当前位置:文档之家› igcc气化炉的介绍

igcc气化炉的介绍

igcc气化炉的介绍
igcc气化炉的介绍

IGCC气化炉的介绍

背景:面对20世纪70年代的石油危机而研究出来的洁净煤发电技术。

IGCC的设计思想:就是使煤在气化炉中气化成为中热值或者低热值的煤气,然后通过

S和COS等)除尽,供到燃气蒸汽联合循净化处理,把粗煤气中的灰分和含硫物质(H

2

环的发电机组中燃烧做功,借以达到以煤代油(或者天然气)的目的。

====

2、IGCC的优点:1、整体煤气化技术具有广泛的适用性,便于与不同的技术集成,它是各种先进的能源与动力系统的基础。比如在当前急需考虑温室气体对于控制全球大气温度变暖的负面影响时,IGCC+CCUS(Carbon Capture Utilization and Sequestration碳的捕集利用和封存)技术也许是捕集与深埋CO2的颇具竞争力的方案。

3、具有提高供电效率的最大潜力。目前,荷兰Buggenum纯发电IGCC电站实际达到的供电效率为43%,

4、单机容量已经做到了300~450MW等级。当采用2台机组并列布置的方式时,电站的净功率可以达到650~800MW等级。

5、污染问题解决的最彻底。当使用含硫量高于3%的高硫煤时,此优点更加突出。此处应该有数据

6、耗水量比较少。它只有PC+FCD电站耗水量的50%~70%,这对于缺水的我国是非常有利的。

7、燃煤后的废物处理量最少。脱硫后生产的元素硫或者硫酸可以出售,有利于降低IGCC的发电成本。灰或者其他重金属微量元素熔融冷却后形成的玻璃状的渣,对环境无害,可用作建筑和水泥工业的原料。

8、可以合理地选择气化炉的类型和气化工艺,燃用各种品质的煤种。IGCC特别适宜于燃用灰熔点较低的煤种。

====

主要缺点:1、在不要求捕集CO2时,IGCC的比投资费用和发电成本比较高。

2、机组变工况的性能稍微差一些,不宜在低负荷下长期运行。

3、在不设置备用气化炉的前提下,全厂的运行可用率偏低,一般只能达到85%左右。====

整体煤气化燃气一蒸汽联合循环(简称I G C C)是一种先进的高效低污染的清洁煤发电技术,是多种高新技术的合成。其主要生产流程是:1、将原煤制成煤粉或水煤浆送人气化炉中,煤粉或煤浆在气化炉中与来自空分系统的氧气反应生成粗煤气,2、粗煤气经净化系统除去粉尘、硫化物等有害物质3、送入燃气轮机燃烧室,燃烧产生高温高压气体进人透平膨胀做功,拖功发电机发电4、燃气轮机的排气进人余热锅炉,余热锅炉吸收燃气轮机排气的热量产生蒸汽带动汽轮发电机组发电,这样就实现了燃气一蒸汽联合循环发电。

其流程图如下:

简单的讲,所谓IGCC就是在已经完全成熟的燃气-蒸汽联合循环发电机组的基础上,叠置一套煤的气化和净化设备,以便使煤变成人造的干净的合成煤气进而在燃气-蒸汽联合循环的发电设备中,实现煤的高效和洁净发电的目的。

在IGCC系统中,燃气轮机、余热锅炉和蒸汽轮机部分都用到了常规的比较成熟的技术,所不同的主要是煤的气化和粗煤气的净化过程。

=======

气化原理:1、在缺氧的条件下,煤首先由于蒸发作用得以干燥,释放出表面水分和内在水分。2、随着温度升高,一些较弱的化学键被破坏,开始析出挥发份,生成煤焦油、油、酚和某些气相的碳氢化合物。如果炉温低,则这些挥发份不再参与反应而成为粗煤气的一部分。如果炉温高,则挥发份热裂解,与氧气反应,生成H2\CO\CO2,所以气相的碳氢化合物含量少。3、析出挥发份的固定碳将于氧气、水蒸气、和氢气继续反应生成CO CO2 CH4。这些气体彼此还会进行反应,最终生成粗煤气。

主要化学方程式:4C+3O2→2CO2+2CO 放热反应

3C+2O2→2CO+CO2 放热反应

C+CO2→2CO吸热反应

C+H2O→CO+H2吸热反应

H2O+CO→H2+CO2放热反应

CO+3H2→CH4+H2O放热反应

C+2H2→CH4放热反应

第一个反应在温度低于1200度的条件下进行。二个反应则在温度高于1300℃的条件下进行。三四反应在要在高温下进行,而四反应比三反映的反应速率要快。因为水向碳表面扩散的速度要比CO2快。5反应在温度较低时易于反应,转化速度快。会影响煤气中H2/CO的含量比。6 7反应只有在低温和高压的条件下比较容易发生。以前五个反应为主。

在气化过程中,煤中所含的S元素大部分转化为了H2S,少数转化成COS。高温低压条件下N转化为了氨气,还会生成少量的HCN。

五种气化炉装置:喷流床气化炉、流化床气化炉、固定床气化炉、输运床气化炉、熔融床气化炉。

评价气化炉的优劣要求:设备的实用性,这就要求气化炉的加工工序要少,工作可靠性和设备的可用性要高,单炉的生产能力要大,维修方便,而设备的制造和维护费用低。

原料的适应性,它要求气化炉能加工多品种的煤。

煤气后处理系统的简单性,要求气化炉所产生的煤气中不含副产品焦油和酚等有害物质,煤尘的携带量也应很少,这样才能使煤气的净化系统简单化。

与发电设备运行工况的匹配性,要求气化炉具有对不断变化中的负荷的适应能力,它既能迅速停车,又能迅速再启动。在启停过程中不会出现严重的不稳定性。负荷的调节范围要广。当压力瞬间变化时,也能平稳运行。

喷流床气化炉:Texaco炉、Destec炉、GSP炉等。

Texaco炉

1、水和煤直接混合在磨煤机中形成水煤浆,或者磨煤机(1)将煤磨成干粉再与水混合形成水煤浆。

2、磨好的水煤浆储存在水煤浆储箱(2)中,水煤浆泵(3)将水煤浆打入气化炉(5)中。

3、氧气也通入气化炉中,与水煤浆混合发生化学反应,产生粗煤气。

4、从气化炉底部的渣/气出口流出来的高温合成煤气流中,携带着煤的熔渣和飞灰。当它进入激冷段(5)后,受到激冷水的激冷。当粗煤气的温度降到250℃左右被引出激冷段,粗煤气含水量处于饱和状态。

5、含大量饱和水蒸气和飞灰的粗煤气引入煤气的净化处理系统(10)。通过水洗涤器和旋风分离器的作用,清除掉煤气中的飞灰和焦炭粒子。

6、这些可燃的焦炭,通过再循环管返回磨煤机中或直接返回到气化炉中继续燃烧释热。以便提高气化炉的碳转化率。

流化床气化炉包括:KRW炉,U-Gas炉、高温温克勒炉等

工作原理:使用八到十毫米以下的小煤粒在,流速较高的气化剂得带动下,可以悬浮起来使整个煤层的体积发生膨胀,煤粒在煤层中发生类似于布朗运动那样的不规则运动,在床层中还会有许多气泡涌出,犹如在液体中发生沸腾现象那样。接下来以KRW炉为例:

过程:1原煤经过破碎和筛分,制备成粒度为0~6mm的煤粒,在干燥器的作用下,使煤的表面水分降低到8%以下2、由输送机输到常压储煤仓。常压储煤仓和上煤斗与下煤斗之间都有阀门隔开,在上下煤斗彼此隔开的情况下,依靠重力的作用,煤从储煤仓流入上煤斗,在上煤斗与储煤仓隔断的情况下,给上煤斗充气加压。当充气压力与下煤斗中的压力相平衡时,打开上下煤斗之间的隔断阀,使煤流入下煤斗并充满。上煤斗泄压释放的循环煤气可排到低压煤气系统中去备用。3、在下煤斗处于压力状态下的煤,经给煤机和输送气的作用,通过位于炉膛中心的输送管,被连续不断的送到气化炉。4、与煤和输送气同轴进入炉膛的氧气就能

立即与煤粒混合并燃烧,由此形成一个高温的射流燃烧区。5、当输送煤的输送气的射流动能消失后,燃烧着的煤粒和半焦就不再会被射流携带向上运动,它们将转向四周沿炉膛的内壁逐渐下降。6、这种环流颗粒的高速循环可以把热量输送到整个床层,使其温度保持均匀。

输运床气化炉

1、煤要首先经过粉碎、干燥和磨制成粉后,被储存于料斗之中

2、用N2加压的方法把煤粉从料斗中携带出来,从靠近混合区的顶部将煤粉喷入位于上升管底部的混合区中去

3、气化剂(空气或者氧气加水蒸汽)则是从混合区的底部输入混合区的。

4、从下降管下落的再循环炉灰是通过J形阀进入混合区。在混合区生成的合成煤气的逗留时间足以保证水/气转换反应达到平衡,由此形成了合成煤气最终的组成成分。6、此后含尘的合成煤气在上升管的顶部转向进入多级颗粒分离器,依靠重力的作用,可以使大量的粗灰粒与合成煤气分开,而下落到下降管中去。7、被分离出来的带有细尘颗粒的合成煤气接着进入旋风分离器,除去尚存的飞尘,分离出来的细灰将落入回路密封器,这部分细灰将与前面分离器中分离出来的较粗的炉灰一起汇入下降管中,最后通过J形阀再循环进入混合区。

大多数灰仍然留在气化炉内,为此必须定期从气化炉的低位区把灰渣排出气化炉,以保持气化炉的炉床上物料总量恒定不变。

固定床气化炉固定床气化炉产生的粗煤气中的CH4较多,合成煤气的发热值比较高。

代表:鲁奇炉(BGL)

缺点:使用焦结性煤时容易造成气化的阻塞,使气体流动不畅,煤气的质量不能稳定,由于煤在气化炉内的逗留时间长达30min,因而单炉的气化容量不能设计得过大,此外,由于这种气化炉的煤气中会含有大量的沥青,煤焦油和酚,使煤气的净化处理过程比较复杂。

三种不同类型的气化炉工作特性

比较

生物质气化发电原理

一、概况 生物质气化发电技术,简单地说,就是将各种低热值固体生物质能源资源(如农林业废弃物、生活有机垃圾等)通过气化转换为燃气,再提供发电机组发电的技术。寻求利用生物质气化发电的方法,既可以解决可再生能源的有效利用,又可以解决各种有机废弃物的环境污染。正是基于以上原因,生物质气化发电技术得到了越来越多的研究和应用,并日趋完善。 生物质气化发电,可归纳为下列几种方式: 从上图可以看出,生物质气化发电可通过三种途径实现:生物质气化产生燃气作为燃料直接进入燃气锅炉生产蒸汽,再驱动蒸汽轮机发电;也可将净化后的燃气送给燃气轮机燃烧发电;还可以将净化后的燃气送入内燃机直接发电。在发电和投资规模上,它们分别对应于大规模、中等规模和小规模的发电。 今天,在商业上最为成功的生物质气化内燃发电技术,由于具有装机容量小、布置灵活、投资少、结构紧凑、技术可靠、运行费用低廉、经济效益显著、操作维护简单和对燃气质量要求较低等特点,而得到广泛的推广与应用。 二、生物质气化内燃发电系统主要组成部分 生物质气化内燃发电系统主要由气化炉、燃气净化系统和内燃发电机等组成: 气化炉是将生物质能由固态转化为燃气的装置。生物质在气化炉内通过控制空气供应量,而进行不完全燃烧,实现低值生物质能由固体向气态的转化,生成包含氢气(H2)、一氧化碳(CO)、甲烷(CH4)、多碳烃(C n H m)等可燃成 分的燃气,完成生物质的气化过程。

气化产生的燃气出口温度随气化炉型式的不同,在350℃~650℃之间,并且燃气中含有未完全裂解的焦油及灰尘等杂质,为满足内燃机长期可靠工作的要求,需要对燃气进行冷却和净化处理,使燃气温度降到40℃以下、焦油灰尘含量控制在50mg/Nm3以内,燃气经过净化后,再进入内燃机发电。 在内燃机内,燃气混合空气燃烧做功,驱动主轴高速转动,主轴再带动发电机进行发电。 生物质气化内燃发电就是通过以上过程,将各种废弃物化废为宝,转化为优质电能,解决废弃物的污染和能源的合理利用问题。 三、本公司生物质气化内燃发电系统介绍 生物质气化内燃发电装置装机容量有160kW、200kW、400kW、600kW、800kW、1000kW等规格,最大输出功率可在1.4MW以上。 在200kW及以下发电规模情况下,气化炉一般采用下吸式固定床气化炉,典型的下吸式固定床气化发电装置如下图所示: 气化炉为下吸式固定床气化炉,可连续加料,连续出灰。料口在气化炉顶部,原料可从高位料仓放入,也可通过加料机提升进入气化炉内,灰渣由出渣机排出。

带锯床使用手册

第一章操作安全须知 1.开机前检查是否有漏电等不安全隐患。 2.锯床运转时严禁开启两侧锯轮防护罩。 3.绝对不允许用手触摸运转中的带锯条。 4.严禁在带锯条运转的下方触摸工件。 5.折叠拆取带锯条要戴防护眼镜,手套。 6. 更换带锯条一定要将机器的电源切断。 第二章双金属带锯条简介 双金属带锯条是采用高性能高速钢齿部材料和优质弹簧钢带体材料,通过电子束真空焊接和特殊工艺加工制造而成。锯齿具有良好的红硬性,可切割各类黑色金属和有色金属,是一种节省原材料和降低能源消耗的新型锯削工具。

