当前位置:文档之家› 旋转设备振动在线监测系统

旋转设备振动在线监测系统

旋转设备振动在线监测系统
旋转设备振动在线监测系统

旋转设备振动在线系统

技术方案

合肥优尔电子科技有限公司

2016. 8

一.现状分析

随着我国工业现代化进程的加快,对于连续生产的企业而言,大型旋转设备的稳定运行十分重要,一旦发生故障,都有可能导致整个生产线停机,造成极大的损失。这种损失可达每小时数十万元之巨,特别是生产过程智能控制系统的采用,对关键设备安全运行的依赖程度越来越高,因此,对这些设备进行在线监测就显得非常重要。

各种旋转设备运转过程中各零部件磨损并非相同,随其工作条件而异,但磨损的发展是有其规律的,如果能够对设备受到的这种磨损失效规律进行掌握,设备各零部件的相对运动趋势将反应出振动、温度、声音的连锁效应,使我们提前知晓设备各项功能发生改变的趋势与结果。国网铜陵发电有限公司拥有多种大、中、小型旋转设备,其较多旋转设备占据着生产中的核心地位。

二、系统架构

旋转设备振动在线监测系统,通过无线自组网和现场总线的方式,将从各传感单元采集的数据汇集到管理后台,通过计算机系统处理实现应用服务,计算机系统主要由数据前端设备、服务器机和管理端PC组成。

系统拓扑如下图所示:

三、振动采集终端

3.1振动传感器

在旋转设备两端轴座(具体部位可根据现场情况确定)设置两组三维(X、Y、Z方向)加速度振动传感器,测量振动位移矢量,监测主轴与轴瓦(轴座)之间的轴向、径向游离与波动情况。

振动传感器利用压电晶体的正压电效应,当压电晶体在一定方向的外力作用下,它的晶体面产生电压,采集电路检测出这个电压值后换算成受力大小F,由公式a=F/m可以得出瞬间加速度大小a,对加速度二次积分得出瞬间位移量,从而得出被测对象振动频谱和振动位移。

主要技术参数:

●传感器类型:IEPE

●灵敏度:100mV/g

●加速度量程:0.1~100mm/s2

●速度量程:0.1~250mm/s

●位移量程:1~3000μm

●频率范围:0.3~12000Hz(±10%)

●谐振点: 27kHz

●分辨率:0.001g

●非线性:≤1%

●横向灵敏度:≤3%

●恒定电流:4mA

●输出阻抗:<100Ω

●激励电压:DC24V

●温度范围: -40~+80℃

●放电时间常数:≥1秒

3.2振动采集器

YT-400 振动采集器是合肥优尔电子科技自主研发的一款高性能IEPE类传感器信号采集终端,内置了传感器所需的恒流激励和信号调理电路,可以不需外部的信号调理器而直接采集IEPE传感器的输出信号。YT-400具有四路大量程、高采样率、低噪声的高性能同步信号采集通道。每个通道的量程为±10V,采样率高达128Ksps,并能保证实时传输到后台服务器进行显示与分析。通过高性能ADC和先进的DSP信号处理技术,使YT-400具备极低的采样噪声,在1Ksps采样率下采样噪声峰峰值仅为0.00004V,满量程信号的信噪比高达50万。多通道、高采样率和低噪声和同步采样使YT-400能够满足科研与生产中高端信号监测的需要。

YT-400系列采用跨平台通用的动态链接库作为驱动函数接口,可工作在

Server 03/Server 08/Win2000/XP/WIN 7/WIN 8 等操作系统下,支持VB, VC, C++Builder, Dephi,LabVIEW,Matlab等大多数编程语言。

主要技术参数:

输入通道

?4路同步采集通道

?支持IEPE(ICP)类传感器

?BNC接线端子

?交流输入

IEPE调理

?输出电流:恒定4mA

?驱动电压:24V

?隔直电容:10微法

电压量程

?-10.5V到+10.5V

采样率

?128K、64K、32K、16K、8K、4K、2K、1K八档可调

分辨率

?128K采样率下,噪声峰峰值 < 400微伏,无噪声分辨率15.7bit;噪声有效值 < 60微伏,有效分辨率18.6bit,信噪比103dB;90Jmpjm。Firok7M。

?64K采样率下,噪声峰峰值 < 250微伏,无噪声分辨率16.2bit;噪声有效值 < 38微伏,有效分辨率19.0bit,信噪比105dB;nrOv1gU。FlCcVyn。

?32K采样率下,噪声峰峰值 < 150微伏,无噪声分辨率17.0bit;噪声有效值 < 23微伏,有效分辨率19.8bit,信噪比109dB;KNheiYd。kHuIjvw。

?16K采样率下,噪声峰峰值 < 100微伏,无噪声分辨率17.7bit;噪声有效值 < 16微伏,有效分辨率20.6bit,信噪比113dB;eZazGgB。IscfmpT。

?8K采样率下,噪声峰峰值 < 70微伏,无噪声分辨率18.4bit;噪声有效值 < 10微伏,有效分辨率21.3bit,信噪比115dB;g9jngFD。E4mSLHL。

?4K采样率下,噪声峰峰值 < 50微伏,无噪声分辨率18.6bit;噪声有效值 < 9微伏,有效分辨率21.5bit,信噪比117dB;Twkmwoc。qjmk8Vz。

?2K采样率下,噪声峰峰值 < 40微伏,无噪声分辨率18.9bit;噪声有效值 < 6微伏,有效分辨率21.8bit,信噪比121dB;6ncPOgU。21SSXkW。

?1K采样率下,噪声峰峰值 < 35微伏,无噪声分辨率19.0bit;噪声有效值 < 5微伏,有效分辨率21.9bit,信噪比123dB;OeA2NVL。cDrRMxO。

缓存

?DAQ Buffer:192K Bytes

?FIFO :1K Bytes

四、后台监测软件

4.1 软件功能

后台软件实现的功能如下图所示:

