当前位置:文档之家› (完整word版)数学分析(3)试卷及答案,推荐文档

(完整word版)数学分析(3)试卷及答案,推荐文档

(完整word版)数学分析(3)试卷及答案,推荐文档
(完整word版)数学分析(3)试卷及答案,推荐文档

数学分析(3)期末试卷

2005年1月13日

班级_______ 学号_________ 姓名__________

考试注意事项:

1.考试时间:120分钟。

2.试卷含三大题,共100分。

3.试卷空白页为草稿纸,请勿撕下!散卷作废!

4.遵守考试纪律。

一、填空题(每空3分,共24分)

1、 设z x u y

tan =,则全微分=u d __________________________。

2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则

=x u _________________________。

3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。

4、 设,d ),()(sin 2y y x f x F x

x

?

=),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L

s x yd _____________。

6、 在xy 面上,若圆{}

12

2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关

于原点的转动惯量的二重积分表达式为_______________,其值为_____________。

7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S

2

_______。

二、计算题(每题8分,共56分) 1、 讨论y

x y x y x f 1

sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2

x

y y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。

3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

4、 求

x x x e x x

d sin e

2?

∞+---。提示:C bx b bx a b

a e x bx e ax ax

+-+=?)cos sin (d sin 2

2。

5、 利用坐标变换求??+-D

y x y

x y

x d d sec

2,其中D 由1=+y x ,0=x 及0=y 围成。

6、 求曲面2222≤++z y x 与22y x z +≥所围成的立体体积。

7、 计算y x z x z y z y x S

d d d d d d 333++??,其中S 是球面2222R z y x =++)

0(>R 的上半部分)0(≥z 的外侧。

三、证明题(每题10分,共20分)

1、 试证:函数?

????=+≠++=,0 ,0

,0,),(222222

2

y x y x y x xy y x f 在原点)0,0(连续且偏导数存在,但

在原点不可微,并且),(y x f x 和),(y x f y 在原点不连续。

2、 试证3222=++z y x 和1=++z y x 的交线在点)1,1,1(0-P 的邻域内能用一对

方程)(x f y =和)(x g z =表示,并求x y d d 和x

z d d ,以及交线在点0P 的法平面方程。

数学分析3期末考试题

一.选择题(每题4分,共16分)

1.如果是偶函数且可导,则 ( ) A. 0)0(='f B. 0)0(=f C.1)0(='f D.1)0(=f

2.下列广义积分收敛的是 ( ) A.

dx x x

?

+∞

+0

21 B. dx x x ?+∞∞-+214cos

C.

)1(,11

≤?

+∞

p dx x p D. )1(,)(ln 12≤?+∞p dx x x p

3.下列说法错误的是 ( ) A.设2

R E ?为任一有界无穷点集,则E 在2

R 中至少有一个聚点.

B.设{}2

R P k ?为一个有界点列,则它必存在收敛子列.

C.2

R E ?为有界闭集,则E 的任一无穷子集必有聚点. D.2

R E ?为有界闭集,则E 不一定为一列紧集. 4.下列

A.若级数∑n u 是发散的,则∑n u c 也是发散的.

B.若级数∑n u 是收敛的,∑n v 是发散的,则+∑n u ∑n

v

可以是收

敛的.

C.若级数∑n u 和∑n v 是发散的,则+

∑n u ∑n

v

可以是收敛的.

D. 若级数∑n u 和∑n v 是发散的,则n n v u ∑也是发散的. 二.填空题(每空3分,共15分)

1.级数∑-n

x n n

2)1(的收敛半为 ,收敛区间

为 .

2.若x

y

z arctan =在)1,1(处可微,则=)1,1(x z ,

=)1,1(y z .

3. 函数)sin(y x y z +=的全微分为 . 三.计算题(共40分)

1.计算下列定积分(每题4分,共8分)

(1)dx x x ?+-1

02

211 (2)dx x x e e 2

1)(ln 1?

2.求级数∑∞

=++1)

2)(1(1

n n n n 的和函数(8分)

3.把函数??????

