(B4:C4,F6:F7); F2=MMULT(B5:C5,F6:F7);

出现图2样式: 图2 线性规划问题的电子表格模型建好后,即可利用“线性规划”功能进行求解。 选择“工具”→“规划求解”出现“规划求解参数”窗口,如图3所示: 图3 在该对话框中,目标单元格选择F2,问题类型选择“最大值”,可变单元格选择F6:F7,点击“添加”按钮,弹出“添加约束条件”窗口,如图4所示: 图4

根据所建模型,共有4个约束条件,针对约束(1):20 x, +y 20 10≤ 左端“单元格所引用位置”选择F3,右端“约束值”选择D3,符号类型选择“<=”,同理继续添加约束(2)(3)(4),完成后选择“确定”,回到“规划求解参数”对话框,如5图所示: 图5 ④点击“选项”按钮,弹出“规划求解选项”对话框,选择“采用线性模型”和“假定非负”两项,如图6所示: 图6 ⑤点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果: 运算结果报告:

线性规划应用案例

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的

第五章运筹学 线性规划在管理中的应用案例

第五章线性规划在管理中的应用 5.1 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。可用的机器设备是限制新产品产量的主要因素,具体数据如下表: 量,使得公司的利润最大化。 1、判别问题的线性规划数学模型类型。 2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。 3、建立该问题的线性规划数学模型。 4、用线性规划求解模型进行求解。 5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。 6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。 解: 1、本问题是资源分配型的线性规划数学模型。 2、该问题的决策目标是公司总的利润最大化,总利润为: 0.5x1+ 0.2x2+ 0.25x3 决策的限制条件: 8x1+ 4x2+ 6x3≤500 铣床限制条件 4x1+ 3x2≤350 车床限制条件 3x1+ x3≤150 磨床限制条件 即总绩效测试(目标函数)为: max z= 0.5x1+ 0.2x2+ 0.25x3 3、本问题的线性规划数学模型 max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x1≥0、x2≥0、x3≥0 4、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。 5、灵敏度分析

目标函数最优值为 : 30 变量最优解相差值 x1 50 0 x2 25 0 x3 0 .083 约束松弛/剩余变量对偶价格 1 0 .05 2 75 0 3 0 .033 目标函数系数范围 : 变量下限当前值上限 x1 .4 .5 无上限 x2 .1 .2 .25 x3 无下限 .25 .333 常数项数范围 : 约束下限当前值上限 1 400 500 600 2 275 350 无上限 3 37.5 150 187.5 (1)最优生产方案: 新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。最大利润值为30元。 (2)x3 的相差值是0.083意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润0.25元/件,提高到0.333元/件。 (3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时; 三个对偶价格0.05,0,0.033表明三种机床每增加一个工时可使公司增加的总利润额。 (4)目标函数系数范围 表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。 (5)常数项范围 表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在37.5到187.5工时之间。各自每增加一个工时对总利润的贡献0.05元,0元,0.033元不变。 6、若产品Ⅲ最少销售18件,修改后的的数学模型是: max z= 0.5x1+ 0.2x2+ 0.25x3 S.T.8x1+ 4x2+ 6x3≤500 4x1+ 3x2≤350 3x1+ x3≤150 x3≥18 x1≥0、x2≥0、x3≥0 这是一个混合型的线性规划问题。 代入求解模板得结果如下: 最优解(44,10,18),最优值:28.5元。 灵敏度报告: 目标函数最优值为 : 28.5 变量最优解相差值 x1 44 0 x2 10 0

