当前位置:文档之家› 稳定碳同位素

稳定碳同位素

稳定碳同位素
稳定碳同位素

稳定碳同位素

自然界有六种碳同位素:10C、11C、12C、13C、14C*和15C*。主要有三种,它们的丰度是:12C-98.9%;13C-1.08%;14C-1.2×10-10%。其中12C、13C是稳定同位素,14C是放射性同位素。碳有两种稳定同位素:12C和13C,由于它们的质量不同,在自然界中的物理、化学和生物作用下产生分馏。一般来说,在碳的有机循环中,轻同位素容易摄入有机质(例如烃、石油中富含12C,-30~-20‰)中;而在无机循环中,重同位素倾向于富集在无机盐(例如碳酸盐富含13C,海相灰岩约0‰)中。

碳同位素分馏包括动力学分馏(如光合作用、有机物的生物降解等)和平衡

分馏(如大气CO

2-溶解的HCO

3

--固体CaCO

3

系统)。(1) 光合作用中的碳同位素

动力分馏(6CO

2+6H

2

O→C

6

H

12

O

6

+O

2

):由于轻同位素分子的化学键比重同位素分子的

化学键易于破坏,因而光合作用的结果使有机体相对富集轻同位素(12C),而残

留CO

2中则相对富集重同位素(13C)。叶子表面对两种二氧化碳(12CO

2

、13CO

2

)同

位素分子吸收速度上的差异是造成这一分馏的主要原因。光合作用中碳同位素分馏程度与光合碳循环途径密切相关。根据CO

2

被固定的最初产物的不同,光合碳循环可分为C3、C4和CAM三种方式。C3循环长,分馏大,δ13C=-23‰~-38‰;C4循环为短循环,分馏小,δ13C=- 12‰~-14‰;CAM循环介于C3与C4间,其13C的亏损程度也介于C3与C4植物间。(2)生物氧化-还原作用过程中的碳同位素分馏:一方面,微生物通过氧化还原反应获取能量,加速氧化还原反应的进行。另一方面,微生物在参与反应的过程中,对于同位素的利用具有选择性,优先选择利用化学能较弱的轻同位素化学键,使得轻同位素较重同位素更易被微生物所利用,进而产生显著的同位素分馏。

大气CO

2-溶解的HCO

3

--固体CaCO

3

系统中的化学交换平衡反应:同位素平

衡分馏只与温度有关,碳同位素分馏的结果是使固体碳酸盐中富集重同位素13C 从大气中的CO

2

到生物圈中有机碳化合物再到生物燃料和生物成因的甲烷,其碳同位素呈现出递减趋势,总体变化规律是氧化态的碳富集13C,还原态的碳

富集12C。海洋上空大气CO

2很少受到其它来源的CO

2

的影响,其δ13C值变化范

围很窄,平均δ13C=-7.0‰;沙漠和山区大气的CO

2

的δ13C值接近-7.0‰;而在

森林、草地、耕地等植被发育的地方,由于受到生物腐烂放出的CO

的影响,其

2

的δ13C值变化范围较大,约-30‰~-10‰,主要取δ13C值有所降低。土壤CO

2

决于有机物的分解和植物根的呼吸作用。全球海洋碳库的变化对大气碳库具有决定性的影响,但海洋碳库变化相对小,一般起稳定或缓冲的作用。

近代大陆沉积:近代陆相沉积物中有机质的δ13C值变化范围由-10‰~-38‰,土壤腐殖质中的δ13C值与区域的植物类型有关。泥炭的δ13C值与泥炭形

成环境与泥炭类型有关。湖泊沉积物的δ13C值变化范围很大(-8‰~-38‰),这种情况与陆地和水生植物相似。对少数河流沉积物研究表明,其δ13C的值变化与湖泊一致。近代海相沉积:对部分海相沉积的碳同位素研究表明,其δ13C 变化范围较窄(-10‰~-30‰),其中90%以上的样品的δ13C=-20‰~-27‰碳酸盐岩石的碳同位素组成与其沉积环境有密切关系,海相石灰岩的13C=+2.4‰~-3.3‰,平均值为0±1‰;白云岩的δ13C=+2.65‰~-2.9‰,平均值为+0.82‰;大理岩的δ13C=+3.06‰~+0.63‰,平均值为+1.26‰。淡水相石灰岩的δ13C=+9.82‰~-14.10‰,平均值为-2.8‰。据统计,世界各地淡水相石灰岩比海相石灰岩富含轻同位素12C。

海水中溶解无机碳的碳同位素:表层海水的δ13C值变化较大,最表层水的δ13C值最大,向下随深度加大而减小,直至深1km处,这里δ13C值最小;1km以下的深部海水,出现了δ13C值随深度增大而缓慢增长的趋势,但增长的

和海水溶幅度很小。海水的碳同位素组成的变化可以归于两方面原因:大气CO

2

解无机碳之间发生了同位素交换反应,导致海水无机碳中富含13C,越靠近海水表层,交换程度越高,13C含量也越高;海洋底部细菌还原作用使碳同位素发生了)。海水中有机碳的碳同位素:组成比较稳定,δ13C的平均值

分馏(例如生成CH

4

为- 21.8‰;微粒有机质的δ13C值在-27‰左右,接近于现代浮游生物。

河流中DIC的主要来源有土壤有机质的分解、碳酸盐与硅酸盐矿物溶解、水

生植物呼吸及大气CO 2的溶解,它们具有可以显著区分的碳同位素特征值。除了

自然因素影响外,河流DIC 还可能受到人类活动的影响,如污染排放、水坝拦截等。

湖泊水中溶解碳主要有两种来源:一是通过河流或沿湖岸边以剥蚀的方式把大量的大陆有机碳和无机碳带入湖泊中;二是通过地下水径流把周围岩石中的无机碳注入湖泊中。湖泊水溶解碳的同位素组成反映当地的大陆和周围岩石含碳物质的碳同位素组成的特征。 湖泊水溶解碳的同位素组成还受两方面影响:一是湖水和湖泊沉积物内生物(主要是细菌作用)活动产生的CO 2的影响;二是