?<≤<<--=,0,4

,0,4

)(ππππ

x x x f 展成傅立叶级数.(8分)

4.求极限2

2)

0,0()(1

sin

)(lim y

x y x y x ++→,.(8分)

5.求曲面273222=-+z y x 在点)1,1,3(处的切平面方程和法线方程.(8分)

四.讨论题和证明题(共29分)

1.设,)(n

x x x f n

n -=讨论函数列{}{}n n f f '与在]1,0[∈x 的一致收敛性.(9分)

2.设f 在],[a a -上可积,证明:(5分) (1)若f 为奇函数,则0)(=?-dx x f a

a

(2)若f 为偶函数,则dx x f dx x f a

a a

??=-0

)(2)(

3.证明不等式e dx e x <

02

1.(5分)

4.证明函数()y x f ,??

???=+≠++=,0,0,0,22222

22y x y x y x y

x 在点)0,0(连续且偏导数存

在,但在此点不可微.(10分)

2008-2009(一)《数学分析》(3-3)期末考试试卷B

一. 选择题(每题3分,共27分)

1.下列说法错误的是 ( )

A 2R 是开集但不是闭集

B {}222(,)x y x y r +≤是闭集

C {}22(,)1x y x y +<是开集

D ?是既开又闭的点集。

2. 设点P 是平面点集E 的边界点,CE 是E 关于全平面的余集,则( )

A P 是E 的聚点

B P 是E 的孤立点

C P 是E 的内点

D P 是C

E 的边界点 3. L 为单位圆周

1

22=+y x ,

ds

y L

?

的值为

( )

A 4

B 3

C 2

D 1

4. 设L 是沿抛物线22y x =从原点到点B (1,2)的曲线,L

xdy ydx +?

的值为 ( )

A 0

B 2

C 1

D -2

5

y

x y x xy

sin ),(),()11(lim ++∞+∞→的值等于

( )

A 1

B 2

C 3

D 0

6. 若S 为柱面2

22R y x =+被平面0=z 和0)H(H >=z 所截取的

部分,则dS y x S

??

+2

21

值等于

( )

A R H 2π

B R H π

C 4H

3π D R H 4π

7.累次积分??2

x 0

0dy y x f dx ),(1

交换积分顺序后,正确的是

( )

A

??y

0dx y x f dy ),(1

B ??1

1),(y

dx y x f dy

C ??y

0dx y x f dy 1

1),( D ??0

1),(y

dx y x f dy

8. 曲面z=x y arctan

在点(1,1,4

π)处的切平面方程是 ( )

A 2

=

+-z y x B 2

=

-+z y x

C z y x +=+=+4

)1(2)1(2π

D z y x -=

-=-4)1(2)1(2π

9. 设

,2y xe u = l 由起点

P(1,0)到终点Q(3,-1),则

l

u

??|P

等于

( )

A 0

B 1

C 2

D 3

二 计算题(每题8分, 共40分)

1. 设z =f (xy x

y

,),求y x z ???2.

2. 设2

2

2

z y x u ++=,其中),(y x f z =是由方程

xyz

z y x 3333=++所确定的隐函数,求x u

3.设L 为任一包含原点的闭曲线,方向取正向,计算?

+-L y x ydx

xdy 2

2

4. 计算

???V

dxdydz z 2的值,其中V 是由2222R z y x ≤++与Rz z y x 2222≤++所围成的空间区域

5. 计算曲面积分

dxdy z dzdx y dydz x S

222++??,其中S 是锥面 222z y x =+与平面h z =所围空间区域)0(h z ≤≤的表面,方向取

外侧.

三 证明题 (共24分)

1设22220;(,)0,0x y f x y x y +≠=+=?

讨论),(y x f 在(0,0)处是否连续,是否可微(10分)

2. 讨论积分dy e I y x ?+∞

-=02

在)0(],[>a b a 上的一致收敛性(8分)

3. 设),(y x f 为连续函数,且),(),(x y f y x f =,证明:

dy y x f dx dy y x f dx x

x

??

??--=10

10

)1,1(),( (6分)

四. 应用题(9分)

求体积一定而表面积最小的长方体.

数学分析(3)期末试卷

2005年1月13日

班级_______ 学号_________ 姓名__________

考试注意事项:

5.考试时间:120分钟。

6.试卷含三大题,共100分。

7.试卷空白页为草稿纸,请勿撕下!散卷作废!

8.遵守考试纪律。

一、填空题(每空3分,共24分)

8、 设z x u y

tan =,则全微分=u d __________________________。

9、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则

=x u _________________________。

10、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是

__________________。 11、 设

,d ),()(sin 2y y x f x F x

x

?