使用Excel规划求解解 线性规划问题

使用Excel规划求解解线性规划问题 引言 最近,开始学习运筹学,期望通过学习后能够解决许多困扰自已的难题。 刚开始时,选了很多教材,最后以Hamdy A.Taha著的《Operations Research:An Introduction》开始学习。(该书已由人民邮电出版社出版,书名《运筹学导论-初级篇(第8版)》,不知为什么,下载链接中只有该书配套的部分习题解答,而书中所说的光盘文件找不到下载的地方,因为中译本没有配光盘,因此也就错过了许多示例文件。不知道哪位有配套光盘文件,可否共享???) 线性规划求解的基本知识 线性规划模型由3个基本部分组成: ?决策变量(variable) ?目标函数(objective) ?约束条件(constraint) 示例:营养配方问题 (问题)某农场每天至少使用800磅特殊饲料。这种特殊饲料由玉米和大豆粉配制而成,含有以下成份: 特殊饲料的营养要求是至少30%的蛋白质和至多5%的纤维。该农场希望确定每天最小成本的饲料配制。 (解答过程) 因为饲料由玉米和大豆粉配制而成,所以模型的决策变量定义为: x1=每天混合饲料中玉米的重量(磅) x2=每天混合饲料中大豆粉的重量(磅) 目标函数是使配制这种饲料的每天总成本最小,因此表示为: min z=0.3×x1+0.9×x2 模型的约束条件是饲料的日需求量和对营养成份的需求量,具体表示为: x1+x2≥800 0.09×1+0.6×2≥0.3(x1+x2) 0.02×1+0.06×2≤0.05(x1+x2) 将上述不等式化简后,完整的模型为:

min z=0.3×1+0.9×2 s.t.x1+x2≥800 0.21×1-0.3×2≤0 0.03×1-0.01×2≥0 x1,x2≥0 可以使用图解法确定最优解。下面,我们介绍使用Excel的规划求解加载项求解该模型。使用Excel规划求解解线性规划问题 步骤1安装Excel规划求解加载项 单击“Office按钮——Excel选项——加载项——(Excel加载项)转到”,出现“加载宏”对话框,如下图所示。选择“规划求解加载项”,单击“确定”。 此时,在“数据”选项卡中出现带有“规划求解”按钮的“分析”组,如下图所示。 步骤2设计电子表格 使用Excel求解线性规划问题时,电子表格是输入和输出的载体,因此设计良好的电子表格,更加易于阅读。本例的电子表格设计如下图所示:

线性规划的实际应用

线性规划的实际应用 摘 要:线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 关键词:研究性学习;线性规划,教学改革 随着当前基础教育的改革的深入,研究性学习成为当前基础教育的一个热点,引起了教育界和社会的广泛关注,也成为当前培养学生能力的一个崭新的课题。我们本着教学过程始于课内,终于课外的原则对线性规划的实际应用进行研究。主要是把实际问题抽象为数学模型,使其在约束条件下,找到最佳方案。也就是说求线性目标函数在线性约束条件下的最大值和最小值问题。 一. 线性规划问题 在实际社会活动中遇到这样的问题:一类是当一项任务确定后,如何统筹 安排,尽量做到最少的资源消耗去完成;另一类是在已有的一定数量的资源条件下,如何安排使用它们,才能使得完成的任务最多。 例如1-1:某工厂需要使用浓度为的硫酸10,而市场上只有浓度为,0080kg 00600 070和的硫酸出售,每千克价格分别为8元,10元,16元,问应购买各种浓度的硫酸各多0090少?才能满足生产需求,且所花费用最小? 设取浓度为,,的硫酸分别为千克,总费用为,则 006000700090321,,x x x Z s.t ?? ?=++=++8 9.07.06.010 321321x x x x x x ) 3,2,1,0(16108321=≥++=j x x x x Z j 例如1-2:某工厂生产甲,乙两种产品,已知生产甲产品需要种原料不超过3千克,但 A 每千克甲产品需要种原料为2千克;生产乙产品需要种原料不超过4.5千克,但每千克C B 乙产品需要种原料为3千克。每千克甲产品的利润为3元,每千克乙产品的利润为4元, C 工厂生产甲,乙两种产品的计划中要求所耗的种原料不超过15千克,甲,乙两种产品各应C 生产多少,能使的总利润最大? 设生产甲,乙两种产品分别为千克,利润总额为元,则 21,x x Z s.t ???????≥≤+≤≤0 ,15325.43212121x x x x x x 2143x x Z +=二. 线性规划问题的模型 1.概念 对于求取一组变量使之既满足线性约束条件,又使具有线 ),,3,2,1(n j x j ???=性目标函数取得最值的一类最优问题称为线性规划问题。