受地下水带入的无机碳与大气CO 2的同位素交换反应的影响。这两种影响的结果

常使湖泊水中的13C 含量成层分布。

地下水碳同位素组成受地下水本身的形成作用、迁移和赋存环境的影响。地下水中碳的主要来源有:① 大气CO 2的溶解。在通常条件下,其δ13C 值为-7‰

左右;② 土壤CO 2和现代生物碳的溶解。其δ13C 值一般为-25‰左右;③海相石

灰岩的溶解。其δ13C 值为0±1‰;④ 淡水灰岩溶解,其δ13C 为负值,变化范围较大。

人类活动影响下的河流无机碳:表层:光合作用;下层:呼吸作用 ;夏季:水生光合作用强盛,受光透深度、水体热分层等因素影响;秋冬:光照弱,水热分层消失;季节性变化规律与湖泊相似,与天然河流相反—河流受大坝拦截后,逐渐向湖沼方向发育,水库运行时间越长,更多营养物质滞留,DIC 越高,13C 越偏负。

碳稳定性同位素分析食物网中能量流动审批稿

碳稳定性同位素分析食物网中能量流动 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

碳稳定性同位素分析食物网中能量流动 摘要:随着科学技术发展,稳定性同位素已经广泛应用在生态学研究的诸多领域。在研究食物网中能量流动关系时,稳定性同位素能提供更迅速、客观的分析。此次实验利用碳稳定性同位素技术对受到人类破坏或其他因素影响的选定区域分析其食物网中的能量流动,旨在研究该区域生物之间的能量流动关系,从而对该区域采取合理的保护措施。 关键词:碳稳定性同位素;食物网;能量流动;δ13C值 Carbon Stable Isotopeanalyzes Studies Energy Flux in Food Web ABSTRACT: Stable isotopehas been widely used in various fields in ecology studieswith the development of science and isotope can provide rapider and more objective analysis when researching energy flux relationship in the food web. In the process of this experiment, we analyze the energy flux relationship in the food web of the chosen areas that are destroyed by human beings or affected by other factors by means of carbon stable isotope technology, with the aim of researching the energy flux relationship among population in this area, consequently we can adopt reasonable protective measures in this areas. KEY WORDS: Carbon stable isotope;food web;energy flux;δ13C 一.研究背景 随着世界人口的持续增长和人类活动范围与强度的扩展和增加,地球上的生物多样性逐渐降低。例如,持续不断地砍伐树木已经导致世界上大量树木物种面临灭种的危险;环境污染使得动植物的栖息地环境遭到严重的破坏,致使物种数量锐减[1]。在某一区域中,动植物数量的减少还有一个很重要的原因,即某些因素(例如栖息地减少和改变、滥捕乱猎、外来物种的引入、污染等[2])导致该区域部分动植物数量的减少,而这进一步通过该区域的食物网影响到区域中其他动植物的种类和数量,进而对整个区域各种生物体造成影响。 食物网是在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,直接反映生态系统的结构和功能[3]。生产者制造有机物,各级消费者消耗这些有机物,生产者和消费者之间相互矛盾,又相互依存。不论是生产者还是消费者,其中某一种群数量突然发生变化,必然牵动整个食物网。食物网是生态系统长期发展的进化过程中形成的。人类活动使生态系统中某一生物体种群数量遭到破坏,将使生态平衡失调,甚至是生态系统崩溃[2]。因此,研究食物网中生物的能量流动关系,对于维持生态系统的稳定、利用动物间的相互制约来减缓人类活动对生态系统的破坏具有重要的意义。