图一 如图一所示:齿尖刃部硬质材料高度仅1.2mm。 最常见的锯齿分齿为斜向分齿

图二 锯齿横向分齿,一个向左,一个向右,一个不分。 第三章双金属带锯条简要使用说明 为了达到最佳切削性能,锯齿的大小及切削刃形状的选择十分重要。要求所选齿形、齿距应与被锯切工件相匹配,实心材料选用有前倾角的带锯条;厚度在8毫米以下的型材、管材选用零度角的锯条(推荐选用PRO梯形齿);锯切实心铝材及不锈钢使用有前倾角的带锯条。 一.带锯条的安装 1.双金属带锯条带体柔软不易断裂,安装锯条后必须检查锯条的张紧度,若锯条张不紧易产生锯斜。检查方法:当导向支架调整锁紧后,将大拇指放到两支架内侧锯条的中间部位,用力推动锯条,锯条有一定的弹力就可以了。(双金属带锯条的最佳张力值在300N/mm2左右)

2.锯条安装完毕,开机观察锯条背部与锯轮边缘的间隙,最佳间隙为1mm左右为宜,锯条背部如磨擦到锯轮边缘会严重损坏锯条。 二.新锯条的磨合 1.新锯条使用必须进行磨合,这关系到锯条的使用寿命。未经磨合的锯条使用寿命达不到锯条正常使用寿命的一半。 2.第一刀要慢慢进给,切入材料20mm后,无异常状况后逐渐调整至正常切削率的50%左右,再逐步进入正常的锯切状态。(锯切速度请参照本书第16页《锯切参数选择》) 三.带锯条的巧用 充分磨合好的锯条,锯切面积达到4-5m2后,应逐渐递减进给量,这样能够延长锯条的使用寿命,还能增加切断面积呢。 四.带锯条的保护 锯带安装完,点动开关使锯带慢慢转动,观察锯带齿尖是否有擦伤及其它异常的摩擦。

热解气化炉技术

产品说明书 一、产品名称: 全自动内燃双解立式气化炉 二、产品功能简介: 1.热解气化炉自上而下依次分干燥层、热解干馏气化层、燃烧层、 燃烬层和灰化层五段组成。 2.废弃物在底层立体式炉排上由生物质燃烧器点火后燃烧,当燃 烧温度达到1000-1300度时,生物质燃烧器自动停止工作。 3.热量由燃烧层上升传递到热解干馏气化层、干燥层,热解气化 后的残留物(液态焦油、丙酮、复合碳氢化合物、固定碳、废弃物本身含有的无机灰土和惰性物质)进入燃烧层充分燃烧后,产生的热量提供热解干馏气化层和干燥层所需的热量。热解干馏气化干燥层挥发的水分以及在热解和气化反应过程中产生的一氧化碳、氢、气态烃类(甲烷等)可燃物组合成混合烟气。 4.燃烧层产生的残渣经燃烬层立体式炉排及炉底的空气配气口 供风富氧燃烧后进入到灰化层冷却,空气也同时得到预热,燃烬层的炉灰由排渣系统排出炉外。 5.由热解气化炉底部送入的预热空气给燃烬层和燃烧层提供必 须的助燃氧,空气在上行过程中经历不同的阶段不断消耗大量氧。 在热解干馏气化层形成贫氧或欠氧环境,满足了热解干馏气化的必要条件,并且能使参加反应的废弃物维持在贫氧或欠氧高温环境下足够的时间逐步消化。

6.热解干馏气化产生的混合烟气经处理后循环回燃烧层和炉底 热空气配气后吸入旋风燃烧器进行二次燃烧。旋风燃烧器产生的热量经管道热传导后加速热解干馏及上部干燥层垃圾干燥速度,提高了整体处理废弃物的效率,也降低了对废弃物含水率的要求。 废弃物在热解干馏气化炉内经热解后实现能量的二级分配,热解气体成分上升经处理后和热空气配气混合进入旋风燃烧器燃烧形成1000-1300度高温,促使炉内各反应层的物理化学过程连续稳定地进行。废弃物经投料干燥和热解干馏气化层燃烧层燃烬后出渣排渣形成向下的连续稳定地运行逐步稳定地消化。热解干馏气化炉连续正常地运转。 三、产品优特点: *内燃式双解立式气化炉被广泛应用于机械、建材、轻纺工业、石化、环保等多个领域。内燃式双解立式气化炉系统的核心设备热解气化炉,是以空气和水蒸汽的混合气体作为气化剂,以生活垃圾为原料在高温条件下发生氧化-还原反应,产生以烷类和H2为主要可燃成分的节能环保设备。针对我国垃圾的特点实现垃圾热解气化和富氧燃烧有机结合工艺结构使垃圾完全灰化。 *采用隔水套结构摈弃了传统热解炉采用耐火材料高温酸气风化经常维修的问题; *采用内衬上小下大的斜度结构摈弃了传统热解炉采用液压顶杆压实消除起拱偏烧的问题;

德士古气化炉简介与基本原理和特点

德士古气化炉 Texaco(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的,1953年第一台德士古重油气化工业装置投产。在此基础上,1956年开始开发煤的气化。本世纪70年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Montebello)研究所建设了日处理15t的德士古气化装置,用于烧制煤和煤液化残渣。目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉。 典型代表产品我厂制造过的德士古气化炉典型的产品有:渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。1992年为渭河研制的德士古气化炉是国际80年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣罐,经排渣系统定时排放。煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低污染的新型清洁燃料[1]。具有较好的发展与应用前景。水煤浆的气化是将一定粒度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体,与氧气在加压及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注,我国也将水煤浆气化技术列为“六五”、“七五”、“八五”、“九五”的科技攻关项目。本文基于目前我国水煤浆气化技术的现状,以Texaco气化炉为研究对象,根据对气化炉内流动、燃烧和气化反应的特性分析,将Texaco气化炉膛分成三个模拟区域,即燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿

生物质气化技术概述

生物质气化技术概述 1. 背景 生物质气化以木头等为原料,在氧气不充足情况下,加热使木头等生物质裂解产生合成天然气,再用合成天然气加热却暖或发电。生物质气化与传统的烧木头等方式加热不同,传统烧木头、秸秆等是在氧气充足情况下燃烧,而生物质气化是在氧气不充分情况下加热。 气化的基本定义为:不完全氧化的热化学反应过程,把含碳物质转化成一氧化碳、氢气、二氧化碳及碳氢化合物如甲烷等。反应温度一般大于700?C,一般在700-1000?C 间。 生物质气化主要过程如下: 生物质预处理后→进入气化炉→加氧气或水蒸气→燃烧气化→产生的气体出来除 焦油→气体冷却→气体净化(除硫化氢、除二氧化碳)→甲烷化→合成天然气(合成气)。 合成气在此作为加热及其他燃料驱动蒸汽机及发电机发电。合成气进一步加工,比如经过费-托反应可以生成液体生物柴油。此过程在二战时,被德国比较大规模地采用,弥补石化柴油不足。 如今,生物质气化的研究与应用主要以奥地利、芬兰、英国和德国为主要国家。 2. 生物质气化主要工艺 2.1生物质气化过程发生了如下反应:

1)水-气反应:C+H2O=H2+CO 2)还原反应:CO2+C=2CO 3)甲烷化:C+2H2=CH4 4)水-气转换反应:CO+H2O=CO2+H2 CO热值:12.64MJ/Nm3 H2热值:12.74~18.79MJ/Nm3 CH4热值:35.88~39.82MJ/Nm3 空气、氧气和水蒸气可作为气化媒介。但不同媒介对过程与结果有不同的影响。空气便宜,但产出气的热值低;氧气贵,产出气热值高;用水蒸气做媒介产生热值与氧气相当,但也耗费比较高的热能。 2.2 生物质气化炉类型 生物质气化炉主要分三种类型,但还6~有其他个性化炉子: 1. 固定/移动床气化炉 -向上排气炉(气体与原料对流) -向下排气炉(气体与原料同方向流动) -错流移动床 2. 流化床气化炉 -循环流化床 -气泡流化床 -气流床(携带床,Entrained flow bed)

GZ4230数控带锯床使用说明

XIELI GZ4230 数控带锯床电脑控制系统 用户手册 浙江协力机械工具有限公司

GZ4230 全自动数控带锯床 一、机床的主要用途 “协力”牌GZ4230卧式数控带锯床经我公司多年来的研发,集国内外同类产品之精华,结构合理,技术性能稳定,操作方便,主要用于大型钢铁集团、石油管道、水电机械、重型锻造、模具钢板等大型材料的锯切加工,具有锯口窄,省料节能、锯削精度高,生产效率高优点。本机通过锯条线速的无级变速,锯条线速度的自由变换特别适用于锯切大型材料的功效,节省锯条的使用成本。 二、机床的主要特征 1、人机界面取代传统控制面板模式,锯切参数数字设定,PLC可 编程控制器,灵活设定、转变锯切模式。 2、机床设置参数完成后, 通过机械、电气、液压,具有自动夹 紧、自动进刀、切割完毕自动快速上升(即退刀),自动送料 的功能,无需人工操作。 3、机床的切削进给,在给定的范围内,可进行无级调速。 4、工作进给采用液压送料,送料定位采用光栅尺控制,定位误差< 5、锯架的上升与下降运动采用镀硬铬圆柱,精度高。 6、锯带的线速度无级调速。

三、机床的主要技术参数 四、机床使用的主要配件说明 1、PLC可编程控制器采用世界名牌台达产品,性能稳定可靠。 2、主传动采用蜗轮减速机,由诸暨蜗轮箱厂生产,十多年来一直为锯床厂家配套。 3、液压件采用台湾朝田或上海朝田公司产品,该产品动作性能可靠,挤污染力强,价格性能较高。 4、电器元件选用西门子及德力西正泰等名牌产品。 5、锯条选用规格34××4210可根据材料选择齿型。 6、液压油的选用:石油基油——相当于ISO VG46的油液。工作油温范围:-17~70度,推荐用户使用海联46号抗磨液压油。 人机界面概述 本人机界面为目前世界先进的人机对话平台,具有操作简单,界面友好,外观美观,高速响应等优点。配合可编程逻辑控制器(PLC),光栅尺为您提供目前国内最先进的金属带锯床自动化控制系统。 一、启始画面

LPG气化炉资料

LPG气化炉资料 一般用户的在使用燃气过程中,有两种情况: 一是自然气化的钢瓶;(自然气化是指钢瓶中的液态液化石油气依靠自身显热和吸收外界环境热量而气化的过程。) 二是强制气化的钢瓶。(强制气化是用人为办法(安装气化器)对液化石油气进行气化。) 自然气化容易受外界温度及用量的影响,在使用过程中出现火力不足、压力不足、钢瓶结水结冰、气体用不完。怎样才能解决以上情况呢?现在有了液化气用的气化炉电加热式气化炉(器),把液化气钢瓶中的液相气体强制性气化,保证用气的稳定,流量充足,压力稳定! 燃气使用安全隐患: 目前,各行业使用液化石油气过程中,安全意识不强,普遍存在安全隐患或不足,以下列出部分,希望能够得到大家的重视: 1)石油气钢瓶分散直接供气,钢瓶摆放混乱,钢瓶摆放量多,火灾 危险性大,使用气化器可集中供气,减少钢瓶摆放数量。 2)中高压燃气管采用非燃气专用管件(镀锌管件)连接使用,漏点 多。 3)采用非燃气专用阀门及其它非燃气专用设备,事故隐患多。 4)存放钢瓶的瓶组间安全距离不够,通风效果差,存在安全隐患。 5)操作人员缺乏燃气安全使用相关知识,易由于操作失误引起事故。

气化器及配件使用时间太长,腐蚀严重。 LPG气化炉特点: 1、YGS系列气化器依托日本的先进技术、制作精良、性能优越、安全可靠;容量从50KG至300KG,适用于小区住宅和工商供气; 2、电控装置与电热器均采用防爆设计、防爆等级为Exdaa11AT6 3、YGS气化器外型有圆形和方型、整体结构坚固、安全耐用; 4、电控箱与气化器为一体结构,节省空间安装方便; 5、气化器检测压力为30kg/cm2,安全额定压力为18kg/cm2; 6、液相浮球阀可手工复位,在效地防止液态瓦斯渗出; 7、安全泄压阀可将超压气体自动排同,再自动关闭; 8、电子温控器对60-70水温自动调校,节约电能。 9、详细资料请咨询代理:壹伍捌壹伍捌伍壹玖叁肆 LPG瓶组站可省电,且有利于钢瓶残液的吸收,利用率可达到100%,像台湾旺旺雪饼工厂、香港嘉顿饼干、深圳机场、大海沙酒店、高尔夫球场等承建的气站。 中邦LPG气化炉,LPG中邦化气炉,LPG中邦气化器,绝无套牌能解决燃气管道结冰结霜压力不稳,燃烧火力不足的燃气气化炉气化器工厂、厨房等各行业的使用液化石油气过程中往往出现: ●火力不足、 ●压力不足、 ●钢瓶结水结冰、 ●钢瓶余气用不完的现象,造成燃料费用高等问题,给各工厂、酒

木柴气化柴火炉原理图

木柴气化柴火炉原理图: 木柴气化柴火炉原理图 双层罐体:找来一大一小二个常见的奶粉罐。大罐直径14cm、高17.5cm,小罐直径10cm、高13cm。 外罐顶部锯掉三个大方孔,留三个支撑处和顶部一圈当锅架以便放锅,下部挖一个小方孔用于鼓风机进风。 内罐底部打满孔。 两个罐之间用三条螺丝,每条螺丝上有三个螺母进行架高固定。

先说两个概念: 燃烧——燃烧是一种同时伴有放热和发光效应的激烈的化学反应。放热、发光、生成新物质(如木料燃烧后生成二氧化碳和水份并剩下碳和灰)是燃烧现象的三个特征。 干馏——干馏是在隔绝空气的条件下,对木材、煤加强热使之分解的一种加工处理方法。干馏后,原料的成分和聚集状态都将发生变化,产物中固态、气态和液态物质都有。对木材干馏可得木炭、木焦油、木煤气。 柴火炉的分类: 基本上可以分作2类,第一类是直接燃烧木柴的柴火炉(wood stove)

