当前位置:文档之家› 单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB仿真
单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB 仿真

图1 单相桥式全控整流

知识点回顾:

整流(AC/DC)就是将交流变化为方向不变,大小为纹波的直流,相信大家都很清楚,这里就不详细介绍整流啦! 逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。

逆变与整流是变流装置的两种不同工作状态,能在同一套变流装置上实现,只是其工作条件不一样而已。首要条件是变流装置内部,使直流电压d U 改变极性,从而使功率的流向有可能发生逆转。当控制角?<≤900α时,变流装置工作在整流状态,直流电压d U 与直流电流d I 是同一方向,装置将交流电能转换成直流电能供给直流负载;当控制角?≤

仿真环境:

MATLAB 7.90(R2009b)

实验一:电感性负载整流

1.电路搭建

3.参数设置

4个晶闸管设置如上图,内阻为0.001欧,门槛电压值为0.8V,吸收电阻为10欧,吸收电容为4.7e-6。

交流电源模块幅值为100V,频率为50Hz。

电感为10e-3,电阻为2。

2个选择器都是以1为基准值的电压形式输出,所以选择[2],两路输入,一路输出。

左边是给T1和T4脉冲的,右边是给T2和T3的,幅值为1.1V ,高于晶闸管的门槛0.8V ,周期为0.02s ,也就是50Hz ,

脉宽为0.001,延迟分别是0.00333s 和0.01333s ,这两个数值是这样得来的,按照关系式

?=

360T

t α,控制角α在

?<≤900α之间为整流,我选择60°,周期为0.02s ,那就得出第一个脉冲在0.00333s 的时候到来,互补的两

套管在一个周期内各导通一次,所以第二个就要加0.01s 。

4.结果分析

如图,仿真时间为0.08s,第一二行为脉冲信号;第三行为负载的电压,一个周期内0.01s,符合全桥整流情况,由于有电感的存在,所以有负电压,但是负电压的面积比正的小,平均电压为正的直流电压。第四行明显看到负载电流为平稳的纹波。最后两个分别为T1和T2管的管压。

实验二:电感性负载的有源逆变

1.电路搭建

3.参数设置

由于是逆变实验,设置控制角α为120°,根据公式?=

360T

t α,就是0.00667s ,延迟0.01s 为第二个脉冲信号,

就是0.01667s 。

由于是逆变,保证反接的直流电动势大于交流电源的绝对值就可以了,这里设置100V完全可以。

4.结果分析

第一第二行为脉冲信号,第三行为交流侧电源的正弦信号;第四行为直流侧的电压,可见,一个周期内为正的面积比负的面积要小的多;第五行为直流纹波信号;可见直流侧功率为负,功率向交流侧传输,逆变成功;最后两行为管压。

武大东分08电气

简同学

2012/1/18 百分百原创,请尊重个人劳动成果。关注个人微博,有时间上传个人最新作品并告诉大家。提前祝大家新年快乐!

新浪微博:https://www.doczj.com/doc/9c5641552.html,/janenowitzki

单相桥式有源逆变电路设计

长江职业学院 电力电子技术课程设计报告 学院:机电学院 学生姓名:余鸿 指导教师:李莎 专业:电气自动化 班级:电气1401 日期: 2015.12 单相桥式有源逆变电路设计 摘要:整流与逆变一直都是电力电子技术的热点之一。桥式整流 是利用二极管的单向导通性进行整流的最常用的电路。常用来将 交流电转化为直流电。从整流状态变到有源逆变状态,对于特定 的实验电路需要恰到好处的时机和条和方法已成熟十几年了,随 件。基本原理着我国交直流变换器市场迅猛发展,与之相应的核 型技术应用于发展比较将成为业内企业关注的焦点。在逆变电路