氢氧碳稳定同位素在植物水分利用策略研究中的应用

第22卷 第4期世 界 林 业 研 究Vol.22 No.4 2009年8月World Forestry Research Aug12009 氢氧碳稳定同位素在植物水分利用策略研究中的应用3 徐 庆1 冀春雷1 王海英1 李 旸2 (1中国林业科学研究院森林生态环境与保护研究所,北京100091; 2中国林业科学研究院木材工业研究所,北京100091) 摘要:综述了氢氧碳稳定同位素的概念、示踪原理及其应用于定量确定植物水分来源、水分利用格局和水分利用效率等方面研究进展。同时展望了全球气候变化条件下,氢氧碳多种稳定同位素联合示踪先进技术在定量研究植物水分利用策略以及植被对全球气候变化的响应机制研究中的应用前景。 关键词:氢氧碳稳定同位素,植物水分来源,水分利用效率,水分利用策略 中图分类号:S718.51 文献标识码:A 文章编号:1001-4241(2009)04-0041-06 Use of St able Isotopes of Hydrogen,O xygen and Carbon to I den ti fy W a ter Use Stra tegy by Pl an ts Xu Q ing1 J i Chunlei1 W ang Haiying1 L i yang2 (1Research I nstitute of Forest Ecol ogy,Envir on ment and Pr otecti on,Chinese Academy of Forestry,Beijing 100091,China;2Research I nstitute of Wood I ndustry,Chinese Academy of Forestry,Beijing100091,China) Abstract:Stable is ot op ic technol ogy is a ne w method t o deter m ine s ources and utilizati on patterns of p lant water.The main advantage of this technol ogy is that it can p r ovide results of relatively high ac2 curacy and sensitivity.The pur pose of this paper is t o p resent an overvie w of the concep ts and theory of stable is ot ope tracing,and the methods of using stable is ot opes of hydr ogen,oxygen and carbon t o quantify s ources of p lant water and pattern and efficiency of p lant water use.This paper uses s ome exa mp les t o demonstrate how the stable is ot op ic technol ogy may be used t o address different issues re2 lated t o p lant water use strategies,and p r ovides s ome pers pectives on app licati ons of the advanced technol ogy of si m ultaneously tracing multi p le stable is ot opes(hydr ogen,oxygen and carbon)in stud2 ying mechanis m s of potential vegetati on res ponses t o gl obal cli m ate change. Key words:stable is ot opes of hydr ogen,oxygen and carbon,water s ource of p lant,water use effi2 ciency,water use strategy 水是植物生命活动中最活跃的成分之一,对植物生长发育、数量和分布具有显著影响,尤其在干旱和半干旱地区,水成为植物生长的主要限制因子[1]。全球气候变化的一个重要方面是区域降雨格局的变化[2],植物吸收和利用水分的模式一定程度上决定了生态系统对环境水分状况发生改变时的响应结果[3],因此,对植物水分利用策略及水分来源的了解,将有助于我们了解和预测降雨格局变化导致未来植被时空变化的规律[4],有助于林业科技人员根据生境选择合适的造林树种进行植被建设和恢复工作。氢氧碳稳定同位素示踪技术有较高的灵敏度与准确性,为定量研究植物水分来源,水分利用格局和水分利用效率等提供了新的技术手段。 3收稿日期:2009-04-30 基金项目:国家自然基金项目(30771712);“十一五”林业科技支撑项目(2006BAD03A04);948项目(2006-4-04) 作者简介:徐庆,女,中国林业科学研究院森林生态环境与保护研究所副研究员,博士,研究方向:稳定同位素生态学,E-mail:xu2 qing@https://www.doczj.com/doc/9b5266925.html,

第十讲稳定同位素地球化学

第十讲 地质常用主要稳定同位素简介 18O Full atmospheric General Circulation Model (GCM) with water isotope fractionation included.

内容提要 ●基本特征●氢同位素●碳同位素●氧同位素●硫同位素

10.1. 传统稳定同位素基本特征 ?只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40; ?多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集; ?生物系统中的同位素变化常用动力效应来解释。在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen) ?直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成: 1H:99.9844% 2H(D):0.0156% ?在SMOW中D/H=155.8 10-6 ?氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征 ?与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间; ?1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围; ?从大气圈、水圈直至地球深部,氢总是以H O、OH-, 2 H2、CH4等形式存在,即在各种地质过程中起着重要作用; ?氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

封管法制备有机碳稳定同位素样品存在的问题和改进

第7卷 第2期2016年4月 地球环境学报 Journal of Earth Environment V ol.7 No.2Apr. 2016 doi:10.7515/JEE201602010 收稿日期:2015-11-17;录用日期:2015-12-07Received Date: 2015-11-17; Accepted Date: 2015-12-07基金项目:国家自然科学基金项目(41303010) Foundation Item: National Natural Science Foundation of China (41303010)通信作者:刘卫国,E-mail: liuwg@https://www.doczj.com/doc/9b5266925.html, Corresponding Author: LIU Weiguo, E-mail: liuwg@https://www.doczj.com/doc/9b5266925.html, 封管法制备有机碳稳定同位素样品 存在的问题和改进 曹蕴宁1,刘卫国1, 2 (1. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061; 2. 西安交通大学 人居环境与建筑工程学院,西安 710049) 摘?要:有机碳稳定同位素的高精度测定是利用地质样品有机碳同位素研究气候和植被变化等的基础。通过实验发现低有机碳含量样品同位素测定误差相对较大,其中样品收集过程是主要的影响因素之一。本文针对这个问题,主要从杂质气体干扰入手,在一步冷冻分离CO 2和H 2O ,或分步冷冻分离CO 2和H 2O 的收集方法,以及改变收样管体积三方面进行条件实验研究,讨论了封管法制备有机碳稳定同位素样品气体收集过程对有机碳稳定同位素组成的影响。结果表明:(1)CO 2气体的纯化收集是封管法制备有机碳稳定同位素样品的一个重要步骤,收集时杂质气体含量越高,对样品有机碳稳定同位素组成的影响越大;(2)在相同的杂质气体背景条件下,与一步冷冻分离CO 2和H 2O 的方法相比,分步冷冻CO 2和H 2O 的方法能够显著减小杂质气体对有机碳稳定同位素测定的影响;(3)小体积收样管能够显著提高有机碳稳定同位素样品的离子流强度,进而提高低有机碳含量样品的稳定碳同位素测定精度。关键词:有机碳稳定同位素;样品制备;封管法 Problems and improvements of preparing organic carbon stable isotope samples by sealing tube method CAO Yunning 1, LIU Weiguo 1, 2 (1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences , Xi’an 710061, China; 2. School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China ) Abstract: Background, aim, and scope High precision measurement of organic carbon stable isotope (δ13C) is the basis for its application in the reconstruction of past changes in climate and vegetation types. It has been observed that the measurement error of δ13C for samples with low organic carbon content was relatively large, partly due to the problem in the CO 2 collecting process. To solve this problem, the effect of CO 2 gas collecting process on the δ13C of organic carbon was investigated from three aspects: impurity gas on the process of CO 2 freezing, freezing CO 2 and H 2O by one step and freezing CO 2 and H 2O step by step, and the effect of collection tubes with different volumes. Materials and methods The national standard material (GBW04407) and different types of natural samples were analyzed using sealed tube method to study the effect of CO 2 gas collecting process on the δ13C of

稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化

稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化 刘启明1,2,王世杰1,朴河春1,欧阳自远1(1.中国科学院地球化学研究所环境地球化学国家重点实验 室,贵阳 550002;2.中国科学院研究生院,北京 100039) 摘要:为了观察生态系统的转变对土壤有机质的影响,在贵州茂兰喀斯特原始森林保护区内农林生态系统发生转变的地域,分析了土壤有机质含量和土壤有机质的δ13C 值.森林点土壤有机碳含量普遍较高(1181%~ 16100%),而农田点土壤有机碳含量在0143%~2122%之间,表明毁林造田加速了土壤有机质的降解,使土壤有 机质总量减少;利用C 3植物与C 4植物δ13C 值的显著差异,对比森林点与农田点的δ13C 值(森林点:-23186‰ ~-27112‰;农田点:-19166‰~-23126‰ ),计算表明,毁林造田同时也降低了土壤有机质中活性大的组分的比例,使土壤肥力下降. 关键词:生态系统;土壤有机质;δ13C 值 中图分类号:S15316 文献标识码:A 文章编号:025023301(2002)0320420075 基金项目:国家自然科学基金项目(49833002,49772175);中 科院知识创新工程项目(KZCX22105);环境地球化学国家重点实验室创新领域项目 作者简介:刘启明(1973~),男,江西瑞金人,博士生,主要研 究方向为环境地球化学. 收稿日期:2001203216;修订日期:2001206211 Soil Organic Matter Changes of Turnover Ecosystems T raced by Stable C arbon Isotopes Liu Qiming 1,2,Wang Shijie 1,Piao Hechun 1,Ouyang Ziyuan 1(1.State K ey Laboratory of Environmental G eochemistry ,Institute of G eochemistry ,Chinese Academy of Sciences ,Guiyang 550002,China ;2.Graduate School ,Chinese Academy of Sciences ,Beijing 100039,China ) Abstract :On the basis of different photosynthetic pathway ,there ’s obvious difference in δ13C values between C 3plants and C 4plants .Use this characteristic ,the organic carbon content (forest lands :1181%~16100%;farms :0143%~ 2122%)and δ13C values (forest lands :-23186‰~-27112‰;farms :-19166‰~-23126‰ )of three profile soil samples either in farms and forest lands near Maolan K arst virgin forest was analyzed ,there plant C 3plants previous 2ly and plant C 4plants now.Results show that clearing forest have accelerated the decompose rate of soil organic matter and decreased the proportion of active 2component in soil organic matter ,reducing of soil fertility.K eyw ords :ecosystem ;soil organic matter ;δ13C values 生态转换系统中土壤有机质的变化,与土壤的初级生产力和温室气体的释放有着紧密的关系.同时,它们也是目前持续农业的发展和全球环境变化的研究内容之一[1,2].过去,在毁林(草)造田等生态系统发生转变的地域,相关的研究工作仅侧重于从土壤有机质的总量上考虑,这存在一定的片面性,因为耕作影响了土壤有机质输入与输出的量[3].自Balesdent (1987)等[4]在法国西南部Auzeville 和Doazit 两地在长期观测积累的数据基础上开展工作后,应用δ13C 值来研究土壤有机质的实验研究工作才逐渐开展.不同的地理背景、不同的土地利用方 式,导致生态系统转变时土壤的肥力减少方式不同,有的几十年后土壤的有机质还可以为庄稼提供所需的营养物,如北美草地系统转变为农田系统[5]与法国西北部温带林地系统转变为 农田系统[6];有的经过农业开垦利用几年后,土壤有机质几乎被利用完,如巴西热带生态系统中的氧化土[7].在我国西部地区,过去为了解决 第23卷第3期2002年5月 环 境 科 学ENV IRONM EN TAL SCIENCE Vol.23,No.3May ,2002

单体烃稳定碳同位素

单体烃稳定碳同位素在沉积和油气地质中的应用 摘要随着科学技术的进步,人们已不满足测定原油总体的δ13C值及原油族组分碳同位素值,而是着眼于研究原油中单体烃分子的碳同位素特征,以便获得更多、更详细烃分子系列碳同位素信息。因此,单体烃碳同位素分析技术应用而生,原油单体烃碳同位素分析技术主要用于油源对比。由于碳同位素仪比较复杂,包括的设备多,操作繁琐,国内同行业有这样大型仪器的单位不多,因而对此项技术的开发有很重要的意义。原油单体烃碳同位素分析技术在油源对比等地质应用方面具有可行性,同时体现出有效的实际应用价值。 关键词单体烃碳同位素油气地质原油分类油源对比 单体烃碳同位素能从分子级别反映单个化合物的来源,较之于全油和族组成分同位素,具有更明显的优越性,已广泛应用于油气成因类型、油源识别、混源定量等油气勘探实践中。其数据的精度在相当程度上取决于单体化合物分离的纯度、仪器检测的稳定性及标样的界定。原油单体烃碳同位素的分布形式主要取决于样品的性质,特别是母源岩原始沉积环境与生源输人,受成熟度等其他因素的影响相对较小。我国西部叠合盆地由于存在多套有效烃源岩,不同成因类型原油混源现象普遍,如塔里木盆地可能包含海相与陆相各自不同层位烃源岩,甚至海相与陆相成因原油的混源,因此单体烃碳同位素在油源识别中至关重要。为了更好地应用单体烃碳同位素技术,需要建立不同地质模式下不同成因类型原油的单体烃碳同位素模型,并对可能的影响因素进行评价。 1单体正构烷烃碳同位素的古植被与古气候意义 近年来,由于气相色谱-燃烧-同位素比质谱联用仪(GC/C/IRMS)新技术的成功运用,使得单体分子标志化合物碳同位素的研究已在生物源识别、C3与C4植被类型确定、全球碳循环等方面得到了应用。单体分子标志物碳同位素的研究使稳定同位素在古气候学中的应用达到分子级水平,不但为局部或全球古气候研究而且为控制全球碳循环的机制探讨提供了新的更加准确的证据。因而,分子标志物的分布与单体碳同位素组成特征的联合应用,可以大大增强追踪古环境中有机质来源和重建古生物地球化学过程及古环境的能力。 1.1 溯源 正构烷烃分子标志化合物在古气候研究中得到了广泛应用,但是它们本身存在一些不可避免的缺陷:一是不同类型生物体中可能存在相同或相似的正构烷烃组成,使来自众多生物源的正构烷烃混合输入难以区分;二是正构烷烃分子标志物在埋藏中可能会或多或少地受到降解演化的破坏,使得其相应的生物源辨认模糊。然而,单体正构烷烃的碳同位素