工作原理就是木柴在燃烧室内通过加热点燃之后自行燃烧的过程。这种炉子结构比较简单,如下图所示(可以有不同的变形,但原理相同),点火是从燃料下方开始点火,只要加入的燃料(木柴)比较干燥,能够获得比较理想的火力输出。缺点是,通常燃烧不充分,燃烧过程会产生烟,而且想要获得比较好的燃烧效果,只能使用一定长度,枝条状的燃料能在燃烧室内保持竖直。这个就不细说了。 第二种是木煤气炉,或者叫木柴气化炉(woodgas stove) 工作原理跟前一类炉子略有不同,这类炉子点火是从燃料上方开始点火,最上方的燃料在燃烧之后会产生一层高温的碳,这些碳对在他下方燃料进行加热,这个过程其实就是类似干馏的一个过程,下方燃料受热之后主要会分解成为新的碳以及一些气态物质,这种气态物质是木煤气,也就是我们平常所说的烟(这种表达不是特别准确),木煤气在产生之后会向上流动(热空气上升),穿过上方的高温碳层,跟空气接触,燃烧产生火焰,这个过程一直持续到最底部燃料,最后在炉膛内所剩余的都是燃烧的木炭。 此类炉子的结构如图所示:

生物质气化制氢

生物质气化制氢 Hydrogen Production from Biomass Gasification 院系: 环境科学与工程学院 专业: 环境工程 姓名: 陈健 学号: M201373228 导师: 胡智泉副教授

2013 年 12 月

摘要 在人类面临严重的能源危机与环境污染的背景下,世界各国都在致力于对洁净能源氢的开发和研究,并取得了一定的研究成果。生物质气化制氢是一项富有前景的制氢技术,已引起了世界各国研究者的普遍关注。 本文重点讨论生物质催化气化制氢的基本原理和基本过程,阐述了氢气的净化分离方法,指出目前我国生物质气化制氢存在的问题和将来的研究方向。 关键词:生物质;气化;制氢。

Abstract In the context of humans face with a series of serious energy crisis and environmental pollution,the world are committed to developing and researching clean energy, and it has made some achievements. The prospective future of hydrogen from biomass gasification makes it a major concern all over the world. This article focuses on the basic principles and fundamental processes of hydrogen from biomass gasification, describes the purification and separation method of hydrogen, pointed out that at present China's biomass gasification problems and future research directions. Key words: Biomass; gasification; Hydrogen production.

气化炉安全操作规程标准范本

操作规程编号:LX-FS-A24380 气化炉安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

气化炉安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、操作人员必须经过培训合格后方可操作气化炉,其它人员不准操作本设备。 2、在使用过程中每1小时对气化炉进行查看,检查气化炉是否异常。 3、气化炉出现故障时必须停止使用(如出现水温超过70oC)。 4、非设备维修人员不准维修或拆卸气化炉任何部件。 5、室内气温超过20oC时,停止使用气化炉。 6、注水:从气化炉炉体上的入水口处加入无杂质的纯水直到炉体溢水管口溢水为止,如遇水位不

够,要及时将水补充满。 7、开炉操作: a 使用前先检查管道各连接处是否连接紧密牢固、管道是否存破损、气化炉的水位、电源、气化炉防爆箱体螺栓是否松动等 b打开电源开关。静等15分钟左右,观察水温表,确定水温表在50oC以上,方可慢慢开启气化炉液相进口阀门和气化炉出口阀门。(气化炉设计的温度一般在加热到70oC左右时,自动切断电源停止加热) 8、压力调节: a 慢慢打开调压器前的控制阀,并通过调压器上的调节螺丝使出口压力达到需要的设定值。(最大压力值?) b 设定完毕,打开高压器后的控制阀,并在气

垃圾燃烧气化炉原理

垃圾燃烧气化炉原理 一、引言 众所周知,焚烧处理城市生活垃圾比填埋、堆肥处理要好。但焚烧处理城市生活垃圾也存在诸多问题,如垃圾热值低时需要辅助燃料;炉温较低,对二恶英类等有毒有害成份不能彻底分解摧毁,会带来二次污染;资源化方面只能供热或余热发电;以及需要花费昂贵的污水处理系统、锅炉供水系统、发电配套系统等造成投资大、运行成本高。因此,人们力求用气化技术处理城市生活垃圾,以达到更佳的无害化、减量化、资源化效果。但由于城市生活垃圾成份复杂、水份多、热值低,用气化方式处理垃圾难度更大。对此,我公司数年来致力于垃圾的气化研发。经过上百次反复试验,两台示范性垃圾燃烧气化炉已在广东省河源市环卫局垃圾填埋场成功地试运行。结果表明,对于水份多、热值低的垃圾,略经粗选,即可入炉气化处理,炉温基本稳定在850℃~1100℃,平均900℃,其烟气经检测已达到国家排放标准,而且渗滤液全部入炉气化,无污水排放,同时获得燃气和燃油。较好地实现了“三化”处理垃圾,创造性地体现了“处理废物、补充能源、保护环境”的三重功效。 二、气化原理及气化过程 城市生活中含有大量的有机物,如塑料、橡胶、纸类、布类、草木、树枝等,这些有机物都是可燃的。换言之,垃圾也是一种燃料,只不过是含有机物的多寡,其热值有高低不同而已。有机物在无氧或缺氧条件下加热,其热能使有机化合物的化合键断裂,由大分子量转化成小分子量的燃气、油或油脂液状物及焦炭等。在垃圾燃烧气化炉的特殊结构条件下,点燃气化炉底周围的垃圾,当垃圾被点燃后,在抽风机、引风机的抽力作用下,垃圾坑中含臭气的空气经炉底炉渣坑预热后,进入一次进风管,再进入围栏中的通火道。并沿着通火道,以较高的速度参与燃烧,使水份多、热值高、成分复杂的垃圾,迅速上火,并沿通火道抽力方向流动,燃烧主要是通火道周围的垃圾。再由控制室自动控制着一次进风口的进风量,从而也控制了垃圾燃烧的速度和范围。使先期的燃烧围绕在数个通火道周围,然后再扩展开去,并使其尽量延长燃烧时间和缺氧还原环境,而不使围栏周围的垃圾在较短的时间内很快燃尽或扩大燃烧范围,而出现不利于部分氧化气化的烧穿、烧空、穿孔、塔桥等现象。 通火道周围的垃圾在燃烧时,不断向炉膛四周传递和辐射热量,使燃烧器、炉膛及其从中部到下部再到上部的垃圾的温度迅速升高。由于炉膛容装的垃圾多、厚度大、高度高,再加上炉体保温层的保温绝热,炉膛又被密封隔绝空气,所以垃圾有充分的时间在整个炉膛范围中蒸发、干燥、干馏、热解。随着燃烧热量源源不断地传递、辐射,使含水份多、有机质多的垃圾在高温缺氧的还原环境下,逐渐逸出水蒸气、挥发份,进而发生干馏热分解,产生大量的由可燃气体、水蒸气、焦油、烟气等组成的混合燃气。这种过程不断进行,直至垃圾最终被干馏成残炭并向下垮落到贮渣坑中后,新的垃圾又源源不断地补充进来。在垃圾的燃烧过程中,从二次进风口补充的必须的分布均匀的二次空气和水蒸气,作为气化剂与炽热的残炭反应,维持和稳定垃圾的燃烧气化过程。炉膛产生的大量混合燃气,在强制抽风、引风的抽力作用下,进入旋风引射喉管。由于旋风引射喉管的过流面积远小于燃烧器内混合腔的过流面积,混合燃气被旋风引射喉管中的旋风槽扭转引导成为旋转的混合燃气后,进入燃烧器的混合腔,与从三次进风口进入的三次空气混合,在混合腔顶端的火口旋转燃烧,成为旋风式火焰。同时,由于旋风引射喉管管径小,流量也小,混合燃气在炉膛内的停留时间较长,炉膛内的水蒸气、二氧化碳和从二次风口进来的限量空气等作为气化剂与燃烧的炽热碳,快燃尽的残碳、悬浮的焦油等充分发生还原作用。如水蒸气被还原成一氧化碳和氢气,二氧化碳被还原成一氧化碳,焦油被分解成碳氢化合物等。而混合燃气中的不燃烧物,如二氧化碳、氧化氮等能较长时间地停留在炉膛中,使随燃烧而带走的热量少。其次,混合燃气中的焦油和悬浮碳粒等也因还原反应而大大减少。再者,在旋风引射喉管中混合燃气因快速旋转而使残留在燃烧气中的悬浮碳粒、焦油、重金属蒸气、烟尘及二恶英类微粒等有害成份,被离心