中,把直流电能经过直交变换,向交流电源反馈能量的变换电路称之为有源逆变电路,相应的装置称为有源逆变器。 关键词:整流逆变桥式有源逆变。 1前言 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。逆变与整流相对应,直流电变成交流电。交流侧接电网,为有源逆变。交流侧接负载,为无源逆变。有源逆变的条件:负载侧存在一个直流电源E,由他提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压;变流器在起直流侧输出应有一个与原整流电压相反的逆变电压U,其平均值U

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB 仿真 图1 单相桥式全控整流 知识点回顾: 整流(AC/DC)就是将交流变化为方向不变,大小为纹波的直流,相信大家都很清楚,这里就不详细介绍整流啦! 逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。 逆变与整流是变流装置的两种不同工作状态,能在同一套变流装置上实现,只是其工作条件不一样而已。首要条件是变流装置内部,使直流电压d U 改变极性,从而使功率的流向有可能发生逆转。当控制角?<≤ 900α时, 变流装置工作在整流状态,直流电压d U 与直流电流d I 是同一方向,装置将交流电能转换成直流电能供给直流负载;当控制角?≤< ?18090α时,变流装置工作在逆变状态,由于晶闸管的单向导电性,电流d I 方向不变,而直流 电压d U 改变了极性,装置将直流电能转换成交流电能输向电网或非电源性负载。其次是外部调件,必须是提供直流能源,而且是d U E > 。 仿真环境: MATLAB (R2009b) 实验一:电感性负载整流 1.电路搭建

元件路径 晶闸管T SimPowerSystems/Power Electronics/Thyristor 交流电源AC100V SimPowerSystems/Electrical Sources/AC Voltage Source 脉冲发生器Pulse Generator Simulink/Sources/Pulse Generator 支路RLC SimPowerSystems/Elements/Series RLC Branch 电压测量Vd SimPowerSystems/Measurements/Voltage Measurement 电流测量SimPowerSystems/Measurements/Current Measurement 示波器Scope Simulink/Sinks/Scope 选择器Selector Simulink/Signal Routing/Selector 3.参数设置

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相桥式全控整流电路(阻感性负载)

1. 单相桥式全控整流电路(阻-感性负载) 1.1单相桥式全控整流电路电路结构(阻-感性负载) 单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(阻-感性负载)电路图如图1所示 图1. 单相桥式全控整流电路(阻-感性负载) 1.2单相桥式全控整流电路工作原理(阻-感性负载) 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在u2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在u2负半波的ωt=π+α时刻及以后: 在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 1.3单相桥式全控整流电路仿真模型(阻-感性负载) 单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示: 图2 单相双半波可控整流电路仿真模型(阻-感性负载)

1单相桥式全控整流和有源逆变电路实验实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相桥式全控整流及有源逆变电路实验实验时间: 2012/10/19 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:10/19指导教师签名: 实验(一)项目名称:单相桥式全控整流及有源逆变电路实验1.实验目的和要求 (1)加深理解单相桥式全控整流及逆变电路的工作原理。 (2)研究单相桥式变流电路整流的全过程。 (3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。 (4)掌握产生逆变颠覆的原因及预防方法。 2.实验原理 图3-8为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。 图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。“三相不控整流”是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心式变压器”的中压端Am、Bum,返回电网的电压从其高压端A、B输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成Y/Y接法。图中的电阻R、电抗Ld和触发电路与整流所用相同。有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。 3.主要仪器设备

单相桥式全控整流电路带阻感负载的工作情况仿真

单相桥式全控整流电路带阻感负载的工作情况仿真 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

宁波理工学院 题目单相桥式全控整流电路(带阻感负载)专业班级自动化091 姓名汤涛王赛王航波黄贤谷 分院信息分院

一、实验原理 单相桥式全控整流电路原理图如下:(带阻感负载的工作情况) 图1:单相桥式全控整流电路原理图 1)在U2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。 2)在U2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→T的二次绕组→a流通,此时负载上有输出电压(U d= U2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在U2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在U2负半波的ωt=π+α时刻及以后:

在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R →VT2→a→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(U d =- U2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 二、特性 电路如上图所示。为便于讨论,假设电路已工作于稳态, I d的平均值不变。在U2的正半周期,触发角α处给晶闸管VT1和 VT4加触发脉冲使其开通,U d = U2。负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流I d连续且波形近似为一水平线。U2过零变负时,由于电感的作用晶闸管VT1和VT4中仍有流过电流Id,并不关断。至ωt=π+α时刻,给VT2和VT3加触发脉冲,因VT2和VT3本已承受正电压,故两管导通。VT2和VT3导通后,U2通过VT2和VT3分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT2和VT3上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,U d的平均值为: U d=0.9U2cosα 当α=0时,U d0=0.9U2;α=90°时,U d=0.晶闸管移相范围为0°-90°单相桥式全控整流电路带负载时,晶闸管承受的最大正反

单相半桥无源逆变器设计

电气与电子信息工程学院计算机控制课程设计

单相半桥无源逆变电路设计设计题目:(专升本)班专业班级:电气工程及其自动化2010 学号: 2 勇姓名:朱 组人:严康孙希凯同黄松柏指导教师:南光群 2011/11/21 设计时间:2011/11/13~ 电力电子室设计地点:课程设计成绩评定表电力电子 学勇 2 姓名朱单相半桥无源逆变电路设计课程设计题 26 / 1

26 / 2 指导教师签字: 日20 12 月2011年 《电力电子课程设计》课程设计任务书 1学期2012 学年第~2011 2010电气工程及其自动化勇专业班级学生姓名:朱

专升本 工作部门:电气学院电气自动化教指导教师:南光群、黄松柏研室 一、课程设计题目: 单相桥式晶闸管整流电路设计1. 2. 三相半波晶闸管整流电路设计 3. 三相桥式晶闸管整流电路设计降压斩波电路设计 4. 升压斩波电路设计5. 单相半桥无源逆变电路设计6. 7. 单相桥式无源逆变电路设计单相交流调压电路设计8. 逆变器设计SPWM9. 三相桥式26 / 3 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。

注:详细要求和技术指标见附录。 三、进度安排 1.时间安排 .执行要求2电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。 四、基本要求 (1)参考毕业设计论文要求的格式书写,所有的内容一律打印;

单相桥式全控整流电路实验及有源逆变电路

单相桥式全控整流电路 实验及有源逆变电路 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

重庆三峡学院 实验报告 课程名称电力电子技术 实验名称单相桥式全控整流电路实验 实验类型验证学时 2 系别电信学院专业电气工程及自动化 年级班别 2015级2班开出学期 2016-2017下期 学生姓名袁志军学号 4228 实验教师谢辉成绩 2017 年 5 月 14 日

U2(V)220220220220 U d(计算值)(V)99 计算公式:U d=(1+cosα)/2 (2)60゜(3)90゜(1)30゜ U d =(1+cosα)/2 = U d =(1+cosα)/2 =99V U d =(1+cosα)/2 =

(3)120゜ 七、注意事项 (1)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将U lf 及U lr 悬空,避免误触发。 (2)为了保证从逆变到整流不发生过流,其回路的电阻R 应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。 八、思考题 实现有源逆变的条件是什么 1)外部条件:一定要有直流电源,其极性必须和晶闸管导通方向一致,其值应稍大于变流器直流侧平均电压。 2)内部条件:要求晶闸管的控制角a>90度,使Ud 为负值。 3)充分条件:电路支流回路中必须要有足够大的电感,以保证有源逆变连续进行。 九、实验总结 此次试验,进行了单相桥式全控整流电路实验,有四只晶闸管,两只桥臂,两两一组,分别采用互差180度的正反脉冲,由于要求各组晶闸管触发时间一致,对于实验精度高,要求严格。 实验前首先检查各个器件的完好性,避免接好线后盲目查找错误,特别是检查触发脉冲的情况。在实验中,出现了加脉冲后,晶闸管未工作的情况,经检查发现诸多晶闸管损坏,导致脉冲不起作用。 总之,在做实验时,要对实验熟悉,做到心中有数,严格按照实验步骤,切不可怀侥幸心理而不检查器件;在出现实验现象有误时,不要慌乱,借助实验仪器检查仪器,培养自己查错纠错的能力。 最后,我们用matlab 仿真完成了实验,完整观察了晶闸管,负载的电流,电压波形。 教师评语: U d =(1+cosα)/2 =