碳同位素组成特征及其在地质中的应用

同位素地球化学

目录 一、碳的同位素组成及其特征 (1) 1.碳同位素组成 (1) Ⅰ、碳的同位素丰度 (1) Ⅱ、碳的同位素比值(R) (1) Ⅲ、δ值 (2) 2.碳同位素组成的特征 (2) Ⅰ.交换平衡分馏 (2) Ⅱ.动力分馏 (3) Ⅲ.地质体中碳同位素组成特征 (3) 二、碳同位素在地质科学研究中的应用 (8) 1. 碳同位素地温计 (8) 2.有机矿产的分类对比及其性质的确定 (9) Ⅰ.煤 (9) Ⅱ.石油 (9) Ⅲ. 天然气 (11)

碳同位素组成特征及其在地质科研中的应用 一、碳的同位素组成及其特征 1.碳同位素组成 碳在地球上是作为一种微量元素出现的,但分布广泛,在地质历史中有着重要作用。碳的原子序数为6 ,原子量为12.011,属元素周期表第二周期ⅣA族。碳在地壳中的丰度为2000×10-6,是一个比较次要的微量元素。在地球表面的大气圈、生物圈和水圈中,碳是最常见的元素之一,是地球上各种生命物质的基本成分馏。碳既可以呈固态形式存在,又能以液态和气态形式出现。它既广泛分馏布于地球表面的各层圈中,也能在地壳甚至地幔中存在。总之,碳可呈多种形式存在于自然界中。在有机物质和煤、石油中,以还原碳的形式存在,在二氧化碳气体和水溶液中,以氧化碳形式出现。碳还可呈自然元素形式出现在某些岩石中(如金刚石和石墨)。一般用同位素丰度、同位素比值和δ值来表示同位素的组成。 Ⅰ、碳的同位素丰度 同位素丰度指同位素原子在元素总原子数中所占的百分比,自然界中的碳有2个稳定同位素:12C和13C。习惯采用的平均丰度值分别为98.90%和1.10%。由此可见,在自然界中碳原子主要主要是以12C的形式存在。另外碳还有一个放射性同位素14C,半衰期为5730a。放射性14C的研究,目前已发展成为一种独立的同位素地质年代学测定方法,主要应用于考古学和近代沉积物的年龄测定。适合用于作碳稳定同位素分馏析的样品包括:石墨、金刚石等自然碳矿物,方解石、文石、白云石、菱铁矿、菱锰矿等碳酸盐矿物;石灰岩、白云岩、大理岩等全岩样品;各种矿物包裹体中的C O2和CH4气体以及石油、天然气及有机物质中的含碳组分馏等。 Ⅱ、碳的同位素比值(R) 同位素比值R=一种同位素丰度/另一种同位素丰度 对于非放射性成因稳定同位素比值: R=重同位素丰度/轻同位素丰度 由此可见,碳的同位素比值R=1.1%/98.9%=0.011

第四节稳定同位素

第四节稳定碳同位素 同位素:指元素周期表中原子序数相同,原子量不同的元素。 稳定同位素:指原子核的结构不会自发的发生改变的同位素。 稳定同位素有两个最显著的属性:1.稳定性:即经过复杂的化学反应之后,原子核结构不发生变化。2.分馏作用:指同位素在两种同位素比值不同的物质之间进行分配。 一、稳定同位素分馏机理 分馏作用是稳定同位素的属性之一,碳稳定同位素的分馏机理有: 1.同位素的交换反应:是化学物质间,不同相或单个分子发生的同位素重新分配。 12CO +13CH4=13CO2+12CH4 2 13CO +H12CO3-=12CO2+H13CO3- 2 2.光合作用的动力效应:植物在光合作用过程中,富集12C,而使13C 进一步减小。 3.热力和化学反应的动力效应: -C-C-键的稳定性顺序:-13C-13C>-13C-12C->12C-12C-。 在低温条件下,形成的烃类,富集12C;在高温条件下形成的烃类,富集13C。 4.同位素的物理化学效应: 蒸发:气相富集轻同位素12C,夜相富集13C;扩散:先扩散12C,残余13C。 二、稳定同位素在自然界的分布、比值符号和标准 同位素比值的测量和对比单位一般是用千分数(‰)表示。 式中:Rs :为样品的同位素比值;Rr:为标准的稳定同位素的比值。各国用各自的标准计算Rr ,再换算成PDB标准。 标准之间的换算公式: 式中:δ13CB:为求取对B标准的δ值; δ13CA:为测得对A标准的δ值; RAr、RBr:为A、B标准的13C/12C比值。 三、油气中碳同位素的组成特征 1、原油

δ13C一般为-22‰~-33‰,平均值为-25‰~-26‰。 ①海相原油δ13C值较高,为-27‰~-22‰;陆相原油δ13C值偏低,为-29‰~-33‰。 ②随组分分子量的增大,急剧增大烷烃<芳烃<胶质<沥青质,烷烃<环烷烃,正构烷烃<异构烷烃,芳烃随环数增加δ13C值增大,可溶沥青<干酪根。 2、天然气 δ13C随天然气成熟度的增大而增大, 生物成因气: ≤-60‰~-95‰低 热解成因气: -50‰~-20‰高 以上两种气的混合气: -50‰~-60‰ 天然气成份中:δ13C1<δ13C2<δ13C3<δ13C4,分子量增加,增大。