汽轮机各设备作用及内部结构图

汽轮机各设备的作用收藏 01.凝汽设备主要有凝汽器、循环水泵、抽汽器、凝结水泵等组成。 任务:⑴在汽轮机排汽口建立并保持高度真空。 ⑵把汽轮机排汽凝结成水,再由凝结泵送至回热加热器,成为供给锅炉的给水。此 外,还有一定的真空除氧作用。 02.凝汽器冷却水的作用:将排汽冷凝成水,吸收排汽凝结所释放的热量。 03.加热器疏水装置的作用:可靠的将加热器内的疏水排出,同时防止蒸汽随之漏出。 04.轴封加热器的作用:回收轴封漏汽,用以加热凝结水从而减少轴封漏汽及热量损失,并改善车间的环境条件。 05.低压加热器凝结水旁路的作用:当加热器发生故障或某一台加热器停用时,不致中断主凝结水。 06.加热器安装排空气门的作用:为了不使空气在铜管的表面形成空气膜,使热阻增大,严重地影响加热器的传热效果,从而降低换热效率,故安装排空气门。 07.高压加热器设置水侧保护装置的作用:当高压加热器发生故障或管子破裂时,能迅速切断加热器管束的给水,同时又能保证向锅炉供水。 08.除氧器的作用:用来除去锅炉给水中的氧气及其他气体,保证给水的品质。同时, 又能加热给水提高给水温度。 09.除氧器设置水封筒的目的:保证除氧器不发生满水倒流入其他设备的事故。防止除氧器超压。 10. 除氧器水箱的作用:储存给水,平衡给水泵向锅炉的供水量与凝结水泵送进除氧器水量的差额,从而满足锅炉给水量的需要。 11. 除氧器再沸腾管的作用:有利于机组启动前对水箱中给水加温及备用水箱维持水温。正常运行中对提咼除氧效果有益处。

12. 液压止回阀的作用:用于防止管道中的液体倒流。 13. 安全阀的作用:一种保证设备安全的阀门。 14. 管道支吊架的作用:固定管子,并承受管道本身及管道内流体的重量和保温材料重量。 15. 给水泵的作用:向锅炉连续供给具有足够压力,流量和相当温度的给水。 16. 循环水泵的作用:主要是用来向汽轮机的凝汽器提供冷却水,冷凝进入凝汽器内的汽轮机排汽,此外,还向冷油器、发电机冷却器等提供冷却水。 17. 凝结水泵空气管的作用:将泵内聚集的空气排出。 18. 减温减压器的作用:作为补偿热化供热调峰之用(本厂)。 19. 减温减压装置的作用:⑴对外供热系统中,用以补充汽轮机抽汽的不足,还可做备用汽源。⑵当机组启停机或发生故障时,可起调节和保护的作用。⑶可做厂用低压用汽的汽源。 ⑷用于回收锅炉点火的排汽。 20. 汽轮机的作用:一种以具有一定温度和压力的水蒸气为介质,将热能转变为机械能的回转式原动机。 21. 汽缸的作用:将汽轮机的通流部分与大气隔开,以形成蒸汽热能转换为机械能的封闭汽室。 22. 汽封的作用:减少汽缸内的蒸汽向外漏泄和防止外界空气漏入汽缸。 23. 排汽缸的作用:将汽轮机末级动叶排出的蒸汽倒入凝汽器。 24. 排汽缸喷水装置的作用:为了防止排汽温度过高而引起汽缸变形,破坏汽轮机动静部分中心线的一致性,引起机组振动或其他事故。 25. 低压缸上部排汽门的作用:在事故情况下,如果低压缸内压力超过大气压力,自动打开向空排汽,以防止低压缸、凝汽器、低压段转子等因超压而损坏。 26. 叶轮的作用:用来装置叶片,并将汽流力在叶栅上产生的扭矩传递给主轴。 27. 叶轮上平衡孔的作用:为了减小叶轮两侧蒸汽压差,减小转子产生过大的轴向力 28. 叶根的作用:紧固动叶,使其在经受汽流的推力和旋转离心力作用下,不至于从轮缘沟