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录 完美篇 单相桥式全控整流电路仿真建模分析 (1) (一)单相桥式全控整流电路(纯电阻负载) (2) 1.电路的结构与工作原理 (2) 2.建模 (3) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (12) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (13) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 U1U2Ud Id + - T VT3 VT1 VT2VT4 a b R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相全桥和半桥无源逆变电路

单相全桥和半桥无源逆变电路 学生姓名: 学号: 学院: 信息与通信工程学院专业: 自动化题目: MOSFET单相桥式无源逆变电路设计 (纯电阻负载) 指导教师: 职称: 2011年12月31日 中北大学 课程设计任务书 11/12 学年第一学期 学院: 信息与通信工程学院专业: 自动化学生姓名: 学号: 课程设计 题目: MOSFET单相桥式无源逆变电路设计 (纯电阻负载) 起迄日期: 12月25日, 12月31日课程设计地点: 电气工 程系实验中心指导教师: 系主任: 下达任务书日期: 2011年 12月 25 日 课程设计任务书 1(设计目的: 1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资 料。 2)培养学生综合分析问题、发现问题和解决问题的能力。 3)培养学生运用知识的能力和工程设计的能力。 4)提高学生课程设计报告撰写水平。 2(设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 设计内容:

1、设计一个MOSFET单相桥式无源逆变电路(纯电阻负载) 设计要求: 1)输入直流电压:U=100V; d 2)输出功率:300W; 3)输出电压波形:1KHz方波。 2、设计MOSFET单相半桥无源逆变电路(纯电阻负载) 设计要求: 1)输入直流电压:U=100V; d 2)输出功率:300W; 3)输出电压波形:1KHz方波。 3(设计工作任务及工作量的要求〔包括课程设计说明书、图纸、实物样品 等〕: 设计工作任务及工作量的要求: 1)根据课程设计题目,收集相关资料、设计主电路和触发电路; 2)用Multisim等软件制作主电路和控制电路原理图; 3)撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理,完成元器件参数计算,元器件选型,说明控制电路的工作原理,用Multisim 或EWB等软件绘出主电路典型的输出波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明设计过程中遇到的问题和解决问题的方法,附参考资料。 课程设计任务书 4(主要参考文献: 1、樊立萍,王忠庆.电力电子技术.北京:北京大学出版社,2006 2、徐以荣,冷增祥.电力电子技术基础.南京:东南大学出版社,1999 3、王兆安,黄俊.电力电子技术.北京:机械工业出版社,2005 4、童诗白.模拟电子技术.北京:清华大学出版社, 2001

单相桥式全控整流电路

单相桥式全控整流电路 一、原理 图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。假设电路已工作于稳态。 在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。 图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。 产生有源逆变的条件如下: (1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 (2)要求晶闸管的控制角α>π/2.,使Ud为负值。 两者必须同时具备才能实现有源逆变。 二、实验内容 (1)单相桥式全控整流电路带电阻性负载。 (2)单相桥式有源逆变电路带电阻电感性负载。 (3)有源逆变电路逆变颠覆现象的观察。 (4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。 三、实验仿真 1.带电阻电感性负载的仿真 启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。双击各模块,在出现的对话框内设置相应的参数。

IGBT单相电压型全桥无源逆变电路设计.