=),(y x f 有连续偏导数,则

=')(x F __________________。

12、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分

?=L s x yd _____________。

13、 在xy 面上,若圆{}

12

2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆

关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。

14、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分

=??dxdy z

S 2

_______。

二、计算题(每题8分,共56分)

8、 讨论y

x y x y x f 1

sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

9、 设),(2

x

y

y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。

10、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小

值。

11、 求

x x x

e x

x

d sin

e 0

2?

∞+---。提示:

C bx b bx a b a e x bx e ax

ax

+-+=?)cos sin (d sin 22。

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =+在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x ==+ ,因此二重极限为0.……(4 分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析试卷及答案6套(新)

数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) 用ε三 (n x n n = ++ ?+四()f x x = 在五六七八九. )b ,使 (f ''数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在a 可导. 七. 八. ,都有 f 九. 一.(各1. x ?3. ln 0 ? 二.(10三. (10四. (15分)证明函数级数 (1)n x x =-在不一致收敛, 在[0,](其中)一致收敛. 五. (10分)将函数,0 (),0x x f x x x ππππ + ≤≤?=? - <≤?展成傅立叶级数. 六. (10分)设22 22 0(,)0,0 xy x y f x y x y ? +≠?=?? +=?

数学分析3期末测试卷

2012 –2013学年第一学期期末考试题 11数学教育《数学分析》(三) 一、单项选择(将正确答案的序号填在括号内,每题2分,共20分) 1. 下列数项级数中收敛的是 ( ) A. 211 n n ∞ =∑; B. 2 1n n n ∞ =+∑; C. 1 1 n n ∞ =∑; D. 0 1 23n n n ∞ =++∑. 2. 下列数项级数中绝对收敛的是 ( ) A. 1(1)n n n ∞ =-∑ B. 1n n n ∞=1n n n n ∞= D. 1 sin n n n ∞ =∑ 3.函数项级数1n n x n ∞ =∑的收敛域是 ( ) A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]- 4.幂级数0 21n n n x n ∞ =+∑的收敛半径是 ( ) . A B C D 1 .2 .1 .02 5. 下列各区域中,是开区域的是 ( ) 2. {(,)|}A x y x y > . {(,)|||1}B x y xy ≤ 22.{(,)|14}C x y x y <+≤ .{(,)|1}D x y x y +≥ 6.点集11{,|}E n N n n ?? =∈ ??? 的聚点是 ( ) A. ){0,0} B.()0,0 C. 0,0 D.{}{}0,0 7.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要 条件 8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( ) A.偏导数连续 B.连续 C. 偏导数存在 D. 存在方向导数 9. 设函数)()(y v x u z =,则 z x ??等于 ( ) A. ()()u x v y x y ???? B. ()()du x v y dx y ?? C. () ()du x v y dx D. ()()u x v y x y ??+?? 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( ) A. 偏导数连续; B. 偏导数存在; C.存在切平面; D. 存在方向导数. 二、填空题(将正确答案填在横线上,每题2分,共20分) 11. 若数项级数1 1n p n n ∞ =-∑() 绝对收敛,则p 的取值范围是 ; 12. 幂级数0(1)n n n x ∞ =+∑的和函数是 ; 13.幂级数2 01 (1)n n x n ∞ =-∑ 的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________ 17.函数y z x =,则 z y ?=? ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ= 的方向导数是 ___________; 19.设cos sin x r y r ? ?=??=?,则 x x r y y r ?? ????=???? ; 20.若22arctan y x y x +=,则dy dx =______________________。 三、判断题(请在你认为正确的题后的括号内打“√”,错误的打“×”,每题 1分,共10 题号 一 二 三 四 五 总分 复核人 分值 20 20 10 32 18 100 得分 评卷人 得分 得分 得分

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

数学分析三试卷及答案

数学分析三试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =,因此二重极限为0.……(4分) 因为11x y x →+ 与11 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

第三学期 数学分析(3)试卷

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ?=),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2_______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2x y y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。 3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使lim )0x ax b →+∞ -=. 八. (14分)求函数32()2912f x x x x =-+在15 [,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --.

一. (10分)设数列{}n a 满足 : 1a = , 1()n a n N +=∈, 其中a 是一给定的 正常数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=. 三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在 a 可导. 七. (12分)求函数()1f x x x α αα=-+-在的最大值,其中01α<<. 八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有 12()()f x f x ''≤. 九. (12分)设() ,0()0,0 g x x f x x x ? ≠? =?? =? 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.