连续式环保型气化炭化炉使用说明书完整版

连续式环保型气化炭化炉 使用说明书 河南三兄重工有限公司

连续式环保型气化炭化炉 一、用途特点: 连续式环保型气化炭化炉是将果壳、锯末、木屑、竹屑、稻壳、花生壳、果壳、棕榈壳等含碳的木质颗粒状物料(体积在3mm以上的如农作物秸秆、椰壳、树枝树皮粉碎成颗粒状也可),在炉内高温条件下进行干馏、无氧炭化并且炭化率高的理想设备。本机合理采用了物料在炭化过程中,产生的一氧化碳、甲烷、氧气等可燃气体回收、净化,循环燃烧的先进技术。即解决了普通炭化炉在炭化工程中产生的浓烟对环境的污染问题,又解决了设备所需的热能问题,充分做到了自供自给,提高了设备的连续性、经济性,充分利用农林剩余物,使其变废为宝,减轻了我国林业资源供求紧张的矛盾,为绿化环境多做贡献。 二、工作原理: 连续式环保型气化炭化炉生产线设备配置:生物质气化炉、烟气净化器、变频引风机、燃烧器、炭化炉、上料机、出料机等设备(详见附图)。本机采用了干馏炭化方式,充分利用在炭化过程中产生的一氧化碳、甲烷、氢气等可燃气体,通过烟气净化系统分离出木焦油、木酸液得到纯正的可燃气体,给炭化炉管道加热(温度一般控制在600℃左右)。炭化炉内部有四层管道从上至下,第一、二层为预热烘干管道,第三层为低温炭化管道,第四层为高温炭化管道。第一、二层设有独立的排气管主要排出水蒸气,管道利用炉内余热对物料进行烘干,水蒸气从排气管排出。第三、四层炭化管道对物料进行高温炭化,管道也设有独立的可燃气体回收管道,把炭化产生的烟气回收、净化、变成纯净的可燃气体对管道继续加热,达到循环往复加热炭化的效果。通过生物质气化炉前期造气,初次炭化点火气源由生物质气化炉供给。 三、技术参数: 生产过程中炭化温度500℃左右;最高温度可达600-900℃。根据原料不同设备单组产量300kg/h左右。设备双组产量600kg/h左右。 四、结构简图: 五、注意事项: 气化炭化炉在初次点燃及中途熄火时,一定要打开侧面关火门,以防炉内可燃气体太多,点燃时对人身安全造成危害。

3组主要气化工艺及8种典型气化炉图文详解

组主要气化工艺及种典型气化炉图文详解 中国耐火材料网 一、气化简介 气化是指含碳固体或液体物质向主要成分为和的气体的转换。所产生的气体可用作燃料或作为生产诸如或甲醇类产品的化学原料。 气化的限定化学特性是使给料部分氧化;在燃烧中,给料完全氧化,而在热解中,给料在缺少的情况下经过热降解。 气化的氧化剂是或空气和,一般为蒸汽。蒸汽有助于作为一种温度调节剂作用;因为蒸汽与给料中的碳的反应是吸热反应(即吸收热)。空气或纯的选择依几个因素而定,如给料的反应性、所产生的气体用途和气化炉的类型。 气化最初的主要应用是将煤转化成燃料气,用于民用照明和供暖。虽然在中国(及东欧)气化仍有上述用途,但在大多数地区,由于可利用天然气,这种应用已逐渐消亡。最近几十年中,气化主要用于石化工业,将各种碳氢化合物流转换成"合成气",如为制造甲醇,为生产提供或为石油流氢化脱硫或氢化裂解提供。另外,气化更为专门的用途还包括煤转换为合成汽车燃料(在南非应用)和生产代用天然气()(至今未有商业化应用,但在年代末和年代初已受到重视)。 二、气化工艺的种类 有多种不同的气化工艺。这些工艺在某些方面差别很大,例如,技术设计、规模、参考经验和燃料处理。最实用的分类方法是按流动方式分,即按燃料和氧化剂经气化炉的流动方式分类。 正像传统固体燃料锅炉可以划分成三种基本类型(称为粉煤燃烧、流化床和层燃),气化炉分为三组:气流床、流化床和移动床(有时被误称为固动床)。流化床气化炉完全类似于流化床燃烧器;气流床气化炉的原理与粉煤燃烧类似,而移动床气化炉与层燃类似。每种类型的特性比较见表。

* 如果在气化炉容器内有淬冷段,则温度将较低。 .气流床气化炉 在一台气流床气化炉内,粉煤或雾化油流与氧化剂(典型的氧化剂是氧)一起汇流。气流床气化炉的主要特性是其温度非常高,且均匀(一般高于℃),气化炉内的燃料滞留时间非常短。由于这一原因,给进气化炉的固体必须被细分并均化,就是说气流床气化炉不适于用生物质或废物等类原料,这类原料不易粉化。气流床气化炉内的高温使煤中的灰溶解,并作为熔渣排出。气流床气化炉也适于气化液体,如今这种气化炉主要在炼油厂应用,气化石油原料。 现在,运营中的或在建的几乎所有煤气化发电厂和所有油气化发电厂都已选择气流床气化炉。气流床气化炉包括德士古气化炉、两种类型的谢尔气化炉(一种是以煤为原料,另一种以石油为原料)、气化炉和气化炉。其中,德士古气化炉和谢尔油气化炉在全世界已有部以上在运转。 .流化床气化炉 在一个流化床内,固体(如煤、灰)悬浮在一般向上流动的气流中。在流化床气化炉内,气体流包含氧化介质(一般是空气而非)。流化床气化炉的重要特点(像流化床燃烧器一样)是不能让燃料灰过热,以至熔化粘接在一起。假如燃料颗粒粘在一起,则流化床的流态化作用将停滞。空气作为氧化剂的作用是保持温度低于℃。这表示流化床气化炉最适合用比较易反应的燃料,如生物质燃料。 流化床气化炉的优点包括能接受宽范围的固体供料,包括家庭垃圾(经预先适当处理的)和生物质,如木柴,灰份非常高的煤也是受欢迎的供料,尤其是那些灰熔点高的煤,因为其他类型的气化炉(气流床和移动床)在熔化灰形成熔渣中损失大量能。 流化床气化炉包括高温温克勒(),该气化炉由英国煤炭公司开发,目前由能源有限公司()销售,作为吹空气气化联合循环发电()的一部分。在运转的大型流化床气化炉相对较少。流化床气化炉不适用液体供料。 .移动床气化炉 在移动动床气化炉里,氧化剂(蒸汽和)被吹入气化炉的底部。产生的粗燃料气通过固体燃料床向上移动,随着床底部的供料消耗,固体原料逐渐下移。因此移动床的限定特性是逆向流动。在粗燃料气流经床层时,被进来的给料冷却,而给料被干燥和脱去挥发分。因此在气化炉内上下温度显着不同,底部温度为℃或更高,顶部温度大约℃。燃料在气化过程中脱除挥发分意味着输出的燃料气含有大量煤焦油成分和甲烷。故粗燃料气在出口处用水洗来除去焦油。其结果是,燃料气不需要在合成气冷却器中来高温冷却,假如燃料气来自气流反应器,它就需冷却。移动床气化炉为气化煤而设计,但它也能接受其他固体燃料,比如废物。

江苏大学课程设计气化炉计算说明书word(仅供参考)

江苏大学课程设计气化炉计算说明书word (仅供参考) 其中涉及到的物料平衡和能量平衡参考: 江苏大学课程设计气化炉计算说明书excel (已上传到百度 文库) 一:气化炉本体主要参数的设计计算 初步设计该上吸式气化炉消耗的原料为G=600kg/h. 初步确认气化强度Φ为200kg/(m 2 ·h) 1. 实际气化所需空气量V A 由树皮的元素分析可知木屑中主要含有C 、H 、O 而N 、S 的含量可以忽略不计,则: a 、碳完全燃烧的反应: C + O 2= CO 2 12kg 22.4m 3 1kg 碳完全燃烧需要1.866N 氧气。 b 、氢燃烧的反应: 4H + O 2 = 2H 20 4.032kg 22.4m 3 1kg 氢燃烧需要5.55N 氧气。 因为原料中已经含有氧[O],相当于1kg 原料已经供给[O]×22.4/32=0.7[O]N 氧气,氧气占空气的21%,所以生物质原料完全燃烧所需的空气量: = (1.866[C]+5.55[H]-O.7[O]) 式中 V ——物料完全燃烧所需的理论空气量 m 3/kg C ——物料中碳元素含量 % H ——物料中氢元素含量 % V 1 0.21