线性规划案例分析

2.某市柴油机厂年度产品生产计划的优化研究 1)问题的提出 某市柴油机厂是我国生产中小功率柴油机的重点骨干企业之一,主要产品有2105柴油机、 X2105柴油机、X4105柴油机、X4110柴油机、X6105柴油机、X6110柴油机,产品市场占 有率大,覆盖面广,广泛用于农业机械、工程机械、林业机械、船舶、发电机组等。在同行 业中占有一定的优势。但另一方面,也确实存在管理方法陈旧、管理手段落后的实际问题, 尤其是随着经济体制改革的深入,以前在计划经济体制下生存的国营企业越来越不适应市场 经济的要求。为改变这种不利局面,厂领导决定实行科学管理,其中努力提高企业编制产品 生产计划的科学性是一个重要的目标。 2)生产现状及资料分析 柴油机的主要生产过程为原材料经过锻造、铸造或下料,再进行热处理、机加工工序,进入 总装,最后试车、装箱、入成品库。该厂将毛坯生产工艺,即锻造、铸造或下料过程渐渐向 外扩散,形成专业化生产,以达到规模效益,故该厂柴油机生产过程主要可以分三大类:热 处理、机加工、总装。与产品生产有关的数据资料如下: 每种产品的单位产值如下表: 序号产品型号及产品名称单位产值(元) 1 2105柴油机5400 2 X2105柴油机6500 3 X4105柴油机12000 4 X4110柴油机14000 5 X6105柴油机18500 6 X6110柴油机20000 每件产品所需的热处理、机加工、总装工时及全厂能提供的三种总工时如下表:序号产品型号及产品名称热处理(工时) 机加工(工时) 总装(工时) 1 2105柴油机10.58 14.58 17.08 2 X2105柴油机11.0 3 7.05 150 3 X4105柴油机20.11 23.96 29.37 4 X4110柴油机32.26 27.7 33.38 5 X6105柴油机37.68 29.3 6 55.1 6 X6110柴油机40.84 40.43 53.5 全年提供总工时120000 95000 180000 产品原材料主要是生铁、焦碳、废钢、钢材四大类资源,供应科根据历年的统计资 料及当年的原材料市场情况,给出了各种原材料的最大供应量如下表: 原材料名称生铁(吨) 焦碳(吨) 废钢(吨) 钢材(吨) 最大供应量1562 951 530 350 单位产品原材料消耗情况如下表: 序号产品型号及名称生铁(吨) 焦碳(吨) 废钢(吨) 钢材(吨) 1 2105柴油机0.18 0.11 0.06 0.04 2 X2105柴油机0.19 0.12 0.06 0.04 3 X4105柴油机0.35 0.22 0.12 0.08 4 X4110柴油机0.36 0.23 0.13 0.09 5 X6105柴油机0.54 0.33 0.18 0.12

最新单纯形法解线性规划问题

一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题 s.t. 解:1)、将该线性问题转为标准线性问题 一、第一阶段求解初始可行点 2)、引入人工变量修改约束集合 取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。 2 -2 -1 1 2 1 1 -1 -1 1 2 -1 -2 1 2 5 -2 -4 1 -1 1 5 0 0 0 0 0 3)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。 2 -2 -1 1 2 1 1 1 -1 -1 1 0 2 -1 -2 1 2 0 5 -2 -4 1 -1 1 5 1 0 0 0 0 0 0 1 0 0 0 4)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。同时将以改变的决策变量转换为状态变量。增加的值使目标函数值更小。 1 -3 1 1 1 0 1 1 -1 1

1 -3 1 1 1 0 0 0 0 0 0 0 0 5)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为, 二、第二阶段用单纯形法求解最优解 -2 2 1 0 1 1 -1 0 -2 1 2 1 5 1 3 要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。