4.2 系统主要功能概述

(1)实时状态监测

在旋转设备示意图相应监测部位实时显示设备振动峰峰值,及时反映设备当前运转情况和运行状态。点击监测点可进一步显示每个监测点振动变化曲线以及频谱图。

下图为实时状态图案例:

下图为振动频谱时域图案例:

(2)异常告警管理

在实时状态监测时对状态数据进行阈值分析,超出阈值或装备规格标准时自动进行异常告警,在实时监测图中通过变化红色告警提示,可以以声音形式提示用户。提供对历史告警数据进行查询、分类统计和比较。

(3)振动数据分析

通过对历史状态数据的分类、梳理和模拟,进行时序分析直观描述,对设备状态及变化趋势进行分析,绘制趋势曲线,来展现设备状态重要数据点的变化情况。下图为监测数据拟合图案例:

(4)故障预测诊断

根据预先设置的故障线阈值和劣变规律,进行劣化倾向的定量化管理,基于在/离线数据分析对象设备的劣化倾向程度和减损量的变化趋势,通过周期性对设备劣化倾向进行检测记录,按时间绘制成图表和曲线,拟合其变化趋势,预测最佳检修周期和更换周期,为制定设备检修计划提供依据。

根据旋转设备的部件参数和运行参数(转速/轴承类型及型号/齿轮齿数等),自动计算出轴承内圈、外圈、保持架、滚动体的故障频率,结合轴承水平、垂直、径向的时域波形和频谱波形,判断可能故障,如不平衡、不对中、松动、齿轮磨损等;并结合专家数据库中前期积累的知识和经验等数据,为有效地诊断轴承的故障提供参考。

(5)系统管理

提供对旋转设备及监测部位、技术参数等基本信息维护,提供对采集网络、采集周期等采集基本信息维护,提供对系统用户及权限配置等系统基础功能。

五、实施单位简介

合肥优尔电子科技有限公司,是由中国科技大学多名博士基于科研成果产业化发起并组建的创新型企业,位于合肥高新区国家大学科技园,系国家“高新技术”企业和安徽省“双软认证”企业,公司管理体系通过GB/T 19001-2008/ ISO 9001:2008认证,并且正在按照CMMI 1.3集成模型框架管理和改进工程过程,建立高标准、高效率、低成本的软件成果产业化机制。

企业致力于能源电力、化工建材和冶金制造等工业企业信息化与工业化融合技术开发应用,拥有多项核心技术成果和数十项自主知识产权,具有高水平的系统技术集成能力和嵌入式产品开发经验,其专业技术处于国内领先水平。

企业主要产品为:工业一体化智能巡检仪、分布式无线采集器、无线数据中继器、数据收发器、综合环境数据探测器等工业移动计算终端,并基于专业化终端产品为用户定制工业设备点巡检系统、设备状态监测与故障诊断系统、企业能源管理系统、煤场数字化及燃煤优化配比管理系统、设备远程监测系统等应用方案与工程实施。

作为中国科技大学数据融合实验室的校外基地,企业建立了完备的“产学研”技术开发体系,拥有学风严谨、技术精湛的研发团队,在涉及工控信息化领域的多个研究方向具备学科领头和创新能力。多数员工具有电子信息工程、计算机科学技术和工业控制与自动化等方向良好的教育背景和从业经验。在对业务及需求不断深入理解的基础上,快捷并针对性地为用户提供专业的信息化整体解决方案和周到的技术服务。

通过精心研发和细微服务,企业陆续推出的产品与技术分别在多家大型国企投入应用,接受长期运行考验,充分满足了用户需求,提高了生产管理效率,获得了普遍赞誉。企业仍将不断努力进取,加快先进技术的产业化实施,全心全意为用户服务,为中国工业企业的现代化转型竭尽全力。

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

大型旋转机械的状态检测与故障诊断

第四期全国设备状态监测与故障诊断实用技术培训班讲义 大型旋转机械的状态检测与故障诊断 沈立智 中国设备管理协会设备管理专题交流中心 2007年9月 西安

目录 第一节状态监测与故障诊断的基本知识 (6) 一、状态监测与故障诊断的意义及发展现状 (6) 1. 状态监测与故障诊断的定义 (6) 2. 状态监测与故障诊断的意义 (6) 3. 状态监测与故障诊断的发展与现状 (8) 二、大机组状态监测与故障诊断常用的方法 (9) 1. 振动分析法 (9) 2. 油液分析法 (10) 3. 轴位移的监测 (11) 4. 轴承回油温度及瓦块温度的监测 (11) 5. 综合分析法 (11) 三、有关振动的常用术语 (11) 1. 机械振动 (11) 2. 涡动、进动、正进动、反进动 (11) 3. 振幅 (12) 3.1 振幅 (12) 3.2 峰峰值、单峰值、有效值 (12) 3.3 振动位移、振动速度、振动加速度 (13) 3.4 振动烈度 (13) 4. 频率 (15) 4.1 频率、周期 (15) 4.2倍频、一倍频、二倍频、0.5倍频、工频、基频、转频 (15) 4.3 通频振动、选频振动 (15) 4.4 故障特征频率 (16) 5. 相位 (19) 5.1 相位 (19) 5.2 键相器 (19) 5.3 绝对相位 (19) 5.4 相位差、相对相位 (20) 5.4 同相振动、反相振动 (21) 5.5 相位的应用 (21) 6. 刚度、阻尼、临界阻尼 (23) 7. 临界转速 (24) 8. 挠度、弹性线、主振型、轴振型 (25) 9. 相对轴振动、绝对轴振动、轴承座振动 (26) 10. 横向振动、轴向振动、扭转振动 (26) 11.刚性转子、挠性转子、圆柱形振动、圆锥形振动、弓状回转(弯曲振动) (26) 12. 高点、重点 (27) 13. 机械偏差、电气偏差、晃度 (28) 14. 同步振动、异步振动、亚异步振动、超异步振动 (28) 15. 谐波、次谐波(分数谐波) (28) 16. 共振、高次谐波共振、次谐波共振 (29) 17. 简谐振动、周期振动、准周期振动、瞬态振动、冲击振动、随机振动 (29)

