当前位置:文档之家› 轴对称知识点的归纳

轴对称知识点的归纳

轴对称知识点的归纳
轴对称知识点的归纳

轴对称与轴对称图形

一、知识点:

1.什么叫轴对称:

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:

如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:

区别:

①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿

某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:

①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;

如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对

称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等

边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:Array

垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

(也称线段的中垂线)

5.轴对称的性质:

⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:

画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:

例1:判断题:

①角是轴对称图形,对称轴是角的平分线;()

②等腰三角形至少有1条对称轴,至多有3条对称轴;()

③关于某直线对称的两个三角形一定是全等三角形;()

④两图形关于某直线对称,对称点一定在直线的两旁。()

例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.

例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:

例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。

l

B

A

C

l

B

A

C

l

B

A

C

方法1 方法2 方法3

例5:如图,DA 、CB 是平面镜前同一发光点S 发出的经平面镜反射后的反射光线,请通过画图确定发光点S 的位置,并将光路图补充完整。

例6:如图,四边形ABCD 是长方形弹子球台面,有黑白两球分别位于E 、F 两点位置上,试问怎样撞击黑球E ,才能使黑球先碰撞台边AB 反弹后再击中白球F ?

例7:如图,要在河边修建一个水泵站,向张庄A 、李庄B 送水。修在河边什么地方,可使使用的水管最短?

·

·

A

B

a

C

A

D

B

例8:如图,OA、OB是两条相交的公路,点P是一个邮电所,现想在OA、OB上各设立一个投递点,要想使邮电员每次投递路程最近,问投递点应设立在何处?

线段、角的轴对称性

一、知识点:

1.线段的轴对称性:

①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,

另一条是这条线段的垂直平分线。

②线段的垂直平分线上的点到线段两端的距离相等。

③到线段两端距离相等的点,在这条线段的垂直平分线上。

结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:

①角是轴对称图形,对称轴是角平分线所在的直线。

②角平分线上的点到角的两边距离相等。

③到角的两边距离相等的点,在这个角的平分线上。

结论:角的平分线是到角的两边距离相等的点的集合·

P

B

O

A

二、举例:

例1:已知?ABC 中,AB=AC=10,DE 垂直平分AB ,交AC 于E ,已知?BEC 的周长是16。求

?ABC 的周长.

例2:如图,已知∠AOB 及点C 、D ,求作一点P ,使PC=PD ,并且使点P 到OA 、OB 的距离相等。

例3:如图,已知直线l 及其两侧两点A 、B 。 (1) 在直线l 上求一点P ,使PA=PB ; (2)在直线l 上求一点Q ,使l 平分∠AQB 。

例4:如图,直线a 、b 、c 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如何选?

· C

B

O

A

· D

l

·

·

A B b

a

例5:已知:如图,在ΔABC 中,O 是∠B 、∠C 外角的平分线的交点,那么点O 在∠A 的平分线上吗?为什么?

例6:如图,已知:AD 和BC 相交于O ,∠1=∠2,∠3=∠4。试判断AD 和BC 的关系,并说明

理由。

例7:已知:如图,△ABC 中,BC 边中垂线ED 交BC 于E ,交

CF ⊥BD

于F ,交DE 于G ,DF=21BC ,试说明∠FCB=21

∠B

O

D

C

B A

E

O D

C A

1

2

3 4

B

C

例8:已知:在∠ABC 中,D 是∠ABC 平分线上一点,E 、F 分别在AB 、AC 上,且DE=DF 。试判断∠BED 与∠BFD 的关系,并说明理由.

2、已知:在ΔABC 中,D 是BC 上一点,DE ⊥BA 于E ,DF ⊥AC 于F ,且DE=DF.。试判断线段AD 与EF 有何关系?并说明理由。

3、如图,已知:在△ABC 中,∠BAC =90°,BD 平分∠ABC ,DE ⊥BC 于E 。试说明BD 垂直平分AE

E

D

C

A

B

等腰三角形的轴对称性

一、知识点:

3.等腰三角形的性质:

①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;

②等腰三角形的两个底角相等;(简称“等边对等角”)

③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(简称“三线合一”) 4.等腰三角形的判定:

①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)

②直角三角形斜边上的中线等于斜边上的一半。

3.等边三角形:

①等边三角形的定义:

三边相等的三角形叫做等边三角形或正三角形。

②等边三角形的性质:

等边三角形是轴对称图形,并且有3条对称轴;

等边三角形的每个角都等于600。

③等边三角形的判定:

3个角相等的三角形是等边三角形;

有两个角等于600的三角形是等边三角形;

有一个角等于600的等腰三角形是等边三角形。

4.三角形的分类:

斜三角形:三边都不相等的三角形。 三角形 只有两边相等的三角形。 等腰三角形

等边三角形

二、举例:

例1、如图,已知D 、E 两点在线段BC 上,AB =AC ,AD =AE ,试说明BD=CE 的理由?

