当前位置:文档之家› 相平面法例题解析相平面法例题超详细步骤解析

相平面法例题解析相平面法例题超详细步骤解析

相平面法例题解析相平面法例题超详细步骤解析
相平面法例题解析相平面法例题超详细步骤解析

相平面法例题解析

x

x

2x s x

=1

x sx

=x

2s x =1s x

※稳定焦点

不稳定焦点

1s 2

中心点

x

x

2x s x

=1x s x

=220

n n x x x ζωω+-=

2

20n n x x x ζωω++=例已知线性系统的运动方程0=++e b e a e

,分别给出系统在相平面中具有(a)稳定焦点和(b)鞍点时,参数a 和b 的取值范围。 解:由方程求出两根为1,2

s =

(a)稳定焦点10<<ζ,系统具有一对负实部共轭复根,0>a 、b a 42

<且0>b ; (b)鞍点,系统具有符号相反的两个实极点0

例已知某二阶线性系统的运动方程为240e e e ++=,则系统的奇点类型和当输入

()51()r t t =?时的系统稳态误差分别为__ B ____。

A .稳定的节点,∞;

B .稳定的焦点,0;

C .稳定的焦点,∞;

D .稳定的节点,0 。 例:设线性系统开始处于静止状态(即输出初始值为0),试利用相平面法对系统稳定性及稳态误差进行分析。其中,

1)()1(),r t R t R =?为常数:2)(),r t R t R =?为常数:

解:因分析系统稳定性故从闭环系统传递函数出发,由闭环系统传递函数

2

()()C s K

R s Ts s K

=++,则2()[]()C s Ts s K KR s ++=。于是描述该系统的运动方程为: Tc c Kc Kr ++=

绘制e e -相平面相轨迹。【注】:把相变量变成误差,分析最终奇点位置表示稳态误差情况。当然c c -也行。但是若没要求,一般建议e e -相平面。

因为e r c =-,即c r e =-,所以,Te e Ke Tr r ++=+————————(1)

1)()1(),r t R t R =?为常数:0r r ==,于是得出关于误差e 的运动方程:

0Te e Ke ++=,

注:如果线性系统运动方程为典型的二阶系统运动方程,可以不用解析法求相轨迹,而直接根据此时特征方程根的分布情况,分析奇(异)点类型并绘制该区域的相轨迹。

根据14kT -的正负分为

a )01ζ<<

,1,2s =

;b )1ζ≥

。1,2s =。注:负的根。

奇(异)点:令00e e ==且,代入运动方程0Te e Ke ++=,则0e =,故奇点为(0,0)。

—————————————————以下为说明———————————————— 【注】:奇(异)点求法是令00e e ==且,代入运动方程。但是,要注意:只有当线性系统运动方程为典型的二阶系统运动方程时,可直接根据此时特征方程根的分布情况,分析奇(异)点类型并绘制该区域的相轨迹,即此时必须求奇点。关于这一点请看下面【特别对比】;若线性系统运动方程非典型,此时可用解析法求相轨迹,而不需求奇点。这一结论也适用于非线性系统相平面分析。

【特别对比】实际上,对于上面的运动方程0Te e Ke ++=我们直接根据此时特征方程根的分布情况,分析奇(异)点类型并绘制该区域的相轨迹,这样很简单。但是,如果你想

用解析法求相轨迹也可以。根据斜率方程e e e Ke

de T de e

--==,则分离变量并积分得 0

()e

e

R

e Ke de T ede --=?

?

本来可以求出e

e -之间的相轨迹满足的方程,但是这里K ,T 不知为何值,因此即使得到e

e -之间的相轨迹方程,也还是不会画图。【特别对比】 —————————————以上为说明————————————————————

初始值:(0)(0)(0)1()0(0)(0)(0)000

e r c R t R

e r c =-=?-==-=-=,即(,0)R

因此,在e e -平面作相轨迹。如图可见,系统稳定(当01ζ<<时奇(异)点(0,0)为稳定的焦点,当1ζ

≥时奇(异)点为稳定的节点);当()r t 为阶跃信号时稳态误差为

0 。

2)(),r t R t R =?为常数:当0t >,r R =,0r =。代入(1)式,

Te e Ke R ++=(注意:不是前面的典型二阶系统形式了)