旋转机械的常见故障诊断

龙源期刊网 https://www.doczj.com/doc/9b14526598.html, 旋转机械的常见故障诊断 作者:马昊刘天保刘鸿亮 来源:《科技资讯》2014年第16期 摘要:沈鼓做为一家世界知名的鼓压风机制造企业,旋转机械是我们厂的支柱产品。所以,旋转机械的故障诊断与分析,对于我厂产品的质量的好坏,产品是否能够让用户满意,以至于企业的生存和核心竞争力,都有着致关重要的作用。作为一门独立的学科,依靠振动分析仪对旋转机械的异常故障进行诊断和判别,必须有较高的技术水平。这个诊断和判别与医学上的诊断和判别是一个道理。要能够准确地诊断和判别,要依靠大量的临床实践和临床经验,这必须有医学上的理论基础根据。 关键词:鼓压风旋转机械诊断判别 中图分类号:TH165 文献标识码:A 文章编号:1672-3791(2014)06(a)-0105-01 尽管旋转机械的故障是由机械仪表自行诊断是最终目的,但机械还是机械,它不是万能的,现实的问题不能全部死搬硬套,自动诊断。系统的诊断只能做参考,最终诊断还需要人的大脑。人—机对话,还需要人的大脑。 下面举几个各种类型振动的典型例子,可以认为是固定模式的一类,可以在判断故障时做以参考。 1 不平衡 大家知道,转动部分在转动过程中,一定会产生振动,振动是绝对的,不振动是相对的,不平衡是绝对的,平衡也是相对的。转动部分或多或少会有残余的不平衡量存在。这种不平衡量是由于转子的重心偏移所产生的。由于重心偏移而引起离心力F=W/gεω2(W:转子重量,kg;g:重力加速度,cm/s2;ε:偏心量;ω:回转角速度;F:离心力)。这种情况,机械在转动时会发生振动,明显地表现为1次/转。如是3000 r/min,振动频率为50 Hz。这种由于偏心、不平衡产生的离心力,迫使转子在运转过程中发生振动,其振动频率为转速的一次方成正比,转速高而高,转速低而低,这是判断转子由于偏心而产生振动的不平衡的最简单也是最直观的判断方法。 2 热的不平衡 已在常温下平衡好的转子,当进入工况后,由于热的影响温度的上升,转子转轴导热性的影响,转子可能会产生弯曲。这种振动可随时间的延长而变大。也可能随负荷的变化而改变。 3 找正同轴度的变化,而引起的不平衡振动

旋转设备振动在线监测系统

旋转设备振动在线系统 技术方案 合肥优尔电子科技有限公司 2016. 8

一.现状分析 随着我国工业现代化进程的加快,对于连续生产的企业而言,大型旋转设备的稳定运行十分重要,一旦发生故障,都有可能导致整个生产线停机,造成极大的损失。这种损失可达每小时数十万元之巨,特别是生产过程智能控制系统的采用,对关键设备安全运行的依赖程度越来越高,因此,对这些设备进行在线监测就显得非常重要。 各种旋转设备运转过程中各零部件磨损并非相同,随其工作条件而异,但磨损的发展是有其规律的,如果能够对设备受到的这种磨损失效规律进行掌握,设备各零部件的相对运动趋势将反应出振动、温度、声音的连锁效应,使我们提前知晓设备各项功能发生改变的趋势与结果。国网铜陵发电有限公司拥有多种大、中、小型旋转设备,其较多旋转设备占据着生产中的核心地位。 二、系统架构 旋转设备振动在线监测系统,通过无线自组网和现场总线的方式,将从各传感单元采集的数据汇集到管理后台,通过计算机系统处理实现应用服务,计算机系统主要由数据前端设备、服务器机和管理端PC组成。 系统拓扑如下图所示: 三、振动采集终端 3.1振动传感器 在旋转设备两端轴座(具体部位可根据现场情况确定)设置两组三维(X、Y、Z方向)加速度振动传感器,测量振动位移矢量,监测主轴与轴瓦(轴座)之间的轴向、径向游离与波动情况。 振动传感器利用压电晶体的正压电效应,当压电晶体在一定方向的外力作用下,它的晶体面产生电压,采集电路检测出这个电压值后换算成受力大小F,由

公式a=F/m可以得出瞬间加速度大小a,对加速度二次积分得出瞬间位移量,从而得出被测对象振动频谱和振动位移。 主要技术参数: ●传感器类型:IEPE ●灵敏度:100mV/g? ●加速度量程:?0.1~100mm/s2 ●速度量程:0.1~250mm/s ●位移量程:1~3000μm ●频率范围:0.3~12000Hz(±10%) ●谐振点: 27kHz ●分辨率:?0.001g ●非线性:≤1% ●横向灵敏度:≤3% ●恒定电流:4mA ●输出阻抗:<100Ω ●激励电压:DC24V ●温度范围:-40~+80℃ ●放电时间常数:≥1秒 3.2振动采集器 ?YT-400?振动采集器是合肥优尔电子科技自主研发的一款高性能IEPE类传感器信号采集终端,内置了传感器所需的恒流激励和信号调理电路,可以不需外部的信号调理器而直接采集IEPE传感器的输出信号。YT-400具有四路大量程、高采样率、低噪声的高性能同步信号采集通道。每个通道的量程为±10V,采样率高达128Ksps,并能保证实时传输到后台服务器进行显示与分析。通过高性能ADC和先进的DSP信号处理技术,使YT-400具备极低的采样噪声,在1Ksps 采样率下采样噪声峰峰值仅为0.00004V,满量程信号的信噪比高达50万。多通道、高采样率和低噪声和同步采样使YT-400能够满足科研与生产中高端信号监测的需要。? YT-400系列采用跨平台通用的动态链接库作为驱动函数接口,可工作在