例2:如图,已知:△ABC 中,AB =AC ,BD 和CE 分别是∠ABC 和∠ACB 的角平分线,且相交于O 点。①试说明△OBC 是等腰三角形;②连接OA ,试判断直线OA 与线段BC 的关系?并说明理由。

A E

D B C

O

A

B

C

E

例3:如图,已知:AD 和BC 相交于O ,∠1=∠2,∠3=∠4。试判断AD 和BC 的关系,并说明

理由。

例4:如图,已知:△ABC 中,∠C=900,D 、E 是AB 边上的两点,且AD=AC ,BD=BC 。

求∠DCE 的度数。

例5:如图,已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,G 、F 分别是BC 、DE 的中点。

试探索FG 与DE 的关系。

O D

C

A

1 2

3 4

F

E

D

C

B A

· ·

A F

C

E

D M

P 例6:如图,已知:△ABC 中,∠C=900,AC=BC ,M 是AB 的中点,DE ⊥BC 于E ,DF ⊥AC 于F 。试判断△MEF 的形状?并说明理由。

例7:如图,已知:△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,

AE=BD ,连结EC 、ED ,

试说明CE=DE 。

例8:如图,在等边△ABC 中,P 为△ABC 内任意一点,PD ⊥BC 于D ,PE ⊥AC 于E ,PF ⊥AB 于F ,AM ⊥BC 于M ,试猜想AM 、PD 、PE 、PF 之间的关系,并证明你的猜想.

等腰梯形的轴对称性

一、知识点:

5. 等腰梯形的定义:

E D

C

B

A

①梯形的定义:一组对边平行,另一组对边不平行为梯形。

梯形中,平行的一组对边称为底,不平行的一组对边称为腰。 ②等腰梯形的定义:两腰相等的梯形叫做等腰梯形。

6. 等腰梯形的性质:

①等腰梯形是轴对称图形,是两底中点的连线所在的直线。 ②等腰梯形同一底上两底角相等。 ③等腰梯形的对角线相等。 3.等腰梯形的判定:

③ 在同一底上的2个底角相等的梯形是等腰梯形。 ④ 补充:对角线相等的梯形是等腰梯形。

二、举例:

例1:填空:

1、等腰梯形的腰长为12cm ,上底长为15cm ,上底与腰的夹角为120°,则下底长为 cm .

2、如果一个等腰梯形的二个内角的和为 1000 ,那么此梯形的四个内角的度数分别为 .

3、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是______;

4、已知等腰梯形的一个底角等于600,它的两底分别为13cm 和37cm ,它的周长为_______;

5、如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,∠A =120°,对角线BD 平分∠ABC ,则

∠BDC 的度数是 ;又若AD =5,则BC = .

C

A

D

C B

6、如图,在等腰梯形ABCD 中,AD ∥BC ,AB = AD ,BD = BC , 则∠C= 0。

例2:如图,等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .试说明:AO =DO .

例3:如图,梯形ABCD 中,AD ∥BC ,AC=BD 。试说明:梯形ABCD 是等腰梯形。

例4:如图,在等腰梯形ABCD 中,AD ∥BC ,AD =3cm ,BC =7cm ,E 为CD 的中点,四边形ABED 的周长比△BCE 的周长大2 cm ,试求AB 的长.

例5:如图,在等腰梯形ABCD 中,AD ∥BC ,AB=CD ,M 为BC 中点,则:

A

D

B C

E

(1)点M 到两腰AB 、CD 的距离相等吗?请说出你的理由。 (2)若连结AM 、DM ,那么△AMD 是等腰三角形吗?为什么?

(3)又若N 为AD 的中点,那么MN ⊥AD 一定成立.你能说明为什么吗?

例6、如图,在等腰梯形ABCD 中,AD ∥BC ,AB =CD ,E 为CD 中点,AE 与BC 的延长线交于F .

(1)判断S △ABF 和S 梯形ABCD 有何关系,并说明理由.

(2)判断S △ABE 和S 梯形ABCD 有何关系,并说明理由. (3)上述结论对一般梯形是否成立?为什么?

例7、如图,在梯形ABCD 中,AD ∥BC ,E 为CD 的中点,AD+BC =AB .则:

A

D

E

F

C

B

A D

A D

B

C

E

F

(1)AE、BE分别平分∠DAB、∠ABC吗?为什么?

(2)AE⊥BE吗?为什么?