2、求解问题 s.t. 如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最 大值变达成c的函数。 解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。 1)将问题华为标准线性问题 s.t. 2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解 10 -1 -1 -1 10 -20 1 5 1 -20 -2 -1 -1 0 0 0 0 要使目标函数继续减小,可以增大,增大的限值是10。 10 -1 -1 -1 10 0 -20 1 5 1 -20 -10 -2 -1 -1 0 -20 0 0 0 10 0 0 3)转轴。将为零的松弛变量和决策变量交换进行转轴 10 -1 -1 -1 10 -10 4 0 -1 -10 0 -20 1 1 2 -20

Matlab程序 0-1整数线性规划

0-1整数线性规划Matlab程序 x = bintprog(f) x = bintprog(f, A, b) x = bintprog(f, A, b, Aeq, beq) x = bintprog(f, A, b, Aeq, beq, x0) x = bintprog(f, A, b, Aeq, Beq, x0, options) [x, fval] = bintprog(...) [x,fval, exitflag] = bintprog(...) [x, fval, exitflag, output] = bintprog(...) 这里x是问题的解向量 f是由目标函数的系数构成的向量 A是一个矩阵,b是一个向量 A,b和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件 A,b是系数矩阵和右端向量。 Aeq和Beq表示了线性规划中等式约束条件中的系数矩阵和右端向量。 X0是给定的变量的初始值 options为控制规划过程的参数系列。 返回值中fval是优化结束后得到的目标函数值。 exitflag=0表示优化结果已经超过了函数的估计值或者已声明的最大迭代次数;

exitflag>0表示优化过程中变量收敛于解X, exitflag<0表示计算不收敛。 output有3个分量, iterations表示优化过程的迭代次数, cgiterations表示PCG迭代次数, algorithm表示优化所采用的运算规则。 在使用linprog()命令时,系统默认它的参数至少为1个, 但如果我们需要给定第6个参数,则第2、3、4、5个参数也必须给出,否则系统无法认定给出的是第6个参数。遇到无法给出时,则用空矩阵“[]”替代。 例如 max=193*x1+191*x2+187*x3+186*x4+180*x5+185*x6; %f由这里给出st. x5+x6>=1; x3+x5>=1; x1+x2<=1; x2+x6<=1; x4+x6<=1; %a、b由不等关系给出,如没有不等关系,a、b取[] x1+x2+x3+x4+x5+x6=1; %aep、bep由等式约束给出 代码如下 f=[-193;-191;-187;-186;-180;-185;];

运用Matlab进行线性规划求解(实例)

线性规划 线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。 8.2.1 基本数学原理 线性规划问题的标准形式是: ????? ??????≥=+++=+++=++++++=0,,,min 21221122222121112 121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z 或 ???? ?????=≥===∑∑==n j x m i b x a x c z j n j i j ij n j j j ,,2,1,0,,2,1,min 1 1 写成矩阵形式为: ?? ???≥==O X b AX CX z min 线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。不符合这几个条件的线性模型可以转化成标准形式。 MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。 8.2.2 有关函数介绍 在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。 linprog 函数的调用格式如下: ●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。 ●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。若没有不等式约束,则令A=[ ],b=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。若没有等式约束,令Aeq=[ ],beq=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。该选项只适用于中型问题,默认时大型算法将忽略初值。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options):用options 指定的优化参数进行最小化。 ●[x,fval]=linprog(…):返回解x 处的目标函数值fval 。 ●[x,lambda,exitflag]=linprog(…):返回exitflag 值,描述函数计算的退出条件。 ●[x,lambda,exitflag,output]=linprog(…):返回包含优化信息的输出参数output 。 ●[x,fval,exitflag,output,lambda]=linprog(…):将解x 处的拉格朗日乘子返回到lambda 参数中。

线性规划理论在实际问题中的应用

Ⅰ线性规划理论在实际问题中的应用 ⅰ问题背景描述 线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。把线性规划的知识运用到企业中,企业就有必要利用线性规划的知识对战略计划,生产,销售的各个环节进行优化,从而降低生产成本,提高企业的生产效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前矛,有85%的公司频繁地使用线性规划,并取得了显著提高经济效益的效果。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其