O ——物料中氧元素含量 % 因此,可得 V= (1.866[C]+5.55[H]-O.7[0]) = (1.866×50.30% +5.55×5.83%-O.7×36.60%) =4.790(/kg) V 为理论上的木屑完全燃烧所需的空气量,考虑到实际过程中的空气泄漏或供给 不足等因素,加入过量空气系数α,取α=1.2,保证分配的二次通风使气化气得到完全燃烧。因此,实际需要通入的空气量V~ V~=αV=1.2×4.790=5.748(3 m /kg) 因此,总的进气量为5.748/kg 由上图取理论最佳当量比ε为0.3,计算实际气化所需空气量: V A =ε*V~=0.28*5.748=1.609m 3/kg 2.可燃气流量q 空气(气化剂)中N 2含量79%左右,气化生物质产生的燃气中N 2含量为55%左右,考虑到在该气化反应中N 2几乎很少发生反应,据此,拟燃气流量是气化剂(空气)流量的1.44倍,则可燃气流量q 为: q=G*V A *1.44=600*1.609*1.44=1390 m 3/h 3.产气率 V G V G =/G =1390/600 =2.317(/kg) 1 0.21 10.21 3 m 3 m q 3 m

电子信息工程介绍

电子信息工程 学科:工学 门类:电气信息类 专业名称:电子信息工程 业务培养目标:本专业培养具备电子技术和信息系统的基础知识,能从事各类电子设备和信息系统的研究、设计、制造、应用和开发的高等工程技术人才。 业务培养要求:本专业是一个电子和信息工程方面的专业。本专业学生主要学习信号的获取与处理、电厂设备信息系统等方面的专业知识,受到电子与信息工程实践的基本训练,具备设计、开发、应用和集成电子设备和信息系统的能力。 毕业生应获得以下几个方面的知识和能力: 1.能够较系统地掌握本专业领域宽广的技术基础理论知识,适应电子和信息工程方面广泛的工作范围; 2.掌握电子电路的基本理论和实验技术,具备分析和设计电子设备的基本能力; 3.掌握信息获取、处理的基本理论和应用的一般方法,具有设计、集成、应用及计算机模拟信息系统的基本能力; 4.了解信息产业的基本方针、政策和法规,了解企业管理的基本知识; 5.了解电子设备和信息系统的理论前沿,具有研究、开发新系统、新技术的初步能力; 6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。 主干学科:电子科学与技术、信息与通信工程、计算机科学与技术。 主要课程:电路理论系列课程、计算机技术系列课程、信息理论与编码、信号与系统、数字信号处理、电磁场理论、自动控制原理、感测技术等。 主要实践性教学环节:包括课程实验、计算机上机训练、课程设计、生产实习、毕业设计等。一般要求实践教学环节不少于30周。 修业年限:四年 授予学位:工学学士 1.知识理论系统性较强。学习本课程需要有一定的基础理论、知识作铺垫且又是学习有关后续专业课程的基础。 2.基础理论比较成熟。虽然电子技术发展很快,新的器件、电路日新月异,但其基本理论已经形成了相对稳定的体系。有限的学校教学不可能包罗万象、面面俱到,要把学习重点放在学习、掌握基本概念、基本分析、设计方法上。 3.实践应用综合性较强。本课程是一门实践性很强的技术基础课,讨论的许多电子电路都是实用电路,均可做成实际的装置。 四、教学总体要求 1.正确理解以下基本概念和术语 直流通路与交流通路,正向偏置和反向偏置,静态与动态,工作点,负载线,非线性失真,放大倍数,输入电阻,输出电阻,频率特性,正反馈和负反馈,直流反馈和交流反馈,电压反馈和电流反馈,串联反馈和并联反馈,开环与闭环,自激,零点漂移,差模与共模,

生物质气化

生物质气化技术简介 1、生物质能概述 生物质能源是绿色植物将太阳能转化为化学能而贮存在生物质内的能量,通常包括: 木材及森林工业废弃物"农业废弃物"生活有机废弃物"水生植物"油料植物等。世界能源消费中仅次于三大化石能源位列第四,占比达14%。据统计资料介绍,2009年,欧盟生物质能源的消费量约占欧盟能源消费总量的6%,美国的生物质能源利用占全国能源消费总量的4%,瑞典为32%。我国是个农业大国,生物质资源丰富,生物质能占能源消耗总量的20%,农村总能耗的65%以上为生物质能,其中薪材消耗量约占总能耗的29%。 生物质能源是一种理想的可再生能源,具有以下特点:(1)可再生性;(2)低污染性(生物质硫含量、氮含量低,燃烧过程中产生的SO2、NO2较低,生物质作为燃料时,二氧化碳净排放量近似于零,可有效地减少温室效应);(3)广泛的分布性。缺乏煤炭的地域可充分利用生物质能。典型生物质的密度为400~900kg/m3,热值为17600~22600kJ/kg。表1分别是几种典型生物质燃料的元素分析和工业分析。 表1 几种典型生物质燃料元素分析和工业分析 生物质能的研究开发,主要有物理转换、化学转换和生物转换3大类。涉及到气化、液化、热解、固化和直接燃烧等技术。生物质能转换技术及产品如图1所示。

图1 生物质能转换技术及产品 2、生物质气化 生物质气化是一种热化学转换技术,利用空气、氧气或水蒸气作为气化剂,将生物质转化成可燃气体的的过程。生物质气化可将低品位的固态生物质转换成高品位的可燃气体,可应用于集中供气、供热、发电以及作为化成化工品和原料气等。 2.1气化原理(以上吸式固定床为例) 图2是上吸式固定床气化炉的原理图,生物质从上部加入,气化剂从底部吹入,生成的气体从上部离开气化炉。气化炉中参加反应的生物质自上而下分为干燥层、热分解层、还原层和氧化层。 从上面加入的湿物料在干燥层同下面反应层生成的热气体进行换热变成干物料落入热分解层,产生的水蒸气排出气化炉。干燥层温度为100~250℃。 生物质受到氧化层和还原层生成的热气体后发生裂解反应,大部分挥发分从固体中分离出去,由于裂解需要大量热量,热分解层温度已降低到400~600℃。裂解区产物为炭、氢气、水蒸气、一氧化碳、二氧化碳、甲烷、焦油以及其他烃类物质等,这些热气体继续上升,而炭则进入下面还原区。

相关主题
文本预览
相关文档 最新文档