所以,设R x e K =-(R

e x K

=+)。则

0Tx x Kx ++=(注,可按照上面的画图了)

。奇点仍为(0,0)。 根据14kT -的正负分为

a )01ζ<<,1,21412j kT s T -±-=

;b )1ζ≥。1,21142kT

s T

-±-=。注:负的根。

初始值:(0)(0)(0)(0)(0)(0)(0)(0)R R R x e r c K K K x e r c R

=-

=--=-==-=,即(,)R

R K

-。如图。

0 x 0

x

x

01ζ<<1

ζ≥e

e

x

e

e

(0,)

R (0,)

R

同理可见系统稳定。但是,要分析系统的稳态误差,需要R

e x K

=+绘制e e -平面的相轨迹(只要坐标平移把x x -的奇点移到(

,0)R

K

即可)

。 即在e e -平面系统的奇点为(,0)R K 。由图可见,系统在斜坡输入信号作用下,稳态误差为R K

。 总结:

相平面法分析时关键先求二阶线性系统运动方程及初始值;

线性系统相轨迹和奇点类别取决于系统特征根在复平面上的分布情况; 线性系统奇点的位置和相轨迹初始值位置则取决于输入信号的形式。

二、非线性系统的相平面法例题(一般填空或计算): 要求:

1.正确求出非线性系统在每个线性区的相轨迹方程,也就是e e -(或c c -)之间的关系方程;会画相轨迹(模型中是给具体数的)。※※关键要确定开关线方程。

2. ※※※如果发生自持振荡,会计算振幅和周期。

【注】:非线性系统的相平面法一般应:

1)按照信号流向与传输关系。线性部分产生导数关系,非线性部分形成不同分区。连在一起就形成了不同线性分区对应的运动方程,即含有c 或者e 的运动方程。

2)※※※根据不同线性分区对应的运动方程的条件方程确定开关线方程。开关线方程确定很关键。 3)※※※根据不同线性分区对应的运动方程,利用解析法(分离变量积分法或者消去t 法)不同线性分区对应的相轨迹方程,即c c -和e e -之间关系;

4)※根据不同分区的初始值绘制出相轨迹,并求出稳态误差和超调、以及自持振荡的周期和振幅等。

特别指出:如果非线性系统的某个线性分区对应的运动方程同典型的二阶系统运动方程,也可以不用解析法,而根据此时特征方程根的分布情况,直接分析奇(异)点类型并绘制该区域的相轨迹。

例2:具有死区特性的非线性系统分析。设系统开始处于静止状态。

问题1. 用相平面法分析系统在输入r (t ) = (t )时的运动情况。 问题2. 如果发生自持振荡,求自持振荡的周期和振幅。 解:问题1:1)设系统结构图,死区特性的表达式:

0,||22,22,2x e x e e x e e =≤??

=->??=+<-?

2)线性部分:

2

()1

()C s X s s =,则运动方程为:c x = 3)绘制e e -平面相轨迹图。因为e r c =-,c r e =-,c r e =-,c r e =-。代入则

e x r =-+ (1)

当0t ≥,0r =,0r =。代入,则各区的运动方程0,

||2I 2,2II 2,2III e e e e e e e e =≤--??

=->---??=--<----?

由于非线性特性有3个分区,相平面e

e -分为3个线性区。 【注】当相平面选好后,输入代入后,最后代入非线性特性;否则先代非线性特性后代输入,则需要同时写多个非线性的运动方程。

4) 系统开关线:2e =±。

5) 由题意知初始条件(0)(0)(0)4e r c =-=,(0)(0)(0)0e r c =-=在II 区,则从初始值出发绘制相轨迹:

【注】:用解析法中的斜率法求:上课时按照此方法求相轨迹方程:

II 区: e e-20 += (不是标准线性系统运动方程的形式,不能直接根据根的分布绘制根轨迹。怎么办---用解析法求根轨迹)。

根据斜率方程2e de e

de e e

-==

,则分离变量并积分得 40(2)e e e de ede -=?? 则e

e -之间的相轨迹方程为 22

(2)4e e -+= 结论:II 区相轨迹是以圆心20(,)

(也是该区的奇点,不用求)为中心的圆,与右开关线2e =交于A (2,-2)

I 区:0e =,2e ==-常数,水平线,与左开关线2e =-交于B (-2,-2) III 区:e e 20 ++=(不是标准线性系统运动方程的形式---用解析法求根轨迹))

根据斜率方程2

de e e e d e

e --=

=,则分离变量并积分得 2

2

(2)e

e

e de ede ---+=?