有利的条件。线性规划已经成为现代化管理的一种重要的手段。 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际内容,要明确目标函数和约束条件,通过表格的形式把问题中的已知条件和各种数据进行整理分析,从而找出约束条件和目标函数。 从实际问题中建立数学模型一般有以下三个步骤; 1.根据影响所要达到目的的因素找到决策变量; 2.由决策变量和所在达到目的之间的函数关系确定目标函数; 3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。 所建立的数学模型具有以下特点: 1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。 2、目标函数是决策变量的线性函数根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。 3、约束条件也是决策变量的线性函数。 当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。 线性规划模型的基本结构:

表格法解线性规划问题

表格法解线性规划问题 【教学目标】 知识目标:理解用表格法解线性规划问题的方法和步骤. 能力目标:通过例子详细地介绍了表格法解线性规划问题的过程,并引入了线性规划标准型的概念,归纳总结了表格法 解线性规划问题的步骤. 【教学重点】理解用表格法解线性规划问题的方法和步骤. 【教学难点】理解用表格法解线性规划问题的方法和步骤. 【教学设计】 1、表格法也称单纯形法,是解线性规划问题的常用方法,使用该 方法时,首先要将一般的线性规划问题化为标准型.在教材中给出了化标准型的方法.讲解时一定要注意b≥0以及变量的非负性. 2、表格法解线性规划问题的过程,教材中归纳为五个步骤,这实 际上是一个算法,可以利用前面介绍过的算法知识来学习. 3、初始表格中初始解组的确定是关键,一般可取松弛变量,但当 标准型中没有这样的变量满足初始解组的要求时,通常要通过添加人工变量来解决,本教材没有就这方面的问题进行深入讨论(一般的运筹学教材中都可找到该容). 4、表格在转换时(通常称为转轴),教材中提到用加减消元法来转 轴.教师可就这部分容作适当的讲解. 5、由于通常的表格转换要进行多次,而表头部分是不变的,因此 可以将多表格合并起来,具体样式可参见5.5节表5-16.

【教学过程】 5.3.1线性规划问题的标准形式 求线性规划问题的图解法虽然直观简便,但对多于两个变量的情况就不能适用了,对于多于两个决策变量的线性规划问题,可以用什么方法呢? 下面介绍一种用表格的方法来求解线性规划问题的解. 表格法是根据单纯形法而专门设计的一种计算表格. 单纯形法(Simple Method )是求解线性规划问题的主要方法,该法由丹赛(Dantzig )于1947年提出,后经过多次改进而成,是求解线性规划问题的实用算法.由上节的叙述可知,如果线性规划问题的最优解存在,则必定可以在其可行解集合的顶点(极点)中找到.因此,寻求一个最优解就是在其可行域的各个极点中搜索最优点.单纯形法实质上是一个迭代过程,该迭代即是从可行域的一个极点移到另一个近邻的极点,直到判定某一极点为最优解为止. 为使用表格法,首先介绍线性规划问题的标准形式. 一般的线性规划问题中目标函数可能是求最大(或最小)值,而线性约束条件中可能是线性方程,也可能是线性不等式,约束条件中约束方程(或不等式)的个数也未必就比决策变量的个数少,这些问题对于线性规划的求解,带来极大的不便,为此,引入下述标准形式: 求目标函数最大值 n n x c x c x c x c Z ++++=...m ax 332211 (用和式表示为j j n j x c Z ∑==1max )