电子技术课程设计 说明书 IGBT 单相电压型全桥无源逆变电路 设计 学生姓名: 学号: 学 院: 专 指导教师: 2013年01月 XXX 1005044245 信息与通讯工程学院 电气工程及其自动化

中北大学 电子技术课程设计任务书 2012/2013 学年第一学期 学院:信息与通讯工程学院 专业:电气工程及其自动化 学生姓名:胡定章学号: 1005044245 课程设计题目:IGBT单相电压型全桥无源逆变电路设计 起迄日期: 12月24日~ 01月4 日 课程设计地点:电气工程系软件实验室 指导教师:石喜玲 系主任:王忠庆 下达任务书日期: 2012 年 12 月 24日

课程设计任务书

课程设计任务书

目录 1 引言 (1) 2 工作原理概论 (1) 2.1 IGBT的简述 (1) 2.2 电压型逆变电路的特点及主要类型 (2) 2.3 IGBT单相电压型全桥无源逆变电路原理分析 (2) 3 主电路设计及参数选择 (3) 3.1 主电路仿真图 (3) 3.2参数设置及计算 (3) 3.2.1参数设置 (3) 3.2.2计算 (3) 3.2.3设置主电路 (4) 4 仿真电路结果的分析 (5) 4.1 仿真电路图 (5) 1.1.14.1.1 触发电平与负载输出波的波形图 (5) 4.1.2 IGBT电流电压波形图 (6) 4.2 仿真波形分析 (6) 5 总结 (7) 参考文献 (7)

2引言 本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电 路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实 生活中有很广泛的应用。 3工作原理概论 2. 1 IGBT的简述 绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。它是一种典型的全控器件。它综合了GTR和MOSFET的优点,因而具有良好的特性。现已成为中、大功率电力电子设备的主导器件。IGBT是三端器件,具有栅极G、集电极C 和发射极E。它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。其等效电路和电气符号如下: 图1 IGBT等效电路和电气图形符号 它的开通和关断是由栅极和发射极间的电压错误!未找到引用源。所决定的。当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。由于前面提到的电导调制效应,使得电阻错误!未找到引用源。减小,这样高耐压的IGBT也具有很小的通态压降。当山脊与发射极间施加反向电压或不加信

实验一-单相桥式全控整流电路

实验一-单相桥式全控整流电路

实验一单相桥式全控整流电路 姓名:王栋 班级:15级自动化(2)班 学号:1520301081 一、实验目的 1.加深理解单相桥式全控整流电路的工作原理 2.研究单相桥式变流电路整流的全过程 3.掌握单相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数。 二、预习内容要点 1. 单相桥式全控整流带电阻性负载的运行情况 2. 单相桥式全控整流带阻感性负载的运行情况 3. 单相桥式全控整流带具有反电动势负载的运行情况 三、实验仿真模型

图 1.1 单相桥式阻性负载整流电路 四、实验内容及步骤 1.对单相桥式全控整流带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。 以延迟角30°为例 (1)器件的查找 以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。有些常 用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources 中查找;其他一些器件可以搜索查找 (2)连接说明 有时查找出来的器件属性并不是我们想要的例如:变压器可以双击变压器进入属性后,取消three windings transformer就是单相变压器。 (3)参数设置 1.双击交流电源把电压设置为311V,频率为50Hz;

2.双击脉冲把周期设为0.02s,占空比设为10%,延迟角设为30度,由于属性 里的单位为秒,故把其转换为秒即,30×0.02/360; 3.双击负载把电阻设为1Ω; 4.双击示波器把Number of axes设为7; 5.在“Power Electronics”库中选择‘Universal Bridge’模块,选择桥臂数为 2,器件为晶闸管,晶闸管参数保持默认即可 (4)仿真波形及分析 当α=30°时, 当α=60°时,