旋转机械振动的基本特性 (DEMO)

旋转机械振动的基本特性 一、转子的振动基本特性 大多数情况下,旋转机械的转子轴心线是水平的,转子的两个支承点在同一水平线上。设转子上的圆盘位于转子两支点的中央,当转子静止时.由于圆盘的重量使转子轴弯曲变形产生静挠度,即静变形。此时,由于静变形较小,对转子运动的影响不显著,可以忽略不计,即认为圆盘的几何中心O′与轴线AB上O点相重合,如图7—l所示。转子开始转动后,由于离心力的作用,转子产生动挠度。此时,转子有两种运动:一种是转子的自身转,即圆盘绕其轴线AO′B的转动;另一种是弓形转动,即弯曲的轴心线AO′B与轴承联线AOB组成的平面绕AB轴线的转动。 转子的涡动方向与转子的转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动。 二、临界转速及其影响因素 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转速。Jeffcott用—个对

称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 在正常运转的情况下: (1)ω<n ω时, 振幅A>0,O′点和质心G 点在O 点的同一侧,如图7—3(a)所示; (2)ω>n ω时,A<0,但A>e,G 在O 和O′点之间,如图 7—3(c)所示; 当ω≥n ω时,A e -≈或O O′≈-O′G,圆盘的质心G 近似 地落在固定点O,振动小。转动反而比较平稳。这种情况称为“自动对心”。 (3)当ω=n ω时,A ∞→,是共振情况。实际上由于存在阻尼,振幅A 不是无穷大而是较大的有限值,转轴的振动非常剧烈,以致有可 能断裂。n ω称为转轴的“临界角速度” ;与其对应的每分钟的转数则称为“临阶转速”。 如果机器的工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴。由上面分析可知,只有柔性轴的旋转机器运转时较为平稳 但在启动过程中,要经过临界转速。如果缓

旋转机械常见故障诊断分析案例

第5章旋转机械常见故障诊断分析案例 积累典型设备诊断案例在设备监测诊断工作中具有重要作用。首先它为设备诊断理论提供支撑。常见的设备故障有成熟的理论基础,一个成功的案例通常是诊断理论在现场正确应用和诊断人员长期实践的结果。典型诊断案例具有强大的说服力,一次成功而关键的诊断足可以改变某些人根深蒂固的传统观念,对现场推广设备诊断技术具有重要意义。 其次它为理论研究提供素材。在医学上,由典型的特例研究发现病理或重大理论的案例很多。设备故障的情形多种多样,现场疑难杂症还比较多,有许多故障很难用现有理论解释,只能作为诊断经验看待,这种经验有没有通用参考价值,需要在理论上进行说明。 另外,有许多案例无法在试验室模拟,而它们在不同的现场又常常出现,因此典型案例为同行提供了宝贵经验和经过证实的分析方法。诊断人员可以参考相似案例的解决方案解决新的问题,提供快速的决策维护支持,并为基于案例的推理方法提供数据基础。 典型案例分析的重要性还表现在它是监测诊断人员快速成长的捷径。目前实用的振动诊断方法、技术和诊断仪器已经相当完善,而许多企业在诊断技术推广应用方面存在困难除了思想观念方面的原因外,更主要的原因是缺乏专业人才。研究案例的一般做法是,从新安装设备或刚检修好的设备开始,可以选择重点或典型设备进行监测,根据不同设备制定不同的监测方案和监控参数,定期测试设备的振动,包括各种幅值、振动波形和频谱等。如果设备出现劣化迹象或异常,要缩短监测周期,倍加留心振动波形和频谱的变化,注意新出现的谱线及其幅值的变化,在检修之前做出故障原因的判断。设备检修时要到现场,了解第一手资料,全程跟踪设备拆检情况,掌握设备参数(如轴承型号,必要时测量有关尺寸、齿轮齿数、叶片数、密封结构、联轴器和滑动轴承形式等),做好检修记录(有时需要拍照记录),比较自己的判断对在哪里,错在哪里,进行完善的技术总结。几个过程下来,水平自然有很大提高。总之,添置几件诊断仪器是很容易的事,诊断成果和效益的产生不是一朝一夕的事,需要柞大量艰苦、细致的工作,长期积累设备的状态数据,对此应有应清醒地认识。 表5-1为某钢铁公司多年来162例典型故障的原因或部位分布情况。可见转子不平衡、轴承故障、基础不良、不对中和齿轮故障是主要原因。 5.1 转子动平衡故障诊断、现场校正方法与实例分析 5.1.1 转子不平衡的几种类型与诊断【左经刚,设备故障的相位分析诊断法,中国设备管理,2001年第5期】

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

大型旋转机械远程在线监测

XXX 旋转机械远程在线监测和故障分析系统 技术方案书 代理商:重庆伯辰机电设备有限公司 联系地址:重庆市高新区奥体路1号附11-2-17-8号 联系电话:

目录 1系统构成 (2) 1.1 系统概述 (2) 1.2 系统构成 (2) 1.3 系统测点数量汇总 (2) 1.4 系统信号来源 (3) 2技术性能指标 (4) 2.1 中心服务器WEB8000 (4) 2.2 现场监测站NET8000 (4) 2.3 浏览站 (6) 2.4 S8000分析图谱及组件 (6) 2.5 状态监测系统的通信 (7) 2.6 网络安全 (7) 3供货清单 (7) 4工程实施与售后服务 (8) 4.1 甲乙方工作界面 (8) 4.2 工程时间 (9) 4.3 验收与质保 (9) 4.4 培训 (10) 4.5 售后服务 (10) 5附件:分析图谱及组件 (12) 5.1 常规图谱分析功能 (12) 5.2 启停机图谱分析功能 (14) 5.3 列表日记功能 (15) 5.4 诊断助手分析功能 (15) 5.5 数据传输功能 (17)