例8:在梯形ABCD中,∠B=900,AB=14cm ,AD=18cm ,BC=21cm,点P从点A开始沿AD边向点D以1 cm/s的速度移动,点Q从点C开始沿CB向点B以2cm/s的速度移动,如

A P D

果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?

B C

Q

中心对称与中心对称图形

一、知识点:

1、图形的旋转:

在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。旋转前、后的图形全等。对应点到旋转中心的距离相等。每一对对应点与旋转中心的连线所成的角彼此相等。

2、中心对称:

把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这一点对称。也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

注意:①中心对称是旋转的一种特例,因此,

成中心对称的两个图形具有旋转图形的一切性质。

②成中心对称的2个图形,对称点的连线都经过对称中心,

并且被对称中心平分。

3、中心对称图形:

把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。

中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

4、中心对称与中心对称图形之间的关系:

区别:(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。

联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形 .

5、对比轴对称图形与中心对称图形:

二、举例:

例1:如图,将点阵中的图形绕点O按逆时针方向旋转900,画出旋转后的图形.

例2:画出将ΔABC 绕点O 按顺时针方向旋转120°后的对应三角形。

例3:如图,已知Δ

ABC 是直角三角形,BC 为斜边。若AP=3,将ΔABP 绕点A 逆时针旋转后,能与ΔACP ′重合,求PP ′的长。

·O C

C

B

例4:如图AC =BD ,∠A =∠B ,点E 、F 在AB 上,且DE ∥CF ,试说明此图是中心对称图形的理由。

例5:已知:如图,在△ABC 中,∠BAC=1200,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转600后得到△ECD ,若AB=3,AC=2,求∠BAD 的度数与AD 的长.

例6:如图,直线l 1⊥l 2,垂足为O ,点A 1与点A 关于直线l 1对称,点A 2与点A 关于直线l 2对称。点A1与点A2有怎样的对称关系?你能说明理由吗?

C A

E

八年级上册第十三章-轴对称知识梳理

轴对称单元测试卷(知识梳理卷) 知识点梳理 知识点一:轴对称 1、如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,就称这个图形是轴对称图形。这条直线就是它的对称轴。也可以说这个图形关于这条这条直线(成轴)对称。 2、一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点; 3、轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合; 4、轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。 5、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线; 6、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线; 7、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线; 8、垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的距离相等; 9、垂直平分线的逆定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上; 10、由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分。 11、几何图形都可以看做由点组成。对于这些图形,只要画出图形中的一些特殊点的对称点,连接这些对称点,就可以得到原图形的轴对称图形。 12、平面直角坐标系内对称点的坐标特征 (1)点(x , y)关于x轴对称的点的坐标为:(x , -y); (2)点(x , y)关于y轴对称的点的坐标为:(-x , y); (3)点(x , y)关于远点对称的点的坐标为:(-x , -y) 知识点二:等腰三角形 13、等腰三角形的性质: ①等腰三角形的两个底角相等(简写成“等边对等角”); ②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”);

初中数学轴对称图形知识点加习题总结

知识点1 轴对称图形 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。 知识点2 对称轴的性质 1.对称轴是一条直线。 2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。 3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。 4.图形对称 例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。 例2.推理游戏:下面应该是什么图形?

知识点3线段垂直平分线定义及其性质 定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 性质1.垂直平分线垂直且平分其所在线段。 2.垂直平分线上任意一点,到线段两端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为() A.3 B.5 C.6 D.8 解析:∵直线CD是线段AB的垂直平分线, ∴PB=PA, ∵PA=6, ∴PB=6. 答案C. 例4如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是() A.ED=CD B.∠DAC=∠B

C .∠C >2∠B D .∠B+∠ADE=90° 分析:∵DE 是线段AB 的垂直平分线, ∴AD=BD . ∴∠B=∠BAD,∠ADE=∠BDE. ∴∠B+∠ADE=90° 答案D 课堂练习1 1.点A ,B 关于直线a 对称,P 是直线a 上的任意一点,下列说法不正确的是( ) A .直线AB 与直线a 垂直 B .直线a 是点A 和点B 的对称轴 C .线段PA 与线段PB 相等 D .若PA=PB ,则点P 是线段AB 的中点 2.三角形中到三边的距离相等的点是( ) A .三条边的垂直平分线的交点 B .三条高的交点 C .三条中线的交点 D .三条角平分线的交点 3.已知A 和B 两点在线段EF 的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB 等于( ) A 、95° B 、15° C 、95°或15° D 、170°或30° 4.已知:如图,线段AB 垂直平分线段CD 则AC = 。若线段AB,CD 互相垂直平分,则AC= 。 A B C O D O A B D C