?(注意新的初始值B (-2,-2))

则e

e -之间的相轨迹方程为 2

2

(2)4e e ++=

结论:III 区相轨迹是以圆心20(-,)

(也是该区的奇点,不用求)为中心的圆。以此例推,出现了一个封闭椭圆,在非线性系统中称为极限环。整图可见,奇点(0,0)可看成中心点。

e )

e=2

问题2:若相平面中出现了稳定的极限环——对应着非线性的自持振荡。 问题:自持振荡的周期怎么算呢幅值怎么算呢如图:这是个椭圆, 1)周期:4()CA AD T t t =+

II 区:2244

1CA t de e e ==-??,

这是因为: 2

2

(2)4e e +-=→ 4(e =--,注意, e 在图中为负的。

I 区: 0

0221112AD t de de e =

=-=??

2)振幅——代表此时的位移,也就是此时与横轴的交点位置大小——即C 点的横坐标。 这是因为,对于整个非线性系统的奇点是(0,0 )。对于该点,最大的位移就是振幅,因此是C 点的横坐标4。

例3:具有继电器特性的非线性系统分析 2006-B (15分)非线性控制系统如图。

问题1:设0r =,绘制起点在02c =,00c =的c c -相轨迹图。(10分) 问题2:计算相轨迹旋转一周所需时间。

(5分)

解:问题1(10分): 1)非线性环节数学表达式:0,||12,

1

2,1e x e e ≤??

=>??-<-?

2)线性部分:

2()1()C s X s s =所以描述线性部分的运动方程为:c x =则0||1

2121

c e c e c e =≤??

=>??=-<-?

3)绘制c c -平面相轨迹。e r c =-,令0r =,e c =-,

则各区的运动方程0,||1I 2,1II 2,1III c c c c c c =≤??

=->??=<-?注意:条件方程也要改成c c -的。

4)开关线方程:1c =±

5)由已知条件,起点02c =,0c 0=,)0,2(从II 区开始,下面绘制相轨迹: 【注】:用解析法中消去参变量时间t 的方法求相轨迹方程:上课时按照此方法求的,以下同。当然如果用斜率法求相轨迹方程也可以。不过,这个例子c 为常数,消去参变量时间t 的方法更适合。

Ⅱ区:2c =-,积分得022c t c t =-+=-;再积分得22002c t c t c t =-++=-+;

上两式联立消去中间变量,则22

20

00.250.250.252c c c c c =-++=-+(即 24(2)c c =--),可见相轨迹为开口向左的抛物线,

且在右开关线1c =处的交点为01c =1 , 由210.252c =-+,得012c =-,故交点为(1,-2) 。

Ⅰ区:0c =,积分得012c c ==-;再积分得010121c c t c t =+=-+

可见,相轨迹为平行横轴的直线(因为纵坐标不变-2,而横坐标虽时间变化); 且在左开关线处的交点为02c =-1 , 022c =----(-1,-2)

Ⅲ区:2c =积分得02222c t c t =+=-;再积分得22020221c t c t c t t =++=--;

两式联立消去中间变量,则22

202020.250.250.252c c c c c =-+=-,(即

24(2)c c =+)可见相轨迹为开口向右的抛物线。

且在开关线处的交点 (-1, 2)。以此类推,求得如图的极限环:图中可见整个非

线性系统的奇点(0,0)可看成中心点。

注意: 每个区的初始值是不同的。每个区的初始值的求法就是根据上一个区的区域根轨迹方程可以求出进入下一区的初始值,以此一个个区经过后,会变成一个连续的曲线轨迹——非线性系统的相轨迹。

问题2:运动一周所需时间为

1

010********()4()62T dc

dc dc c c =+=+=--?