1系统构成 1.1系统概述 甲方:XX 乙方:XX 本技术协议书是XX公司(以下简称乙方)根据XX公司(以下简称甲方)对其机组提出的在线状态监测和分析系统(以下简称状态监测系统)相关的技术要求,提出了以旋转机械状态监测系统(S8000)及配套附件为基础的完整解决方案和完整系统构成,并对该方案的系统软、硬件配置、技术性能和工程服务等进行了详细说明,要求接入公司大型旋转机械在线监测中心。 乙方对提供的所有硬件、软件、技术服务和整套系统的安全、稳定运行负有完全责任。 S8000 旋转机械状态监测系统是乙方在2006年推出的新一代在线监测系统,速度更快、图谱更专业:采用全新的设计理念,监测分站采用Linux操作系统构建,底层采用PC104 总线结构,大大提高了系统的可靠性和采样速率;系统采用Java语言编写人机界面,设备管理和诊断人员,可通过IE浏览器查看更多更专业的分析诊断图谱。 1.2系统构成 系统由旋转机械状态监测系统、和辅助设备组成: 1.旋转机械状态监测系统(S8000 ): 含NET8000 现场监测站3台,WEB8000中心服务器1台,DELL现场浏览站; 2.系统附件(见供货清单); 3.伴随系统的技术工程服务、售后服务和质量保证。 1.3系统测点数量汇总 本状态监测系统涵盖机组。1套S8000系统共监测的: 轴振动测点共72点; 轴位移测点共12 点; 轴系键相测点共12点; 轴系监测仪表型号:待定 按照现场运行的监测要求,S8000系统监测通道数量如下表:

大型旋转机械状态检测与故障诊断讲义

大型旋转机械状态检测与故障诊断讲义 沈立智 阿尔斯通创为实技术发展(深圳)有限公司 2006年12月

目录 第一节状态监测与故障诊断的基本知识 (4) 一、状态监测与故障诊断的意义 (4) 二、大机组状态监测与故障诊断常用的方法 (4) 1. 振动分析法 (4) 2. 油液分析法 (5) 3. 轴位移的监测 (5) 4. 轴承回油温度及瓦块温度的监测 (5) 5. 综合分析法 (6) 三、有关振动的常用术语 (6) 1. 机械振动 (6) 2. 涡动、进动、正进动、反进动 (6) 3. 振幅 (7) 3.1 振幅 (7) 3.2 峰峰值、单峰值、有效值 (7) 3.3 振动位移、振动速度、振动加速度 (7) 3.4 振动烈度、振动标准 (8) 4. 频率 (9) 4.1 频率、周期 (9) 4.2 倍频、一倍频、二倍频、0.5倍频、工频、基频、半频 (9) 4.3 通频振动、选频振动 (10) 4.4 故障特征频率 (10) 5. 相位 (12) 5.1 相位、相位差 (12) 5.2 键相器 (13) 5.3 绝对相位 (13) 5.4 同相振动、反相振动 (14) 5.5 相位的应用 (14) 6. 相对轴振动、绝对轴振动、轴承座振动 (16) 7. 横向振动、轴向振动、扭转振动 (16) 8. 刚性转子、挠性转子、圆柱形振动、圆锥形振动、弓状回转 (17) 9. 刚度、阻尼、临界阻尼 (17) 10. 临界转速 (18) 11. 挠度、弹性线、主振型、轴振型 (18) 12. 高点、重点 (19) 13. 机械偏差、电气偏差、晃度 (20) 14. 谐波、次谐波 (20) 15. 同步振动、异步振动、亚异步振动、超异步振动 (20) 16. 共振、高次谐波共振、次谐波共振 (21) 17. 简谐振动、周期振动、准周期振动、瞬态振动、冲击振动、随机振动 (21) 18. 自由振动、受迫振动、自激振动、参变振动 (22) 19. 旋转失速、喘振 (23) 20. 半速涡动、油膜振荡 (24)

大型旋转机械故障诊断

湖北汽车工业学院 课程论文大型旋转机械故障诊断 姓名:高俊斌 班级:T1113-5 学号:20110130106 日期:2015.1.11

目录 1.引言 (2) 2.旋转机械故障产生的原因及频率特征 (2) 2.1不平衡故障及其诊断 (2) 2.1.1故障机理 (2) 2.1.2频率特点 (2) 2.2转子不对中故障及其诊断 (3) 2.2.1故障机理 (3) 2.2.2频率特点 (3) 2.3涡动故障及其诊断 (4) 2.3.1故障机理 (4) 2.3.2频率特征 (4) 3.常用的故障诊断方法 (5) 3.1振动检测诊断法 (5) 3.2噪声检测诊断法 (5) 3.3温度检测诊断法 (6) 3.4声发射检测诊断法 (6) 3.5油液分析诊断法 (6) 4.大型旋转机械故障诊断案例 (7) 4.1某厂04年09月27日空压机断叶片故障诊断分析 (7) 4.2某厂04年06月24日主风机断叶片故障诊断分析 (9) 5.结论 (12) 参考文献: (13)