实例matlab-非线性规划-作业

实例matlab-非线性规划-作业

现代设计方法-工程优化理论、方法与设计 姓名 学号 班级 研 问题 : 某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台。每季度的生产费用为 (元),其中x 是该季生产的台数。若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c 元。已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问工厂应如何安排生产计划,才能既满足合同又使总费用最低。讨论a 、b 、c 变化对计划的影响,并作出合理的解释。 问题的分析和假设: 问题分析:本题是一个有约束条件的二次规划问题。决策变量是工厂每季度生产的台数,目标函数是总费用(包括生产费用和存储费)。约束条件是生产合同,生产能力的限制。在这些条件下需要如何安排生产计划,才能既满足合同又使总费用最低。 问题假设: 1、工厂最大生产能力不会发生变化; 2、合同不会发生变更; 3、第一季度开始时工厂无存货; 4、生产总量达到180台时,不在进行生产; 5、工厂生产处的发动机质量有保证,不考虑退货等因素; 6、不考虑产品运输费用是否有厂家承担等和生产无关的因素。 符号规定: x1——第一季度生产的台数; x2——第二季度生产的台数; 180-x1-x2——第三季度生产的台数; y1——第一季度总费用; y2——第二季度总费用; y3——第三季度总费用; y ——总费用(包括生产费用和存储费)。 ()2bx ax x f +=

建模: 1、第一、二、三季度末分别交货40台、60台、80台; 2、每季度的生产费用为 (元); 3、每季度生产数量满足40 ≤x1≤100,0≤x2≤100,100≤x1+x2 ≤180; 4、要求总费用最低,这是一个目标规划模型。 目标函数: y1 2111x b x a Z ?+?= y2()4012222-?+?+?=x c x b x a Z y3()()()10018018021221213 -+?+--?+--?=x x c x x b x x a Z y x x x x x x Z Z Z Z 68644.04.04.0149201 212221321--+++=++= 40≤x1≤100 0≤x2≤100 100≤x1+x2≤180 ()2 bx ax x f +=

巧用线性规划思想解题

巧用线性规划思想解题 当约束条件或目标函数不是线性规划问题,但其几何意义明显时,仍可利用线性规划的思想来解决问题,从而使解题思路拓宽,提高解题能力. 一、 函数问题转化为线性规划问题 例1 如图1,x y ,满足的可行域是图中阴影部分(包括边界).若函数2t ax y =-在 点(05),取得最小值,求a 的取值围. 解:由图1易得x y ,满足的约束条件为5026000.x y x y x y +-?? +-?????, , ,≤≤≥≥ 将目标函数2t ax y =-改为斜截式22a t y x =-,2 t -表示直线 在y 轴上的截距,欲求t 的最小值,可转化为求2 t -的最大值. 当0a ≥时,显然直线在点(05),处,2 t -取得最大值; 当0a <时,依题意,12 a -≥,易得20a -<≤. 综上所述,2a -≥时,函数2t ax y =-在点(05), 取得最小值. 二、 方程问题转化为线性规划问题 例2 已知a b +∈R ,,若方程2 20x ax b ++=与方程2 20x bx a ++=都有实数根, 求a b +的最小值. 解:由题意,得220,0,80440a b a b b a >??>??-??-?,,≥≥即220, 0,8.a b a b b a >??>? ???? ,≥≥ 画出其可行域为如图2所示阴影部分. 令t a b =+,故要求a b +的最小值,即求过可行域的点,使得b t a =-在b 轴上截距最小的点的坐标.由图知,A 点即为所求. 由228. a b b a ?=??=??,解得42a b ==,. a b ∴+的最小值为6.

线性规划的应用(简介和案例)

线性规划的应用 线性规划是运筹学中一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。广泛应用于军事作战、经济分析、经营管理和工程技术等方面。如:经济管理、交通运输、工农业生为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 线性规划作为运筹学的一个研究较早、发展较快、应用广泛、方法较成熟的重要分支,它在日常生活中的典型应用主要有:1合理利用线材问题:如何下料使用材最少 2配料问题:在原料供应量的限制下如何获取最大利润 3投资问题:从投资项目中选取方案,使投资回报最大 4产品生产计划:合理利用人力、物力、财力等,使获利最大 5劳动力安排:用最少的劳动力来满足工作的需要 6运输问题:如何制定调动方案,使总运费最小 其实,也就是说,线性规划在运筹学中的研究对象主要是在有一定的人力、财力、资源条件下,如何合理安排使用,效益最高和在某项任务确定后,如何安排人、财、物,使之最省。 例如: 某公司现有三条生产线来生产两种新产品,其主要数据如表1.1所示。请问如何生产可以让公司每周利润最大?