最新2003年浙江大学数学分析试题答案汇总

2003年浙江大学数学分析试题答案

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

三年级期末考试试卷数学分析

三年级期末考试试卷数学分析 第一大题:计算题;共两道题;满分30分;正确率较高;说明学生学生的口算能力及计算能力较高;失分的主要原因是计算马虎不细心造成的;但仍有学生计算题竖式正确;横式写错或忘写得数.缺乏良好的考试习惯;自己检查错误的能力亟待加强. 第二大题;填空题:学生马虎现象严重:本题面广量大;分数占全卷的1/5.本题主要考察学生运用书本知识解决日常生活中的问题的掌握情况.很多学生不能根据书本上知识灵活处理问题.错的较多的题是第1、2、4、小题.第1、2小题都与测量中的填合适的单位和换算有关;学生不会灵活运用;第4小题是对时间的简单计算有关;审题不仔细. 第三大题;选择题:分数占全卷的1/10.失分最多的是1、2、8、题.其中第1、2小题选择合适的单位错的比较多;如1题:交通局的叔叔要测量一条公路的宽度;应选择用()作测量单位.很多学生选择A、千米学生不会选择合适的面积单位;说明学生对面积单位不能准确感知;对生活常识比较缺乏.第教学时;要给学生充分的时间实际去做;关注学生做的感受.在充分动手操作的过程中体验、感知面积单位的大小;重视学生在操作和体验中学习数学.第8小题不透明的纸袋里有一些乒乓球;忽视了题中的“一些”没能理解题意;学生的理解能力以及分析能力还有待加强. 第四大题;实践与操作:共3道小题;满分10分;正确率比较高.但也有失分较多的是第3小题;少数学生没标出所测量平行四边形的长度单位.教学时没能对学生严格要求作图的规范性. 第五大题:解决实际问题;共6道小题;满分30分;正确率稍差.主要是审题不仔细及计算马虎造成的.比如第1小题:出示题后让学生先提出一个用加法计算的问题并解答;再提出一个用减法计算的问题并解答.有少数学生出现漏题现象;只做第一个题;忘了第二个题.第4小题:快过年了;县城某商场搞促销活动;牛奶每盒4元;买10盒送2盒;妈妈到商场买14盒牛奶一共用多少钱?这道题学生失分很严重.主要原因是学生对题目中的条件‘买10盒送2盒’理解不够透彻;学生都是农村的孩子对促销理解不到位.第5小题考查的是正方形的周长;少数学生忘写单位;及计算粗心导致失分. 三、改进思考及措施: 1、教师及时反思进行详细卷面分析;针对每个学生进行分析. 2、加强课堂教学向40分钟要质量. 3、培养良好的学习习惯和态度.在平时的教学中;不能忽视学生良好学习习惯和学习态度的培养;首先需要提高审题能力.审题是做题的第一步;在课堂上;常常是老师刚一提问;学生就争先恐后的举手回答;并没有完整把握题目的内容.反思一下自己的教学;也存在这样的问题.所以;在平时的课堂教学中;多给学生思考的时间和空间;让他们想好了再回答.无论是公开课还是平时的随堂课;都不要怕冷场;要让同桌讨论和小组合作更加深入;而不是让学生发表肤浅的见解.再者;可以培养学生良好的审题习惯.例如读题时;让学生圈画出重点词句;突出题目的要求.第二;要做到长抓不懈;因为任何良好习惯不是一朝一夕能培养出来的;而是要有一个比较长的过程.只有这样;才能把学生因审题不清、看错题目、漏写结果、计算不细心等原因所产生的错误减少到最低程度.

数学分析试题与答案

2014---2015学年度第二学期 《数学分析2》A 试卷 一. 1.若f 2.. . . 二. 1.若2.A.()x f 在[]b a ,上一定不可积; B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定.