稳定碳同位素

稳定碳同位素 自然界有六种碳同位素:10C、11C、12C、13C、14C*和15C*。主要有三种,它们的丰度是:12C-98.9%;13C-1.08%;14C-1.2×10-10%。其中12C、13C是稳定同位素,14C是放射性同位素。碳有两种稳定同位素:12C和13C,由于它们的质量不同,在自然界中的物理、化学和生物作用下产生分馏。一般来说,在碳的有机循环中,轻同位素容易摄入有机质(例如烃、石油中富含12C,-30~-20‰)中;而在无机循环中,重同位素倾向于富集在无机盐(例如碳酸盐富含13C,海相灰岩约0‰)中。 碳同位素分馏包括动力学分馏(如光合作用、有机物的生物降解等)和平衡 分馏(如大气CO 2-溶解的HCO 3 --固体CaCO 3 系统)。(1) 光合作用中的碳同位素 动力分馏(6CO 2+6H 2 O→C 6 H 12 O 6 +O 2 ):由于轻同位素分子的化学键比重同位素分子的 化学键易于破坏,因而光合作用的结果使有机体相对富集轻同位素(12C),而残 留CO 2中则相对富集重同位素(13C)。叶子表面对两种二氧化碳(12CO 2 、13CO 2 )同 位素分子吸收速度上的差异是造成这一分馏的主要原因。光合作用中碳同位素分馏程度与光合碳循环途径密切相关。根据CO 2 被固定的最初产物的不同,光合碳循环可分为C3、C4和CAM三种方式。C3循环长,分馏大,δ13C=-23‰~-38‰;C4循环为短循环,分馏小,δ13C=- 12‰~-14‰;CAM循环介于C3与C4间,其13C的亏损程度也介于C3与C4植物间。(2)生物氧化-还原作用过程中的碳同位素分馏:一方面,微生物通过氧化还原反应获取能量,加速氧化还原反应的进行。另一方面,微生物在参与反应的过程中,对于同位素的利用具有选择性,优先选择利用化学能较弱的轻同位素化学键,使得轻同位素较重同位素更易被微生物所利用,进而产生显著的同位素分馏。 大气CO 2-溶解的HCO 3 --固体CaCO 3 系统中的化学交换平衡反应:同位素平 衡分馏只与温度有关,碳同位素分馏的结果是使固体碳酸盐中富集重同位素13C 从大气中的CO 2 到生物圈中有机碳化合物再到生物燃料和生物成因的甲烷,其碳同位素呈现出递减趋势,总体变化规律是氧化态的碳富集13C,还原态的碳 富集12C。海洋上空大气CO 2很少受到其它来源的CO 2 的影响,其δ13C值变化范 围很窄,平均δ13C=-7.0‰;沙漠和山区大气的CO 2 的δ13C值接近-7.0‰;而在

稳定同位素地质学-地球科学系

國立臺灣師範大學地球科學系(所)通識課程綱要 科目代碼:ES C0123 科目名稱(中文):穩定同位素地質學 科目名稱(英文):Stable Isotope Geology 總學分數: 3 每週上課時數: 3 授課教師:米泓生 教師專長背景: 開課理由: 一、教學目標: 本課程主要介紹穩定同位素在全球變遷,環境地球化學,水文地質學,火成岩與變質岩地質學,碳酸岩地質學,古氣候學,海洋學與古海洋學,以及石油地球化學等研究上的應用。 二、教材內容: 第1週課程簡介 (講義;assigned readings) 第2週同位素的特性,歷史背景 第3週同位素的特性,歷史背景 第4週質譜分析,慣例,符號,和標準 第5週同位素分化作用的理論基礎(一) 第6週氧(18O/16O)和氫(2H/1H)同位素 在自然界的分佈;分化關係 自然界水中的追蹤劑:氧和氫同位素 第7週氧(18O/16O)和氫(2H/1H)同位素 火成岩與變質岩岩石學的應用 第8週氧(18O/16O) 同位素溫度和同位素地層 第9週期中考 第10週碳(13C/12C)同位素 碳循環與地球化學 碳同位素在自然界的變化;分化關係 第11週碳(13C/12C)同位素 有機物質 自然界水─碳循環 沉積碳酸岩─成岩作用,全球地球化學循環 第12週氮(15N/14N)同位素

氮循環和地球化學 第13週氮(15N/14N)同位素 有機物質;食物網 地下水 標本分析(F416R; Stable Isotope Lab) 第14週硫(34S/32S)同位素 硫循環和地球化學 硫同位素在自然界的變化;分化關係 第15週硫(34S/32S)同位素 地下水和孔隙水的硫循環 硫同位素曲線─全球變遷 第16週Student presentation 第17週Student presentation 第18週期末考; 繳交期末報告 三、實施方式: 期中考30%,期末考40%,期末報告20%,其他、作業10% 四、參考書目: 指定用書:1. Sharp, Z., 2007, Principles of stable isotope geochemistry: Pearson Prentice Hall, New Jersey, 344p. 參考書目: 1. Hoefs, J., 1987, Stable isotope geochemistry: Springer-Verlag, New York 2. Faure, G., 1986, Principles of isotope geology: John Wiley & Sons,New York 3. Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in M. A., Arthur, eds., Stable isotopesin sedimentary geology: SEPM Short Course no. 10, p,1-151. 4. Mook, W.G. ed., 2001, Environmental Isotopes in the Hydrological Cycle Principles and Applications: UNESCO/IAEA Series, https://www.doczj.com/doc/9b5266925.html,/programmes/ripc/ih/volumes/volumes.htm