表1 产品组合问题的数据表 此问题是在生产线可利用时间受到限制的情形下寻求每周利润最大化的产品组合问题。 在建立产品组合模型的过程中,以下问题需要得到回答: (1)要做出什么决策? (2)做出的决策会有哪些条件限制? (3)这些决策的全部评价标准是什么? (1)变量的确定 要做出的决策是两种新产品的生产水平,记x1为每周生产产品甲的产量,x2为每周生产产品乙的产量。一般情况下,在实际问题中常常称为变量(决策变量)。 (2)约束条件 求目标函数极值时的某些限制称为约束条件。如两种产品在相应生产线上每周生产时间不能超过每条生产线的可得时间,对于生产线一,有x1≤4,类似地,其它生产线也有不等式约束。 (3)目标函数 对这些决策的评价标准是这两种产品的总利润,即目标函数是要求每周的生产利润(可记为z,以百元为计量单位)为最大 这样,可以把产品组合问题抽象地归结为一个数学模型: max z = 3x1+5x2 s.t. x1 ≤4 2x2 ≤12 3x1+ 2x2 ≤18 x1≥0,x2 ≥0

线性规划单纯形法(例题)

《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》 ? ? ??≥=+ +=+++++=?? ? ??≥≤+≤++=0 ,,,24 261553).(002max ,,0,24 261553).(2max 14.1843214213 214 321432121212 1x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【为初始基变量, 选择43,x x )1000(00)0010(01 )2050(12)6030(24321=?+?-==?+?-==?+?-==?+?-=σσσσ 为出基变量。为进基变量,所以选择41x x

3 /1)6/122/10(00 )0210(03 /1)3/1240(10)1200(24321-=?+-?-= =?+?-==?+?-==?+?-=σσσσ 为出基变量。 为进基变量,所以选择32x x 24 /724/528/11012/112/124/1100 021110 120124321-=?+-?-=-=-?+?-==?+?-==?+?-=)()()()(σσσσ 4 33 4341522max , )4 3,415(),(2112= +?=+===x x z x x X T T 故有:所以,最优解为

??? ??? ?≥=+ +=+=+ ++++=?????? ?≥≤+≤≤+=0,,,,18232424).(0002max ,,,0 ,182312212 ).(52max 24.185432152142315 43215432121212 1x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【 )000010(00001000000000100520200052300010254321=?+?+?-==?+?+?-==?+?+?-==?+?+?-==?+?+?-=σσσσσ)()()()( 为出基变量。为进基变量,所以选择42x x

运筹学试验一:线性规划 LINGO 程序说明:LP

LINGO 程序说明 3.1 程序名: linearp1(求极小问题) linearp1运行实例: 5 ,,1 ,0 1 2 2 6 .t .s 215min 532143212 1 =≥=-++=-+-+=j x x x x x x x x x x x z j 在model window 中输入以下语句: min=5*x1+21*x3; x1-x2+6*x3-x4=2; x1+x2+2*x3-x5=1; 按运行按钮在solution report 窗口得到以下结果: Global optimal solution found at iteration: 2 Objective value: 7.750000 Variable Value Reduced Cost X1 0.5000000 0.000000 X3 0.2500000 0.000000 X2 0.000000 0.5000000 X4 0.000000 2.750000 X5 0.000000 2.250000 Row Slack or Surplus Dual Price 1 7.750000 -1.000000 2 0.000000 -2.750000 3 0.000000 -2.250000 3.2 程序名: linearp2(求极大问题) linearp2运行实例: max 100150..2160 100 120 ,0 x y s t x y x y x y ++≤≤≤≥ 在model window 中输入以下语句: max=100*x+150*y; ! this is a commnent; x<=100; y<=120;

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f -3 1 1 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 -7 5 1 -2 2 3

x2-4120-1103 x7-20100011 -f10-101-10-3 由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形 表为: 表四:第二次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形 表为: 表五:第三次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

相关主题
文本预览
相关文档 最新文档