???(因为II 区20.252c c =-+,则c =,注意,c 在图中为负的。)

注意: 并不是所有开关线都是垂直于横轴的,开关线关键要看各个线性区域的

边界条件。

例4 :20XX 年 非线性控制系统如下图所示。图中()21()r t t =?。 1、以c c -为相变量,写出相轨迹分区运动方程(8分); 2、若M =,画出起始于(0)0c =、(0)0c =的相轨迹(4分); 3、利用相轨迹计算稳态误差及超调量(3分)。

b

解:1. 1)非线性特性:,0

,0

b M

c b M c =>??=-

2) 线性部分: c e b =- (1)

注意:线性部分关键是产生c 的运动方程,但是更关键的是,此运动方程必须能与非线性特

性的输出产生关系。

3)绘制以c c -平面的相轨迹。因此,e r c =-代入式(1)中,则 则 c r c b =--即运动方程为 0c c b r -++=

因为()21()r t t =?,则 20c b c +-+=(2)

式(2)中代入非线性特性,于是各区的运动方程:

2,0I 2,0II c r c M c c M c c r c M c c M c =--?+=->---??

=-+?+=+<---?区

M =,则各区的运动方程:

1.50,0I

2.50,0II c c c c c c +-=>---??

+-=<---?区

4)开关线方程:0c =

2. 绘制相轨迹:注意:运动方程不是标准线性系统运动方程的形式,不能直接根据根的分布绘制根轨迹。怎么办---用解析法求根轨迹。 起点为(0,0)在I 区。

I 区: 1.5

dc c dc c

-=-,分离变量并积分得00( 1.5)c c c dc cdc -+=??

则222

( 1.5) 1.5c c -+=, 可见相轨迹以 1.5c =,0c =为圆心(也是该区的奇点,奇点不求也可以)的圆。

与开关线0c =交于3c =,0c =的点

II 区: 2.5

dc c dc c

-=-

,分离变量并积分得30( 2.5)c c c dc cdc -+=?? 则222

( 2.5)0.5c c -+=,可见相轨迹以 2.5c =,0c =为圆心(也是该区的奇点,奇点不求也可以)的圆。则整个非线性系统的相轨迹如图所示:

c

00

c =

3.由图可见,整体系统的奇点为(2,0)可看成稳定焦点,即最终稳定在奇点。

稳态误差:()()ss e r c =∞-∞=2-2=0, 超调量: 32

%=50%2

σ-=

注意:开关线方程不一定垂直于或者平行于横轴, 见本章的作业P477 8-7 。

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

高一物理---正交分解法

高一物理正交分解法 所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选 定的相互垂直的x 轴和y 轴方向分解,然后分别求出x 轴方向、y 方向的合力ΣF x 、ΣF y ,由于ΣF x 、ΣF y 相互垂直,可方便的求出物体所受外力的合力ΣF (大小和方向 一、正交分解法的三个步骤 第一步,立正交 x 、y 坐标,这是最重要的一步,x 、y 坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x 与y 的方向一定是相互垂直而正交。 第二步,将题目所给定跟要求的各矢量沿x 、y 方向分解,求出各分量,凡跟x 、y 轴方向一致的为正;凡与x 、y 轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。 第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。 第四步,根据各x 、y 轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。 求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。) 例1 共点力F 1=100N ,F 2=150N ,F 3=300N ,方向如图1所示,求此三力 的合力。 y 53° 37° O x 37° 解:三个力沿 x ,y 方向的分力的合力x x x x F F F F 321++=∑: ?+?-?=37sin 53sin 37cos 321F F F N N N 6.03008.01508.0100?+?-?=N 140= y y y y F F F F 321++=∑? -?+?=37cos 53cos 37sin 321F F F N N N 8.03006.01506.0100?-?+?=N 90-= (负值表示方向沿y 轴负方向) 由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N 22)90(140-+=166.4N ∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α= x y F F ∑∑= N N 14090=0.6429 ∴α=32.7o 运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题 。 运用正交分解法解平衡问题时,根据平衡条件F 合=0,应有ΣF x =0,ΣF y =0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。 例2 重100N 光滑匀质球静止在倾角为37o的斜面和与斜面垂直的挡板间, 求斜面和挡板对球的支持力F 1, F 2。 y F 1 x F 2 G 37° 图 3 解:选定如图3所示的坐标系,重球受力如图3所示。由于球静止,所 以有: ?? ?=?-=?-037sin 0 37cos 2 1G F G F ∴ N N G F 808.010037cos 1=?=?= N N G F 606.010037sin 2=?=?=