大型旋转机械故障诊断 高俊斌 摘要:文章概述了旋转机械故障产生的原因及频率特征、旋转机械故障诊断的基本方法,然后分析了一些大型旋转机械故障诊断的案例。 关键词:旋转机械;故障诊断 1.引言 旋转机械故障诊断技术是伴随着现代工业生产设备的发展形成的一项专门的设备诊断技术。该技术主要研究机械设备在运行过程中或停机状态下不对设备进行拆卸,掌握设备的运行现状,分析判断设备故障的部位、故障原因以及故障严重程度,并估算出设备可靠性和使用寿命,从而提出解决方法的技术。大型旋转机械如风机、压缩机、汽轮机和燃气轮机等设备,是石油、化工、冶金、航天及电力等现代重要生产部门中的关键生产工具,对这些设备开展性能监测与故障诊断工作,具有重要的意义。 2.旋转机械故障产生的原因及频率特征 2.1不平衡故障及其诊断 2.1.1故障机理 质量不平衡是大型旋转机械最为常见的故障。众所周知,旋转机械的转子由于受材料质量和加工技术等各方面的影响,转子上的质量分布相对于旋转中心线不可能做到“绝对平衡”,这就使得转子旋转时形成周期性的离心力的干扰,在轴承上产生动载荷,使机器发生振动。机组不平衡按发生过程可分为原始不平衡、渐发性不平衡和突发性不平衡等几种情况。其中原始不平衡是由于转子制造误差、装配误差及材质不均匀等原因造成的;渐发性不平衡是由于不均匀积灰造成的;突发性不平衡是由于转子上零件脱落造成的,机组振幅突然增大后稳定在一定水平上。 2.1.2频率特点 转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速一致。即f= w /60,转速频率也称为工频(即工作频率),这种频率成分很容易在频谱图上观察到。 转子不平衡故障的特征是: ⑴在转子径向测得的频谱图上,频谱能量集中于基频,转速频率成分具有突出的峰值; ⑵转速频率的高次谐波幅值很低,因此反映在时域上的波形很接近于一个正弦波;

S8000大型旋转机械在线状态监测和分析系统简介

S8000大型旋转机械在线状态监测和分析系统 简介 深圳市创为实技术发展有限公司Shenzhen Strongwish Co.,Ltd

目录 1 S8000概述 (3) 1.1 S8000系统结构图 (3) 1.2 系统简要说明 (3) 1.3 系统应用对象 (3) 1.4 现场数据采集监测分站NET8000 (4) 1.4.1 NET8000简介 (4) 1.4.2 特点一:稳定性与可靠性 (4) 1.4.3 特点二:数据采集的准确性 (5) 1.4.4 特点三:存贮机组的有效信息 (6) 1.4.5 特点四:网络通讯功能 (6) 1.4.6 特点五:NET8000的本地数据存储功能 (7) 1.5 中心服务器WEB8000 (7) 1.5.1 中心服务器WEB8000概述 (7) 1.5.2 功能一:数据的长期存储与管理 (7) 1.5.3 功能二:强大的基于B/S结构的数据传输功能 (7) 1.5.4 功能三:强大的专业分析图谱和诊断功能 (8) 1.5.5 功能四:系统管理与设置 (9) 1.6 浏览站 (9) 1.7 S8000系统的安全性 (10) 1.7.1 对生产的安全性 (10) 1.7.2 对网络的安全性 (10) 2 工程实施与售后服务 (11) 2.1 NET8000的现场安装和信号接入 (11) 2.2 完善的售后服务体系 (11) 3 附件 (12) 3.1 附件一:NET8000电气参数 (12) 3.2 附件二:分析图谱 (13) 3.2.1 常规图谱分析功能 (13) 3.2.2 起停机图谱分析功能 (14) 3.2.3 列表日记 (14) 3.2.4 诊断助手功能 (15)

旋转机械振动故障诊断的图形识别方法研究(2020版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械振动故障诊断的图形识别方法研究(2020版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械振动故障诊断的图形识别方法研 究(2020版) 我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械

故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则采集诊断依据 被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选

旋转机械振动故障诊断的图形识别方法研究

编号:AQ-JS-04028 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 旋转机械振动故障诊断的图形 识别方法研究 Research on graphic recognition method for vibration fault diagnosis of rotating machinery

旋转机械振动故障诊断的图形识别 方法研究 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械

故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则采集诊断依据 被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选

石油化工旋转机械振动标准

第三章.石油化工旋转机械振动标准 (SHS01003-2004) 1总则 1.1主题内容与适用范围 1.1.1本标准规定了石油化工旋转机械振动评定的现场测量方法(包括测量参数、测量仪器、测点布置、测试技术要求、机器分类等)及评定准则。石油化工旋转机械振动分析的现场测量方法应满足本标准的规定但不仅限于此。 1.1.2本标准适用的设备包括电动机、发电机、蒸汽轮机、烟气轮机、燃气轮机、离心压缩机、离心泵和风机等类旋转机械。 按照本标准规定的方法进行测试得到的振动数据,可作为设备状态评定和设备验收的依据。经买卖双方协商认可,亦可采用制造厂标准或其他标准。 1.1.3本标准不适用于主要工作部件为往复运动的原动机及其传动装置。 本标准也不适用于振动环境中的旋转机械的振动测量。振动环境是指环境传输的振动值大于运行振动值1/3的情况。 1.1.4未能纳入本标准范围的其他旋转机械,暂按设备出厂标准进行检验和运行。 1.2编写修订依据 GB/T 6075.1-1999 在非旋转部件上测量和评价机器的机械振动第1部分:总则 GB/T 6075.3-2001 在非旋转部件上测量和评价机器的机械振动第3部分:额定功率大于15kw、额定转速在120~15000r/min之间的现场测量的工业机器 GB 11348.1-1999 旋转机械转轴径向振动的测量和评定第一部分:总则 1.3本标准提供两种振动评定方法,即机壳表面振动及轴振动 的评定方法。 在机壳表面,例如轴承部位测得的振动是机器内部应力或运动状态的一种反映。现场应用的多数机泵设备(电动机、各种油泵、水泵等),由