碳稳定性同位素分析食物网中能量流动

碳稳定性同位素分析食物网中能量流动 摘要:随着科学技术发展,稳定性同位素已经广泛应用在生态学研究的诸多领域。在研究食物网中能量流动关系时,稳定性同位素能提供更迅速、客观的分析。此次实验利用碳稳定性同位素技术对受到人类破坏或其他因素影响的选定区域分析其食物网中的能量流动,旨在研究该区域生物之间的能量流动关系,从而对该区域采取合理的保护措施。 关键词:碳稳定性同位素;食物网;能量流动;δ13C值 Carbon Stable Isotopeanalyzes Studies Energy Flux in Food Web ABSTRACT: Stable isotopehas been widely used in various fields in ecology studieswith the development of science and technology.Stable isotope can provide rapider and more objective analysis when researching energy flux relationship in the food web. In the process of this experiment, we analyze the energy flux relationship in the food web of the chosen areas that are destroyed by human beings or affected by other factors by means of carbon stable isotope technology, with the aim of researching the energy flux relationship among population in this area, consequently we can adopt reasonable protective measures in this areas. KEY WORDS: Carbon stable isotope;food web;energy flux;δ13C 一.研究背景 随着世界人口的持续增长和人类活动范围与强度的扩展和增加,地球上的生物多样性逐渐降低。例如,持续不断地砍伐树木已经导致世界上大量树木物种面临灭种的危险;环境污染使得动植物的栖息地环境遭到严重的破坏,致使物种数量锐减[1]。在某一区域中,动植物数量的减少还有一个很重要的原因,即某些因素(例如栖息地减少和改变、滥捕乱猎、外来物种的引入、污染等[2])导致该区域部分动植物数量的减少,而这进一步通过该区域的食物网影响到区域中其他动植物的种类和数量,进而对整个区域各种生物体造成影响。 食物网是在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,直接反映生态系统的结构和功能[3]。生产者制造有机物,各级消费者消耗这些有机物,生产者和消费者之间相互矛盾,又相互依存。不论是生产者还是消费者,其中某一种群数量突然发生变化,必然牵动整个食物网。食物网是生态系统长期发展的进化过程中形成的。人类活动使生态系统中某一生物体种群数量遭到破坏,将使生态平衡失调,甚至是生态系统崩溃[2]。因此,研究食物网中生物的能量流动关系,对于维持生态系统的稳定、利用动物间的相互制约来减缓人类活动对生态系统的破坏具有重要的意义。 但是研究食物网中各生物的能量流动关系是十分复杂的,因为食物网的真正结构或功能不易通过直接观察生物觅食、胃容物或粪便等的分析而决定,而且这仅能反映出短暂的营养关系[4]。而生物体内的稳定性同位素比值可作为一种自然的标记,用来示踪营养物质在食物网中的流动。因此研究食物网中生物的能量流动关系时选用稳定性同位素技术便可以很方便地进行实验研究。 原子是由质子、中子和电子组成。具有相同质子数不同中子数(即不同质量数)的同一

碳氢氧氮稳定同位素在生态学中的研究案例

碳氮氢氧稳定同位素示踪技术在生态系统研究案例稳定同位素作为示踪剂广泛应用于生态循环和大气循环中的相关研究。研究人员通过测量空气、植物和土壤中的稳定性同位素组成,进而研究传统生态学无法解释的复杂生态学过程,例如:碳同位素用于分析生态系统CO2循环,区分碳通量研究中各组分的贡献率,确定不同物种对全球生产力的分配和贡献;氢氧同位素用于分析植物对土壤水分的利用效率,进而区分土壤水分的蒸腾与蒸散;氮同位素用于分析植物及生态系统的氮素循环,通过反硝化细菌转化成N2O,根据15N在N2O分子的不同位置,可以示踪N素循环的不同化学反应过程。在这些生态研究中,要求使用的设备同时具备高环境耐受性、高精度、高测量速度及宽量程等特点。 美国Los Gatos公司采用专利的OA-ICOS技术(第4代CRDS技术)设计的一系列稳定同位素分析仪,具有操作温度范围宽、量程宽、高速、高精度的优点。能够满足实验室野外多点长期同步监测、不同高度长期同步监测等研究的需要。其与其他传统测量方法相比,改进了对外界温度、压力变化比较敏感的缺陷,具备无法比拟的优势,适用范围也大大得到扩展。 一、测量原理 LGR:采用OA-ICOAS技术,符合Beer-Lambert定律,通过测量光损失来确定未知物质的浓度;通过改变入射激光的波长,一次扫描测量需要的全部光谱,每秒300次测量,做平均,从而保证了多点连续监测的同步性以及高精度性。 特点:1、测量速度非常快,每秒300次全光谱扫描取平均,测量速度及精度远超传统质谱仪; 2、一次扫描测量全光谱,实时显示光谱曲线,即使温度压力的变化引起峰漂移 也不会影响到峰面积的变化; 3、离轴的光腔设计,避免反射光与入射光直接的相互干扰,信噪比低; 4、通过峰面积来计算位置物质的浓度,所以测量范围很宽; 二、 试验方案 1、碳氧稳定同位素示踪设计方案 1.1土壤-植物根系呼吸的区分 利用土壤、植物根系呼吸产生的CO2中13C同位素信息,可以区分它们各自在总呼吸中所占的比例,同时对18O同位素进行监测,使得多混合源的同位素区分成为可能。