八年级第十三章《轴对称》知识点及典型例题

第十三章《轴对称》 一、知识点归纳 (一)轴对称和轴对称图形 1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称. 2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。(对称轴必须是直线) 3、对称点:折叠后重合的点是对应点,叫做对称点。 4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。 5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。 (二)、轴对称与轴对称图形的区别和联系 区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称. 联系: 1:都是折叠重合 2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。 (三)线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线) (2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上. (证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合. (四)用坐标表示轴对称 1、点(x,y)关于x轴对称的点的坐标为(-x,y);

人教版八年级数学上册 轴对称知识点总结

轴对称 【知识脉络】 【基础知识】 Ⅰ. 轴对称 (1)轴对称图形 如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴. 轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称 定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质: ①关于某条直线对称的两个图形形状相同,大小相等,是全等形; ②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线; ③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上. (3)轴对称图形与轴对称的区别和联系 区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的. 联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形. (4)线段的垂直平分线 线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. Ⅱ. 作轴对称图形 1.作轴对称图形 (1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这

些点,就可以得到原图形的轴对称图形; (2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形. 2.用坐标表示轴对称 点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y). Ⅲ. 等腰三角形 1.等腰三角形 (1)定义:有两边相等的三角形,叫做等腰三角形. (2)等腰三角形性质 ①等腰三角形的两个底角相等,即“等边对等角”; ②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°. (3)等腰三角形的判定 如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”). 2.等边三角形 (1)定义:三条边都相等的三角形,叫做等边三角形. (2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°. (3)等边三角形的判定: ①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形; ③有一个角为60°的等腰三角形是等边三角形. 3.直角三角形的性质定理: 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径

2016苏教版平移旋转轴对称知识点总结

2016苏教版平移、旋转、轴对称知识点总结 平移 1、物体在同一平面上沿直线运动,这种现象叫做平移。 注意:平移只是沿水平方向左右移动(×) 平移不仅仅局限于左右运动。 2、平移二要素:(1)平移方向;(2)平移距离。 将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。 3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。 4、在方格纸上平移图形的方法: (1)找出图形的关键点; (2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点; (3)把各点按原图顺序连接,就得到平移后的图形。 注意:用箭头标明平移方向(→) 旋转 1、旋转:物体绕某一点或轴的转动。 2、旋转方向:与时针运动方向相同的是顺时针方向; 与时针运动方向相反的是逆时针方向; 3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。

4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向 变了。 5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线 段都旋转相同的角度,对应点到旋转点的距离相等。 6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。 7、简单图形旋转90°的画法: (1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线; (2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点; (3)参照原图形顺次连接所画的对应点。 关键线段:水平的、竖直的、过旋转点的线段。 轴对称图形 1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。折痕所在的直线叫做对称轴。 注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头) 2、轴对称图形性质:对称点到对称轴的距离相等。 3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。 4、在方格纸上补全轴对称图形关键: 找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。 5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。

八年级上十二章轴对称知识点总结(最全最新)

轴对称知识点 (一)轴对称和轴对称图形 1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称. 2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。(对称轴必须是直线) 3、对称点:折叠后重合的点是对应点,叫做对称点。 4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。 5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。(二)、轴对称与轴对称图形的区别和联系 区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称. 联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。 (三)线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线). (2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合. (四)用坐标表示轴对称 1、点(x,y)关于x轴对称的点的坐标为(-x,y); 2、点(x,y)关于y轴对称的点的坐标为(x,-y);

轴对称图形知识点归纳

轴对称知识梳理 一、基本概念 1.轴对称图形 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点. 2.线段的垂直平分线 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线 3.轴对称变换 由一个平面图形得到它的轴对称图形叫做轴对称变换. 4.等腰三角形 有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 5.等边三角形 三条边都相等的三角形叫做等边三角形. 二、主要性质 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 2.线段垂直平分钱的性质 线段垂直平分线上的点与这条线段两个端点的距离相等. 3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y). (2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y). 4.等腰三角形的性质 (1)等腰三角形的两个底角相等(简称“等边对等角”). (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴. (4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等. (5)等腰三角形一腰上的高与底边的夹角是顶角的一半。 (6)等腰三角形顶角的外角平分线平行于这个三角形的底边. 5.等边三角形的性质 (1)等边三角形的三个内角都相等,并且每一个角都等于60°. (2)等边三角形是轴对称图形,共有三条对称轴. (3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. 三、有关判定 1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 3.三个角都相等的三角形是等边三角形. 4.有一个角是60°的等腰三角形是等边三角形.