单相桥式全控整流及有源逆变电路实验实验报告记录

单相桥式全控整流及有源逆变电路实验实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验报告 课程名称:现代电力电子技术 实验项目:单相桥式全控整流及有源逆变电路实验实验时间:2012/10/19 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院: 自动化学院 专业: 电气工程及其自动化 班级: 成绩: 姓名: 学号: 组别: 组员: 实验地点: 电力电子实验室 实验日期: 10/19 指导教师签名: 实验 (一) 项目名称:单相桥式全控整流及有源逆变电路实验 1. 实验目的和要求 (1)加深理解单相桥式全控整流及逆变电路的工作原理。 (2)研究单相桥式变流电路整流的全过程。 (3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。 (4)掌握产生逆变颠覆的原因及预防方法。 2. 实验原理 图3-8为单相桥式整流带电阻电感性负载,其输出负载R 用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld 用DJK02面板上的700mH ,直流电压、电流表均在DJK02面板上。触发电 路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。 图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电 源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。“三相不控整流” 是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心 式变压器”的中压端Am 、Bum ,返回电网的电压从其高压端A 、B 输出,为了避免输出的逆变电压过 高而损坏心式变压器,故将变压器接成Y/Y 接法。图中的电阻R 、电抗Ld 和触发电路与整流所用相同。有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。 3. 主要仪器设备 预习情况 操作情况 考勤情况 数据处理情况

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析 0 (一)单相桥式全控整流电路(纯电阻负载) (1) 1.电路的结构与工作原理 (1) 2.建模 (2) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (11) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (12) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

MOSFET单相桥式无源逆变电路设计

目录 MOSFET和电压型无源逆变电路简介 (1) 1.MOSFET简介 (1) 2.电压型无源逆变电路简介 (1) 主电路图设计和参数计算 (2) 1.主电路图设计 (2) 2.相关参数计算 (2) 驱动电路的设计和选型 (4) 1.驱动电路简介 (4) 2.驱动电路的选用 (4) 电路的过电压保护和过电流保护设计 (5) 1.过电压保护 (5) 2.过电流保护 (7) 3.保护电路的选择以及参数计算 (8) MATLAB仿真 (10) 1.主电路图以及参数设定 (10) 2.仿真结果 (14) 总结与体会 (15) 附录:电路图 (16)

一、MOSFET和电压型无源逆变电路的介绍 1.MOSFET简介 金属-氧化层半导体场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为“N型”与“P型”的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。 2.电压型无源逆变电路简介 把直流电变成交流电称为逆变。逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。 如果将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去,称为有源逆变。 无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。 电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

单相桥式可控整流电路

信息科学与技术学院实验报告 课程名称: 电力电子应用技术 实验项目: 单相桥式可控整流电路 实验地点: 指导老师: 实验日期: 2014.12.11 实验类型: 专业: 电子信息科学与技术 班级: 姓名: 学号: 一、实验目的及要求 1.掌握锯齿波同步移相触发电路的调试步骤和方法。 2.掌握单相桥式可控整流电路在电阻负载及电阻电感性负载时的工作情况。 3.了解续流二极管的作用。 二、实验仪器、设备或软件 1. 电源控制屏 2. 晶闸管触发电路(含锯齿波同步触发电路模块) 3. 双踪示波器 4. 晶闸管主电路 5. 可调电阻,电感等 三、实验内容 1、电阻性负载 闸管VT1和VT4组成一对桥 臂,VT2和VT3组成另一对桥臂。在u 2正半周,VT1和VT4串联承受正压,若未加触发脉冲,若4个晶闸管均不导通,i d =0,u d =0。在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。当u 2变负时,VT1和VT4串联承受反压而关断。在u 2负半周,仍在触发角α处触发VT2和VT3,VT2和VT3导通,电流从电源b 端流出,经VT3、R 、VT2流回电源a 端。到 u 2过零变正时,VT2和VT3串联承受反压而关断。