3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4.设∑n u 为任一项级数,则下列说法正确的是() A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B.若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; 1.1.? +0 2.∑ ∞ =1!n n n n 3.()n n n n n 2 1211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-===,,2,1,sin D n n nx x f n

2.(][)∞+?-∞-=∑,22,2 D x n n 六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030角向斜上方切割,求从圆柱体上切下的这块立体的体积。(本题满10分) 七.将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。(本题满分10分) 八.证明:函数()∑=3cos n nx x f 在()∞+∞-,上连续,且有连续的导函数.(本题满分9分)

数学分析试题与答案

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????=dx x g dx x f dx x g x f ( ). 3. 若()? +∞ a dx x f 绝对收敛,()?+∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( ). 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散于 正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A .发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B . 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A . ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析试题库

数学分析题库 一. 选择题 1. 函数7 12arcsin 162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-. 2. 函数)1ln(2++=x x x y ()+∞<<∞-x 是( ). (A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3. 点0=x 是函数x e y 1=的( ). (A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点. 4. 当0→x 时,x 2tan 是( ). (A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小. 5. x x x x 2)1 (lim -∞→的值( ). (A )e; (B)e 1; (C)2e ; (D)0. 6. 函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0 0)()(x x x f x f -- ; (B)x x f x x f x x ?-?+→)()(lim 0 ; (C) ()()x f x f x ?-→?0lim 0 ; (D)()()x x x f x x f x ??--?+→?2lim 000. 7. 若()()2 102lim 0=-→x f x f x ,则()0f '等于( ). (A )4; (B)2; (C)21; (D)4 1,

8. 过曲线x e x y +=的点()1,0处的切线方程为( ). (A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9. 若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ). (A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933 123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3. 11.函数()x f y =由参数方程?????==-t t e y e x 35确定,则=dx dy ( ). (A )t e 253; (B)t e 53; (C) t e --5 3 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =?是),(b a 上的( ) (A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13 .()n = (A ) 21 ; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x →=( ) (A ) 0 ; (B) 1 ; (C ) 2 ; (D )

历年试题数学分析

历年试题数学分析

河南大学2002年硕士研究生招生入学考试数学分析 一、计算下列各题(每题5分,共50分): 1、2211 1222lim 11 133 3n x n →∞+++ +++; 2、 222arcsin 22x a x y a x a =- ()0a >,求y '; 3、()1ln ln ln x dx x ??+?? ? ? ?; 4、20 sin x e xdx π ? ; 5、计算广义积分21 1 dx x -?; 6、求幂级数() 135 n n n x n ∞ =-?∑ 的收敛区间; 7、设,y x z x =求,z z x y ??? ?; 8、展开函数()()cos 2x f x x ππ=-≤≤为傅里叶级数; 9、计算二重积分 2 2,:2,,1D x dxdy D x y x xy y ===??所围成; 10、应用格林公式计算2 2 C xy dy x ydx -?,式中C 为按逆时针 方向绕圆周2 2 x y a +=一圈的路径. 二、(10)求函数()() 2 12x y x x dx =--?的极值,并求其图形 上的拐点. (下缺)

河南大学2003年硕士研究生招生入学考试数学分析 一、完成以下各题(每小题8分,共48分) 1、() ( ) 23ln 1lim ln 1x x x e e →∞ ++; 2、设 ()2 ln 1arctan x t y t t ?=+??=-??,求 22,dy d y dx dx ; 3、计算广义积分2 2 2 ,02 sin sin dx x π α π αα << -? ; 4、将()11x f x x -=+展成x 的幂级数,并确定收敛区间; 5、计算()()2y y AB e x dx xe y dy ++-?,其中AB 是经过()()() 0,0,0,1,1,2A C B 的任一光滑圆弧; 6、求函数()2 43 1 x f x x +=+的极大值和极小值. 二、(12分)求由方程()22ln 0xz xyz xyz -+=所确定的函数 () ,z f x y =的全微分. 三、(12分)展开函数 ()1,02 0,2 x f x x π π π ? ≤≤ ?? =? ?≤≤?? 为余弦级数.

数学分析(2)试题及答案

(十六)数学分析2考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2 分,共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ??=-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ?+∞ sin xdx D ? -1 13 1 dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞=1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1x a n n ∑∞ =在[a ,b ]收敛于a (x ) ,且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( ) A )(1x a n n ∑∞ =在[a ,b ]绝对收敛必一致收敛 B )(1 x a n n ∑∞ =在[a ,b ] 一致收敛必绝对收敛 C 若0|)(|lim =∞ →x a n n ,则 )(1 x a n n ∑∞ =在[a ,b ]必绝对收敛

相关主题
文本预览
相关文档 最新文档