轴对称知识点总结

轴对称与轴对称图形 一、知识点: 1.什么叫轴对称: 如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。 2.什么叫轴对称图形: 如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 3.轴对称与轴对称图形的区别与联系: 区别: ①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿 某直线对折能完全重合。 ②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。 联系: ①两部分都完全重合,都有对称轴,都有对称点。 ②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形; 如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对 称。 常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等 边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:Array 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。 (也称线段的中垂线) 5.轴对称的性质: ⑴成轴对称的两个图形全等。 ⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。 6.怎样画轴对称图形: 画轴对称图形时,应先确定对称轴,再找出对称点。 二、举例: 例1:判断题: ①角是轴对称图形,对称轴是角的平分线;() ②等腰三角形至少有1条对称轴,至多有3条对称轴;() ③关于某直线对称的两个三角形一定是全等三角形;() ④两图形关于某直线对称,对称点一定在直线的两旁。() 例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的在规律,然后把图形空白处填上恰当的图形.

轴对称整章知识点复习题含答案

m C A B P 图3 图2 m C A B 第十二章 轴对称知识点总结 我保证认真独立地完成今天的作业! 签名:____________ 一、知识梳理 1、轴对称图形____________________ ____________________________ 这条直线叫做________________。互相重合的点叫做________________。 轴对称_______________________________________________ _ 这条直线叫做________________。。互相重合的点叫做________________。。 2、轴对称图形与轴对称的区别与联系: 区别________________________________________________。 联系________________________________________________。 3、轴对称的性质: _______________________________________________。 _______________________________________________。 4、线段的垂直平分线定义: ________________________________________________ 如图2, ∵CA=CB , 直线m ⊥AB 于C , ∴直线m 是线段AB 的垂直平分线。 5、线段的垂直平分线性 质:_______________________________________________。 如图3, ∵CA=CB , 直线m ⊥AB 于C , 点P 是直线m 上的点。 ∴PA=PB 。 6、等腰三角形定 义:___________________________________________: 7、等腰三角形性质:___________________________________________: ___________________________________________: 8、等腰三角形判定。 判定①。___________________________________________: 判定②___________________________________________:

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称 《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形 如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,?这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴. 轴对称 有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称. 图形轴对称的性质 如果两个图形成轴对称,?那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线. 画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。 轴对称与轴对称图形的区别 轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称. 考点一、关于“轴对称图形”与“轴对称”的认识 1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个 2.图中,轴对称图形的个数是【】 A.4个 B.3个 C.2个 D.1个

3.正n边形有___________条对称轴,圆有_____________条对称轴 线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线). (2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合. 考点二、线段垂直平分线的性质 4.如图,△ABC中,∠A=90°,BD为∠ABC平分线,DE⊥BC,E是BC的中点,求∠C的度数。 BC 5.如图,△ABC中,AB=AC,PB=PC,连AP并延长交BC于D,求证:AD垂直平分 6.如图,DE是?ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则?EBC 的周长为【】 A.16厘米 B.18厘米 C.26厘米 D.28厘米

第13章 轴对称(知识归纳)

第13章轴对称(知识归纳) 【学习目标】 1. 认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用; 2. 了解垂直平分线的概念,并掌握其性质; 3. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法. 【知识网络】 【知识讲解】 知识点一:轴对称 1.轴对称图形和轴对称 (1)轴对称图形 如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称 定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质: ①关于某条直线对称的两个图形形状相同,大小相等,是全等形; ②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线; ③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上. (3)轴对称图形与轴对称的区别和联系 区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的. 联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形. 2.线段的垂直平分线 线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 知识点二:作轴对称图形 1.作轴对称图形 (1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形; (2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.

轴对称知识点的总结

轴对称与轴对称图形 、知识点: 1 .什么叫轴对称: 如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。 2 。什么叫轴对称图形: 如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 3. 轴对称与轴对称图形的区别与联系: 区别: ①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿 某直线对折能完全重合。 ②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性. 联系: ①两部分都完全重合,都有对称轴,都有对称点。 ②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果 把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。 常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰二角形、等边三 角形、角、线段、相交的两条直线等. 4. 线段的垂直平分线: I 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。 (也称线段的中垂线) A B 5. 轴对称的性质:

⑴成轴对称的两个图形全等.

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线. 6. 怎样画轴对称图形: 画轴对称图形时,应先确定对称轴,再找出对称点。 二、举例: 例1 :判断题: ①角是轴对称图形,对称轴是角的平分线; () ②等腰三角形至少有1条对称轴,至多有3条对称轴; ( ) ③关于某直线对称的两个三角形一定是全等三角形;() ④两图形关于某直线对称,对称点一定在直线的两旁。() 例2 :下图曾被哈佛大学选为入学考试的试题?请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形? 例3 :如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它 成为一个轴对称图形: 例4 :如图,已知:方法ABC和直线I ,请作出法Δ^BC关于直线I的对法三角形.