直流输出电压平均值为 2. 电感性负载(无续流二极管) 电感性负载的特点是感生电 动势总是阻碍电感中流过的电流使得流过电感的电流不发生突变。 在u 2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,u d =u 2。负载电感很大,i d 不能突变且波形近似为一条水平线。u 2过零变负时,由于电感产生感生电动势的作用,晶闸管VT1和VT4继续承受正压而导通。πα+=wt 时刻, 触发VT2和VT3,VT2和VT3导通,u 2通过VT2和VT3分别向VT1和VT4施加反压使VT1和VT4关断。u 2过零变正时,由于电感产生感生电动势的作用,晶闸管VT2和VT3继续承受正压而导通。α=wt 时刻,触发VT1和VT4,VT1和VT4导通,u 2通过 VT1和VT4分别向VT2和VT3施加反压使VT2和VT3关断。 3.反电动势负载 当负载为蓄电池、直流电动机的电枢(忽略其中的电感)等时,负载可看 成一个直流电压源,对于整流电路,它们就是反电动势负载。 ()2 cos 19.02cos 1π22d sin 2π1222d α αωωπα+=+==?U U t t U U ?+== = α πα α απ ωωπcos 9.0cos 2 2)(d sin 21 222d U U t t U U

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

MATLAB课程设计,单相桥式全控整流电路的MATLAB设计

学号 控制系统仿真 单相桥式全控整流电路(电阻性负载) 在MATLAB中的仿真真 在MATLAB软件中的仿真应用 学生姓名 班级 成绩 控制与机械工程学院 2015年6 月19 日

绪论 Matlab以矩阵运算为基础,把计算可视化程序设计融合到了一个交互的工作环境中,可实现工程计算、算法研究、建模和仿真、数据分析及可视化、科学和工程绘图、应用程序开发等功能.Simulink是Mat2lab 所提供的用来对动态系统进行建模、仿真和分析的集成环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具.Matlab5.3与以前的MA TLAB版本的最大区别就是增加了电力系统模块库(PowerSystemBlockset),能快速而准确地对电路及电力系统进行仿真。 1990年MathWorks软件公司为Matlab提供了新的控制系统模型图形输入与仿真工具Simulink.作为对Matlab语言运算环境的扩展,在保持Matlab的一般性能基础上,Simulink又增加了许多功能.它与Matlab及其工具箱结合使用,可以完全对连续系统、离散系统、连续和离散混合系统的动态性能进行仿真与分析. Simulink与传统的仿真软件包用微分方程和差分方程建模相比,具有更直观、方便、灵活的优点.Simulink 提供了8个子模型库:Continuous(持续环节)、Discrete(离散系统)、Function&Tables(函数及图表)、Math(数学计算)、Nonlinear(非线形环节)、Signals&System(信号及系统)、Sink(输出方式)、Source(输入源).在以上每个子模型库中还包含有相应的功能模块,如Source子模块中包含有SineWave(正弦波)、PulseGenerator(脉冲信号)、Step(阶跃信号)等,Sink子模块中包含有scope(示波器)、To Workspace(传送到工作空间)、XYGraph(X-Y图表)等. Simulink提供了动态系统建模、分析和仿真的交互环境,能够实现交互建模、交互仿真,并允许用户扩展仿真环境等功能.Simulink的专用模型库(Blocksets)提供了一些专用元件集,使得Simulink的功能进一步扩展。

单相桥式全控整流电路 (1)

电力电子技术实验报告 实验名称:单相桥式全控整流电路_______班级:自动化_________________ 组别:第组___________________分工: 金华职业技术学院信息工程学院 年月日 目录

一.单项全控整流电路电阻负载工作分 析..................................................- 1 - 1.电路的结构与工作原 理............................................................ ...............- 1 - 2.建 模…………….................................................. ...........................................- 3 - 3.仿真结果与分 析............................................................ ...........................- 5 - 4.小 结…………….................................................. ...........................................- 5 - 二.单项全控整流电路组感负载工作分 析..................................................- 6 - 1.电路的结构与工作原 理............................................................ ...............- 6 - 2.建 模…………….................................................. ............................................- 8 - 3.仿真结果与分 析............................................................ ..........................- 10- 4.小 结…………….................................................. ...........................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分 析...............................- 11 - 1.电路的结构与工作原 理............................................................ ...............- 11 - 2.建 模…………….................................................. ............................................- 13 - 3.仿真结果与分 析............................................................ ............................- 15 - 4.小 结…………….................................................. ............................................- 15 -

相关主题
文本预览
相关文档 最新文档