机壳表面测得的振动速度,可为实际遇到的大多数情况提供与实践经验相一致的可信评定。 汽轮机、离心压缩机等大型旋转机械(如炼油催化三机、化肥五大机组、乙烯三大机组和空分装置的空压机等)通常含有挠性转子轴系,在固定构件上(如轴承座)测得的振动响应不足以表征机器的运转状态,对这类设备必须测量轴振动,根据实际需要,结合固定构件上的振动情况评定设备的振动状态。 2机壳表面振动 2.1本标准适用于转速为10~200r/s(600~12000r/min)旋转机 械振动烈度的现场测量与评定。 2.2测量参数 本标准规定在机壳表面(例如轴承盖处)测得的、频率在10~1000Hz 范围内的振动速度的均方根(Vrms)作为表征机械振动状态的测量参数,在规定点和规定的测量方向上测得的最大值作为机器的振动烈度。 2.3测量点的布置 测点一般布置在每一主轴承或主轴承座上,并在径向和轴向两个方向上进行测量,如图1所示。对于立式或倾斜安装的机器,测量点应布置在能得出最大振动读数的位置或规定的位置上,并将测点位置和测量值一同记录。测点位置应固定,一般应作明显标记。机器护罩、盖板等零件不适宜作测点。 2.4测量仪器 2.4.1一般采用由传感器、滤波放大器、指示器和电源装置等组成的测量仪表。允许采用能取得同样结果的其他仪器。 2.4.2测量登记表滤波放大器的带通频率为10~1000Hz。 2.4.3测量仪表系统误差不超过±10%。 2.4.4传感器振动速度线性响应的最大值至少为感受方向上满量程振动速度的3倍,传感器横向灵敏度应小于10%。 2.4.5直读仪器应能指示或记录振动速度的均方根值。 2.4.6测量登记表尽可能采用电池为电源装置。 2.4.7测量仪表需定期校准,保证它具有可靠的测量结果。 2.5测量技术要求

旋转机械状态监测及预测

旋转机械状态监测及预测技术研究 关键词旋转机械;工作状态;监测及预测 一、引言 旋转机械状态监测技术,是近年来研究的热门课题,这里着重考虑的是避免设备的随机性故障。自动在线监测方式与定期监测方式、在线检测离线分析监测方式相比技术水平先进,既避免设备突发性故障又无需专业人员现场操作。旋转机械状态在线预测技术,是研究的新兴课题之一,这里着重考虑的是预测设备的时间依存性故障和改变设备的维护方式。该技术是在状态监测及故障分析基础上发展起来的,是实现以先进的预知维护取代以时间为基础的预防性维护的关键技术。本课题着重研究的是设备状态在线监测及趋势预测的方法。 二、旋转机械状态监测技术的发展 1.旋转机械状态监测技术的发展历程 旋转机械是工业上应用最广泛的机械。许多大型旋转机械,如:离心泵、电动机、发动机、发电机、压缩机、汽轮机、轧钢机等,还是石化、电力、冶金、煤炭、核能等行业中的关键设备。本世纪以来,随着机械工业的迅速发展,现代机械工程中的机械设备朝着轻型化、大型化、重载化和高度自动化等方向发展。出现了大量的强度、结构、振动、噪声、可靠性,以及材料与工艺等问题,设备损坏事件时有发生,国内外大型汽轮机严重事故是其典型实例。 大型旋转机械状态监测技术研究是国家重点的攻关项目,目的是提高大型旋转机械的产品质量,减少突发性事故,避免重大经济损失。50年代,各种类型和性能的传感器和测振仪相继研制成功,并开始应用于科学研究和工程实际。六七十年代,数字电路、电子计算机技术的发展、“信号数字分析处理技术”的形成,推动了振动检测技术在机械设备上的应用。70年代至80年代,机械设备的状态监测与故障诊断技术在许多发达国家开始研究。随着电子计算机技术、现代测试技术、信号处理技术、信号识别技术与故障诊断技术等现代科学技术发展,机械设备的监测研究跨入系统化的阶段,并把实验室的研究成果逐步推广到核能设备、动力设备以及其它各种大型的成套机械设备中去,进入了蓬勃发展的阶段。例如:日本三菱公司的“旋转机械健康管理系统”(machinery health monitoring,简称MHM),美国西屋公司的“可移动诊断中心”(mobile diagnosi s center,简称MDC),丹麦B&K公司的2500型振动监测系统等,都具备了机组信号数据的采集、分析、计算、显示、打印、绘图等功能,并配有专项诊断软件。先进的状态监测系统把体现机械动态特性的振动、噪声作为主要监测和分析的内容。由于振动、噪声是快速的随机性信号, 不仅对测试系统要求高,而且在分析中要进行大量的数据处理,国内外在80年代用小型计算机或专用数字信号处理机做为主机完成机械动态特性的数据处理(如:HP5451C), 该类主机不仅价格昂贵(一般价格为数十万元)而且对工作环境要求苛刻(需要专用机房),因而通常采用离线监测与分析的方式。 90年代以来,高档微机不断更新且价格迅速下降,适合数字信号处理的计算方法不断优化,使数据处理速度大为提高,为在工业现场直接应用状态监测技术创造了条件。丹麦、美国、德国、日本等发达国家的专家学者对旋转机械工作状态监测技术进行了深入研究,研制出不同系统。该类系统以丹麦B&K公司的2520型振动监测系统、美国BENTLY 公司的3300 系列振动监测系统、美国亚特兰大公司的M6000系统为代表已经达到较高的水平。在功能上比较典型的系统之一是丹麦B&K公司的2520型振动监测系统(vibrati on monitor-type 2520),主要功能有:自动谱比较并进行故障预警报警;对6%和23%恒百分比带宽谱进行速度补偿;幅值增长趋势图显示;三维谱图显示;振动总均方根值(振动烈度)计算;支持局域网。美国IRD公司的IQ2000系统可认为是至今为止有报道的功能最齐全的监测与诊断系统。 我国在工业部门中开展状态监测技术研究的工作起步于1986年,在此之前从国外引进的