八年级数学轴对称知识点总结

八年级数学轴对称知识点 总结 Prepared on 21 November 2021

轴对称 【知识脉络】 【基础知识】 Ⅰ.轴对称 (1)轴对称图形 如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图 形,这条直线就是它的对称轴. 轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称 定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质: ①关于某条直线对称的两个图形形状相同,大小相等,是全等形; ②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线; ③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.

(3)轴对称图形与轴对称的区别和联系 区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉 及两个图形,而轴对称图形是对一个图形来说的. 联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果 把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形. (4)线段的垂直平分线 线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. Ⅱ.作轴对称图形 1.作轴对称图形 (1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形; (2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形. 2.用坐标表示轴对称

第13章轴对称知识点

第13章 轴对称知识点总结 一、定义 1.轴对称图形:一个图形沿一条直线对折,直线两旁的 部分能够完全重合。这条直线叫做对称轴。 2.轴对称:两个图形沿一条直线对折,其中一个图形能 够与另一个图形完全重合。这条直线叫做对称轴。 3.轴对称图形与轴对称的区别和联系: 区别:轴对称图形讨论的是“一个图形与一条直线的对 称关系”; 轴对称讨论的是“两个图形与一条直线的对称关 系”。 联系:把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称; 把轴对称的“两个图形看作一个整体”便是轴对称图形。 4.轴对称的性质: (1)成轴对称的两个图形全等。 (2)对称轴与对应点连结的线段垂直。 (3)对应点到对称轴的距离相等。 (4)对应点的连线互相平行。 二、.线段的垂直平分线 (1)定义:经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。 ∵CA=CB , 直线m ⊥AB 于C , ∴直线m 是线段AB 的垂直平分线。 (2)垂直平分线性质:线段垂直平分线上的点与线段两端点的距离相等。 ∵CA=CB , 直线m ⊥AB 于C , 点P 是直线m 上的点。 ∴PA=PB 。 (3)垂直平分线判定: ∵PA=PB , 直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。 三、等腰三角形 1.定义:有两条边相等的三角形,叫做等腰三角形。 ①相等的两条边叫做腰。第三条边叫做底。 ②两腰的夹角叫做顶角。 ③腰与底的夹角叫做底角。 注意:等腰三角形底角只能是锐角。 2.等腰三角形性质: ①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。 ②等边对等角。 ③三线(垂线、中线、角平分线)合一。 3.等腰三角形判定 ①有两条边相等的三角形是等腰三角形。 m C A B D'D C'B'A'K J I H 底边底角底角顶角腰腰C B A

八年级数学上册轴对称知识点总结好)

轴对称知识点总结1、轴对称图形: 一个图形沿一条直线对折,直线两旁的部分能够完全重合。 这条直线叫做对称轴。互相重合的点叫做对应点。 2、轴对称: 两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。 这条直线叫做对称轴。互相重合的点叫做对应点。 3、轴对称图形与轴对称的区别与联系:(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。 (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。 4、轴对称的性质: (1)成轴对称的两个图形全等。 (2)对称轴与连结“对应点的线段”垂直。(3)对应点到对称轴的距离相等。 (4)对应点的连线互相平行。 5、线段的垂直平分线:(1)定义。经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。 如图2, ∵CA=CB, 直线m⊥AB于C, ∴直线m是线段AB的垂直平分线。 (2)性质。线段垂直平分线上的点与线段两端点的距离相等。 如图3, ∵CA=CB, 直线m⊥AB于C, 点P是直线m上的点。 ∴PA=PB 。 (3)判定。 与线段两端点距离相等的点在线段的垂直平分线上。 如图3,∵PA=PB, 直线m是线段AB的垂直平分线, m C A B 图1 图2 m C A B P 图3

∴点P 在直线m 上 。 6、等腰三角形: (1)定义。有两条边相等的三角形,叫做等腰三角形。 ①相等的两条边叫做腰。 第三条边叫做底。 ②两腰的夹角叫做顶角。 ③腰与底的夹角叫做底角。 说明:顶角=180°- 2底角 底角= 顶角顶角2 1 -902180?=-? 可见,底角只能是锐角。 (2)性质。 ①等腰三角 形是轴对称 图形,其对称轴是“底边的垂直平分 线” ,只有 一条。 ②等边对等角。 如图5,在△ABC 中 ∵AB=AC ∴∠B=∠C 。 ③三线合一。 (3)判定。 ①有两条边相等的三角形是等腰三角形。 如图5,在△ABC 中, ∵AB=AC ∴△ABC 是等腰三角形 。 ②有两个角相等的三角形是等腰三角形。 如图5,在△ABC 中 ∵∠B=∠C ∴△ABC 是等腰三角形 。 7、等边三角形: (1)定义。三条边都相等的三角形,叫做等边三角形。 说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。 (2)性质。 ①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线” ,有三条。 ②三条边上的中线、高线及三个内角平分线都相 交于一点。 ③等边三角形的三个内角都等于60°。 如图6,在△ABC 中 ∵AB=AC=BC ∴∠A=∠B=∠C=60°。 D' D C' B' A' K J I H 底边 底角底角顶 角 腰 腰 D C B A 图5 A B C 图4