第七章 稳定同位素地球化学

第七章稳定同位素地球化学 稳定同位素地球化学研究自然界稳定同位素的丰度及其变化。同位素丰度发生变化的主要原因是同位素的分馏作用,即轻同位素和重同位素在物质中的分配发生变化,造成一部分物质富集轻同位素,另一部分富集重同位素。同位素及其化合物在物理或化学性质上的差异叫做同位素效应。同位素效应的产生从根本上讲是由于同位素在质量上的差异引起的,同位素质量差越大,所引起的物理化学性质上的差异也就越大。因此,对质量较轻的元素,其同位素的相对质量差异较大。如H与D 质量差100%,O16和18O质量差12.5%,而204Pb和206Pb质量差仅1%,在目前技术条件下,能测量到的由于同位素效应所造成的自然界同位素丰度变异仅限于质量数小于40的元素内。这就是稳定同位素地球化学目前所涉及的同位素仅限于元素氢(H/D)、碳(14C/13C)、氧(18O/16O)、和硫(34S/32S)以及硼(11B/10B)、氮(15N/14N)的原因所在。

7.1 同位素分馏和组成的表示 7.1.1同位素分馏 由于同位素效应所造成的同位素以不同比例在不同物质或不同相之间的分配称为同位素分馏。这里需引入二个概念。 同位素比值:定义为单位物质中某元素的重同位素和轻同位素的原子数之比,如在陨石中硫同位素比值为: R=34S/32S=1/22.22 当我们谈论同位素比值时,总是指重同位素和轻同位素之比。 同位素分馏系数:定义为在平衡条件下,经过同位素分馏之后二种物质(或馏份)中某元素的相应同位素比值之商。 设某二种物质为A,B,某元素的同位素比值为R A,R B,则同位素分馏系数为: 所以当我们讨论同位素分馏系数时,必须指明是那种物质对那种物质。一般α值为接近1的一个数字,离1愈远,同位

稳定同位素

稳定同位素地球化学研究:1.选题 2.样品采集:先明确样品本身的地质历史:如成矿期、成矿阶段、矿物的共生组合、生成顺序和交代关系等。明确地质背景的样品才有研究意义。 3.分析测试:样品要先做详细的光、薄片研究,确定生成顺序、后期蚀变、叠加作用、固相包体、固溶体分离关系。 然后把样品制备成适于质谱分析的形式,再送入质谱仪测得同位素比值。 4.结果解析:数据分析大体可分为简单类比(归纳)法和物理化学模型(演绎法)。 稳定同位素的研究常常假定的是同位素分馏平衡。但往往地质过程存在同位素不平衡现象。如深成岩中由斜长石-磁铁矿同位素分馏计算的温度远低于岩浆的固相线温度,反映亚固相条件下的氧同位素交换。 高级变质带不同矿物对记录的同位素温度不同程度低于其他地质温度计估计的温度,表明或者在顶峰变质时没有完全达到同位素平衡,或者在达到同位素平衡后,岩石在冷却过程中随温度下降同位素组成又发生改变,即所谓的退化同位素交换。 又如当发生水-岩交换作用时,长石易与外来流体(如大气降水)发生同位素交换,而石英和辉石能够保持高温岩石的氧同位素印记。 交换时间、交换速率、晶体的生长速率与晶体本身的同位素均一化速率、同位素原子从晶体边缘向内部运移的速率都会影响同位素的平衡。 同位素地质测温:同位素平衡温度T越低,两物相之间的同位素分馏越大,如碳酸钙-水古温度计。 同位素分馏系数方程中的参数A越大,指示两物相之间的同位素分馏越大,因此对温度的变化越灵敏,如石英-磁铁矿氧同位素测温。而石英-长石之间氧同位素的分馏对温度变化不灵敏,为其在示踪开放体系下的同位素交换中的应用奠定了基础。 同位素平衡的检查: 共生顺序与平衡顺序相同,则表示是在热力学平衡条件下,如果相反,则指示同位素不平衡状态、或者是不同阶段的产物,或者是不同温度下形成的。 碳同位素(13C):白云石>方解石>CO2>石墨>CH4 硫同位素(34S):硫酸盐》辉钼矿>黄铁矿>闪锌矿=雌黄铁矿>黄铜矿>斑铜矿>方铅矿>辉银矿 同位素地质温度计的注意事项:1.同位素平衡的检查,除了自身的数据的解释,还应结合岩相学观察和研究是否发生过其他的地质作用(例如围岩蚀变),因为其他地质作用也会改变矿物之间的同位素平衡状态。2.同位素分馏越大,同位素地质温度计越灵敏,共生顺序系列的两端或相距较远的成对矿物作地质温度计好。3.选择作为同位素测温的矿物对应该具有比较高的化学和同位素稳定性。如磁铁矿稳定性高,而长石易发生蚀变。4.矿物对挑选时要求纯度越高越好,避免相互干扰。因此,在分选或挑选样品前,必须进行光片或薄片鉴定,避免选用包含固体包裹体或固熔分离的矿物样品。5.内部结果的一致性以提高分析精度。6.选择同一方法或技术确定的分馏系数。 同位素地质温度计:O同位素:外部测温法:磷灰石-H2O;内部测温法:矿物-水、矿物-矿物。单矿物测温法:不同位置的O同位素的分馏、大气降水中沉淀的粘土矿物。 S同位素:方铅矿-闪锌矿:但四个不同校准的分馏曲线有差异,硫酸盐-硫化物矿物对最为灵敏,在高温变质矿床和地热体系中较好的应用,但是在热液矿床中常常未达到平衡。但是能够研究不同组分的混合作用。 C同位素:方解石-石墨矿物对最为常用,但校准的分馏曲线仍有一定的差别。尤其是低温下。 岩石缓慢冷却过程中,扩散控制氧同位素的交换再平衡说明矿物之间的不平衡同位素分馏判

相关主题
文本预览
相关文档 最新文档