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高考数学专题复习第二轮第18讲 平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆 14 9 2 2 =+ y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?=- -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:5 5cos 5 5< <- θ ∴点P 横坐标的取值范围是(5 5 3,553- ) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为 向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2 =4上的一动点,求22 PA PB +的最 大值和最小值。 分析:因为O 为AB 的中点,所以2,P A P B P O += 故可利用向量把问题转化为求向量O P 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}O A O B =-=

高中物理必修一常考题型+例题及答案

高中物理必修一常考题型 一、直线运动 1、xt图像与vt图像 2、纸带问题 3、追及与相遇问题 4、水滴下落问题(自由落体) 二、力 1、滑动摩擦力的判断 2、利用正交分解法求解 3、动态和极值问题 三、牛顿定律 1、力、速度、加速度的关系; 2、整体法与隔离法 3、瞬时加速度问题 4、绳活结问题 5、超重失重 6、临界、极值问题 7、与牛顿定律结合的追及问题 8、传送带问题 9、牛二的推广 10、板块问题 11、竖直弹簧模型

一、直线运动 1、xt 图像与vt 图像 2014生全国(2) 14.甲乙两汽车在一平直公路上同向行驶。在t =0到t=t 1的时间内,它们的v-t 图像如图所示。 在这段时间内 A.汽车甲的平均速度比乙大 B.汽车乙的平均速度等于2 21v v C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 2016全国(1) 21.甲、乙两车在平直公路上同向行驶,其v -t 图像如图所示。已知两车在t =3s 时并排行驶,则 A.在t=1s 时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C .两车另一次并排行驶的时刻是t =2s D.甲、乙两车两次并排行驶的位置之间沿公路方向的距离 为40m 2、纸带问题 【2012年广州调研】 34.(18分) (1) 用如图a 所示的装置“验证机械能守恒定律” ①下列物理量需要测量的是__________、通过计算得到的是_____________(填写代号) A .重锤质量 B .重力加速度 C .重锤下落的高度 D .与下落高度对应的重锤的瞬时速度 ②设重锤质量为m 、打点计时器的打点周期为T 、重力加速度为g .图b 是实验得到的一条纸带, A 、 B 、 C 、 D 、 E 为相邻的连续点.根据测得的s1、s2、s3、s4写出重物由B 点到D 点势能减少量的表达式__________,动能增量的表达式__________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是__________(填“大于”、“等于”或“小于”)重力势能的减小量

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

高中物理牛顿运动定律典型例题精选讲解解析

2012牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛 顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力 的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右 为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, 0 图1

平面向量经典习题-提高篇61861

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-1 3 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .-3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116 C.611 D.116 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ),

∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B. (理)向量a,b满足|a|=1,|a-b|= 3 2 ,a与b的夹角为60°,则|b|=( ) A.1 2 B. 1 3 C.1 4 D. 1 5 [答案] A [解析] ∵|a-b|= 3 2 ,∴|a|2+|b|2-2a·b= 3 4 ,

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

平面向量易错题解析

平面向量易错题解析 1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗? 2.你通常是如何处理有关向量的模(长度)的问题?(利用2 2 ||→→ =a a ;22||y x a +=) 3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算) 4.你弄清“02121=+?⊥→ → y y x x b a ”与“0//1221=-?→ → y x y x b a ”了吗? [问题]:两个向量的数量积与两个实数的乘积有什么区别? (1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=?→ →b a ,不能推 出→ →=0b . (2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→ →→→→→=??=?c a c b b a . (3) 在实数中有)()(c b a c b a ??=??,但是在向量的数量积中)()(→ → → → → → ??≠??c b a c b a ,这是因为 左边是与→ c 共线的向量,而右边是与→ a 共线的向量. 5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直 线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、 共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为 (),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