第二章轴对称图形知识点归纳+典型例题+提优

2.1轴对称与轴对称图形 姓名_______学号_______班级_______ 学习目标: 1.欣赏生活中的轴对称现象和轴对称图案,探索它们的共同特征,发展空间观念. 2.通过具体实例了解轴对称概念,了解轴对称图形的概念,知道轴对称与轴对称图形的区别和联系. 学习重点: 了解轴对称图形和轴对称的概念,并能简单识别、体会轴对称在现实生活中的广泛应用和它的丰富文化价值. 学习难点: 能正确地区分轴对称图形和轴对称,进一步发展空间观念. 学习过程: 一、创设情境 观察如下的图案, 它们有什么共同的特征? 二、探索活动 活动一折纸印墨迹 问题1.你发现折痕两边的墨迹形状一样吗?

问题2.两边墨迹的位置与折痕有什么关系? 概念:把一个图形沿着___________________翻折,如果它能够与另一个图形__________,那么称这两个图形____________________对称,也称这两个图形成______________. 这条直线叫做________________,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点. 如图,△ABC和△DEF关于直线MN对称, 直线MN是对称轴,点A与点D、点B与点E、 点C与点F都是关于直线MN的对称点. 活动二切藕制作成轴对称的两个截面 联系实际,你能举出一些生活中图形成轴对称的实例吗? 活动三

把_________图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是_______________,这条直线就是_____________. 请你找出图1-5中的各图的对称轴. 联系实际,你能举出一个轴对称图形的实例吗? 活动五轴对称与轴对称图形的区别和联系 三、课堂练习 1. 分别画出下列轴对称型字母的对称轴以及两对对称点. 2.画出下列各轴对称图形的对称轴.

(完整版)《轴对称》知识点总结及章节检测

轴对称 1.1轴对称图形 如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,?这个图形就叫做轴对称图形,这条直线就是它的对称轴.(有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴。) 轴对称 有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称. 图形轴对称的性质 性质1:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;注:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线. 性质1的证明如下:如图所示,△ABC与△关于l对称,其中点A、是对称点,设 交对称轴于点P. 证明:将△ABC和△沿l折叠后,点A与重合,则有,∠1=∠2=90°,即对称轴把垂直平分,同样也能把、都垂直平分,于是得出性质1. 性质2:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.证明类似性质1.

轴对称与轴对称图形的区别 轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形,且有特殊位置关系;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.如图所示: 1.2线段的垂直平分线 性质1:线段垂直平分线上的点到线段两端点的距离相等 证明:如图所示,l是线段AB的垂直平分线,P为l上任意一点,求证性质1. 性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上. 证明:如图所示,P在线段AB上方,且PA=PB,求证P在线段AB的垂直平分线上。 以上两点性质可得出:线段的垂直平分线可看作是与线段两个端点距离相等的所有点的集合. 1.3 轴对称变换 由一个平面图形得到它的轴对称图形叫做轴对称变换.? 成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.

八年级数学第13章轴对称知识点

第十三章 轴对称知识点总结及常见题型 1、轴对称图形: 一个图形沿一条直线对折,直线两旁的部分能够完全重合。 这条直线叫做对称轴。互相重合的点叫做对应点。 2、轴对称: 两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。 这条直线叫做对称轴。互相重合的点叫做对应点。 3、轴对称图形与轴对称的区别与联系: (1)区别:轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。 (2)联系:把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。 4、轴对称的性质: (1)成轴对称的两个图形全等。 (2)对称轴与连结“对应点的线段”垂直。 (3)对应点到对称轴的距离相等。 (4)对应点的连线互相平行。 5、线段的垂直平分线: (1)定义:经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。 如图2, ∵CA=CB ,直线m ⊥AB 于C , ∴直线m 是线段AB 的垂直平分线。 (2)性质:线段垂直平分线上的点与线段两端点的距离相等。 如图3, ∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。 ∴PA=PB 。 (3)判定:与线段两端点距离相等的点在线段的垂直平分线上。 如图3, ∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。 6、等腰三角形: (1)定义:有两条边相等的三角形,叫做等腰三角形。 ①相等的两条边叫做腰。第三条边叫做底。 ②两腰的夹角叫做顶角。 ③腰与底的夹角叫做底角。 说明:底角顶角?-=2180ο 顶角顶角底角2 1 -902180?=-?= 可见,底角只能是锐角。 (2)性质: ①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。 ②“等边对等角”:等腰三角形的两个底角相等。 如图5,在△ABC 中 ∵AB=AC ∴∠B=∠C 。 ③三线合一:顶角平分线、底边上的中线和底边上的高相互重合。 (3)判定方法: ①定义法:有两条边相等的三角形是等腰三角形。 如图5,在△ABC 中, ∵AB=AC ∴△ABC 是等腰三角形 。 ②判定(“等角对等边”):有两个角相等的三角形是等腰三角形。 如图5,在△ABC 中 ∵∠B=∠C ∴△ABC 是等腰三角形 。 7、等边三角形: (1)定义:三条边都相等的三角形,叫做等边三角形。 说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。 (2)性质: ①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线” ,有三条。 ②三条边上的中线、高线及三个内角平分线都相交于一点。 ③等边三角形的三个内角都等于60°。 如图6,在△ABC 中 ∵AB=AC=BC ∴∠A=∠B=∠C=60°。 (3)判定方法: 图6 m C A B D'D C' B'A' K J I H 图1 图2 m C A B P 图3 底边 底角底角顶角 腰 腰 D C B A 图5 A B C 图4

人教版数学八年级第十三章《轴对称》知识点及典型例题(无答案)(最新整理)

第十三章《轴对称》 (一)轴对称和轴对称图形 1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合, 那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称. 2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。(对称轴必须是直线) 3、对称点:折叠后重合的点是对应点,叫做对称点。 4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。 5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关 键点的对应点,按照原图顺序依次连接各点。 (二)轴对称与轴对称图形的区别和联系 区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个 图形那么他就是轴对称图形,反之亦然。

线段的垂直平分线 经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线) (2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合. (四)用坐标表示轴对称 1、点(x,y)关于 x 轴对称的点的坐标为(-x,y) 2、点(x,y)关于 y 轴对称的点的坐标为(x,-y); (五)关于坐标轴夹角平分线对称 点P(x,y)关于第一、三象限坐标轴夹角平分线 y=x 对称的点的坐标是(y,x) 点P(x,y)关于第二、四象限坐标轴夹角平分线 y=-x 对称的点的坐标是(-y,-x) (六)关于平行于坐标轴的直线对称 点P(x,y)关于直线 x=m 对称的点的坐标是(2m-x,y); 点P(x,y)关于直线 y=n 对称的点的坐标是(x,2n-y);(七)等腰三角形 等腰三角形性质: 性质 1:等腰三角形的两个底角相等(简写成“等边对等角”) 性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(三线合一)2、等腰三角形的判定:如果一个三角形有两

2019年七年级数学下册第五章生活中的轴对称知识点归纳新版北师大版

第五章生活中的轴对称 轴对称图形 轴对称分类 轴对称 角平分线 轴对称实例线段的垂直平分线 等腰三角形 等边三角形 生活中的轴对称 轴对称的性质 轴对称的性质 镜面对称的性质 图案设计 轴对称的应用 镶边与剪纸 一、轴对称图形 1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2、理解轴对称图形要抓住以下几点: (1)指一个图形; (2)存在一条直线(对称轴); (3)图形被直线分成的两部分互相重合; (4)轴对称图形的对称轴有的只有一条,有的则存在多条; (5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形; 二、轴对称 1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。 2、理解轴对称应注意: (1)有两个图形; (2)沿某一条直线对折后能够完全重合; (3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形; (4)对称轴是直线而不是线段;

三、角平分线的性质 1、角平分线所在的直线是该角的对称轴。 2、性质:角平分线上的点到这个角的两边的距离相等。 四、线段的垂直平分线 1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。 2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。 五、等腰三角形 1、有两条边相等的三角形叫做等腰三角形; 2、相等的两条边叫做腰;另一边叫做底边; 3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角; 4、三条边都相等的三角形也是等腰三角形。 5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。 6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。 7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。 8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。 9、“三线合一”是等腰三角形特有的性质,是指其顶角平分线,底边上的高和中线,这三线,并非其他。 10、等腰三角形的两个底角相等,简写成“等边对等角”。 11、判定一个三角形是等腰三角形常用的两种方法: (1)两条边相等的三角形是等腰三角形; (2)如果一个三角形有两个角相等,那么它们所对的边也相等相等,简写为“等角对等边”。 六、等边三角形 1、等边三角形是指三边都相等的三角形,又称正三角形,是最特殊的三角形。 2、等边三角形是底与腰相等的等腰三角形,所以等边三角形具备等腰三角形的所有性质。 3、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。 4、等边三角形的三边都相等,三个内角都是600。

相关主题
文本预览
相关文档 最新文档