力的正交分解法经典试题内附答案

力的正交分解法经典试题(内附答案) 1.如图1,一架梯子斜靠在光滑竖直墙和粗糙水平面间静止,梯子和竖直墙的夹角为α。当α再增大一些后,梯子仍然能保持静止。那么α增大后和增大前比较,下列说法中正确的是 C A.地面对梯子的支持力增大 B.墙对梯子的压力减小 C.水平面对梯子的摩擦力增大 D.梯子受到的合外力增大 2.一个质量可以不计的细线,能够承受的最大拉力为F。现在把重力G=F 的重物通过光滑的轻质小钩挂在这根细线上,两手握住细线的两端,开始两手并拢,然后沿水平方向慢慢地分开,为了不使细线被拉断,细线的两端之间的夹角不能大于(C ) A.60° B.90° C.120° D .150° 3.放在斜面上的物体,所受重力G可以分解使物体沿斜面向下滑的分力G 1和使物体压紧斜面的分力G 2,当斜面倾角增大时(C ) A. G 1和G 2都增大 B. G 1和G 2都减小 C. G 1增大,G 2减小 D . G 1减小,G2增大 4.如图所示,细绳MO 与NO所能承受的最大拉力相同,长度MO>NO ,则在不断增加重物G 的重力过程中(绳O C不会断)( A ) A.ON 绳先被拉断 B .O M绳先被拉断 C.ON 绳和OM 绳同时被拉断 D.条件不足,无法判断 5.如图所示,光滑的粗铁丝折成一直角三角形,BC 边水平,AC 边竖直,∠AB C=β,AB 、AC 边上分别套有细线系着的铜环,细线长度小于BC,当它们静止时,细线与AB 边成θ角,则 ( D ) A.θ=β B .θ<β C.θ>2 π D .β<θ<2 π θ G C O M N α 图

6.质量为m的木块沿倾角为θ的斜面匀速下滑,如图1所示,那么斜面对物体的作用力方向是 [D ] A.沿斜面向上 B.垂直于斜面向上 C.沿斜面向下 D.竖直向上 7.物体在水平推力F的作用下静止于斜面上,如图3所示,若稍稍增大推力,物体仍保持静止,则 [BC ] A.物体所受合力增大 B.物体所受合力不变 C.物体对斜面的压力增大 D.斜面对物体的摩擦力增大 8.如图4-9所示,位于斜面的物块M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的(ABCD ) A.方向可能沿斜面向上 B.方向可能沿斜面向下 C.大小可能等于零 D.大小可能等于F

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

平面向量典型例题

平面向量典型例题

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116 C.611 D.116 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11. 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,∴〈a ,b 〉=120°,故选B. (理)向量a ,b 满足|a |=1,|a -b |=3 2 ,a 与b 的夹角为60°,则|b |=( ) A.12 B.13 C.14 D.15 [答案] A [解析] ∵|a -b |= 32,∴|a |2+|b |2-2a ·b =34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2 .

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于( ) A.-2 B.-1 3 C.-1 D.-2 3 [答案] C [解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1、 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=( ) A.-1 B.- 3 C.-3 D.1 [答案] C [解析] a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3、 (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为( ) A.-6 11 B.- 11 6 C、6 11 D、 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11、 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴

〈a ,b 〉=120°,故选B 、 (理)向量a ,b 满足|a |=1,|a -b |=32 ,a 与b 的夹角为60°,则|b |=( ) A 、1 2 B 、1 3 C 、14 D 、15 [答案] A [解析] ∵|a -b |= 32 ,∴|a |2+|b |2-2a ·b = 34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2、 4. 若AB →·BC →+AB →2 =0,则△ABC 必定就是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A.-a +3b B.a -3b C.3a -b D.-3a +b [答案] B [解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴?? ? λ+μ=-2λ-μ=4 ,∴?? ? λ=1μ=-3 ,∴c =a -3b ,故选B 、 在平行四边形ABCD 中,AC 与BD 交于O ,E 就是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC → = a ,BD →= b ,则AF → 等于( ) A 、1 4a +1 2b B 、2 3a +1 3b C 、12a +14 b D 、13a +23 b

相关主题
文本预览
相关文档 最新文档