大型旋转机械状态监测与故障诊断

大型旋转机械状态监测与故障诊断 1 故障诊断的含义 故障就是指机械设备丧失了原来所规定的性能和状态。通常把运行中的状态异常、缺陷、性能恶化及事故前期的状态统称为故障,有时也把事故直接归为故障。 而故障诊断则是根据状态监测所获得的信息,结合设备的工作原理、结构特点、运行参数及其历史运行状况,对设备有可能发生的故障进行分析、预报,对设备已经或正在发生的故障进行分析、判断,以确定故障的性质、类别、程度、部位及趋势。 大型旋转机械是指由涡轮机(如汽轮机、水轮机、燃气轮机、烟气轮机等)及其驱动的工作机(如离心式压缩机、轴流式压缩机、发电机等)所组成的透平式流体动力机械,习惯上简称大型机组。大型机组是化工、石化、电力、钢铁等行业的关键设备,例如:乙烯装置的三机(裂解气压缩机、乙烯压缩机、丙稀压缩机),化肥装置的五机(原料气压缩机、空气压缩机、合成气压缩机、氨压缩机、二氧化碳压缩机),炼油装置的三机(烟机、主风机、富气式压缩机),大型空分装置的空气压缩机,中心电站的大型汽轮机或水轮发电机组,钢铁企业的氧压缩机及高炉风机等。大型机组由于功率大、转速高、流量大、压力高、结构复杂、监控仪表繁多,运行及检修要求高,因此在设计、制造、安装、检修、运行等环节稍有不当,都会造成机组在运行时发生种种故障。大型机组本身价格昂贵,大型机组的故障停机又会引起整个生产装置的全面停产,给企业、社会、国家造成巨大的经济损失。因此,认真做好大机组的状态监测与故障诊断工作,对避免恶性设备损坏事故的发生,降低停机次数和缩短停机时间、减少企业的经济损失是十分有益的。 2 故障诊断的目的 故障诊断的根本目的就是要保证大型机组的安全、稳定、长周期、满负荷、优良运行,其目的主要为: ①对机组运行中的各种异常状态作出及时、正确、有效的判断,预防和消除故障,或者将故障的危害性降低到最低程度;同时对设备运行进行必要的指导,确保运行的安全性、稳定性和经济性。 ②确定合理的故障检修时机及项目,既要保证设备在带病运行时安全、不发生重大设备故障,又要保证停机检查时发现设备的确有问题,合理延长设备的使用寿命和降低维修费用。 ③通过状态监测,为提高设备的性能而进行的技术改造及优化运行参数提供数据和信息。

大型旋转机械状态监测与故障诊断

大型旋转机械的状态监测与故障诊断 大型旋转机械作为连续化工生产的单系列心脏设备,对其运行的可靠性有非常高的要求,要求它在装置的运行周期内必须稳定的运转。对其进行准确的状态监测和故障诊断就显得尤为重要,必须随时准确的掌握其运行状态,并且在其出现异常时,能够准确的分析出异常原因,找出对策。再不影响其安全运行的基础上进行故障运行或进行特护,以优化生产与设备维护的时间。 本章节对公司内普遍采用的在线及离线状态监测与故障诊断系统作一介绍,并对机组出现的常见故障作一些介绍,并根据经验,教授一些实际处理问题的方法。 第一节:基本参量与监测系统 一部运转的机器,都伴有振动信号的产生,它的变化常常隐含着初期故障特征信号,因此需 对振动信号进行监测,这种监测方法有以下特点: 1. 方便性: 利用现代的各种振动传感器及二次仪表,可以很方便的检测出设备振动的信号。 2. 在线性: 监测可以在现场以及在设备正常运转的情况下进行。 3. 无损性: 在监测过程中,通常不会给研究对象造成任何形式的损坏。 但是一部机械是非常复杂的,仅仅靠振动信号来判断它是否正常,显然不够,这就需要对它多方面进行了解,亦即需要对多方面的参量进行测量。每一种故障在下列参数上均有不同表现,因此测量以下基本参数,再通过分析,可以掌握机器的运转状态。 基本参量 一. 振动参量 1. 振幅 振幅值有三个单位,即振动位移(卩m),速度(mm/s),加速度(mm/s2),都是振动强度的标志, 用来表明机器运行是否平稳,振动位移是通过非接触式的电涡流传感器直接测量的轴与轴承座(探头安装的基础)的相对位移量。 振动速度与加速度是通过测量机壳而得到的振动数据。振动速度是通过惯性式速度传感器 (磁力线圈)测量的,而加速度是通过压电式加速度传感器测量的,振动位移,速度,加速度

旋转机械故障诊断

旋转机械故障诊断 旋转机械是指依靠转子旋转运动进行工作的机器,在结构上必须具备最基本的转子、轴承等零部件。 典型的旋转机械:各类离心泵、轴流泵、离心式和轴流式风机、汽轮机、涡轮发动机、电动机、离心机等。 用途:1、在大型化工、石化、压缩电力和钢铁等部门,某些大型旋转机械属于 生产中的关键设备 2、炼油厂催化工段的三机组或四机组 3、大化肥装置中的四大机组或五大机组 4、乙烯装置中的三大机组 5、电力行业的汽轮发电机、泵和水轮机组 6、钢铁部门的高炉风机和轧钢机组 旋转机械可能出现的故障类型:1、转子不平衡故障 2、转子不对中故障 3、转轴弯曲故障 4、转轴横向裂纹的故障 5、连接松动故障 6、碰摩故障 7、喘振 转子的不平衡振动机理及特性: 旋转机械的转子由于受材料的质量分布、加工误差、装配因素以及运动中的冲蚀和沉积等因素的影响,致使其质量中心与旋转中心存在一定程度的偏心距。偏心距较大时,静态下,所产生的偏心力矩大于摩擦阻力距,表现为某一点始终恢复到水平放置的转子下部,其偏心力矩小于摩擦阻力距的区域内,称之为静不平衡。偏心距较小时,不能表现出静不平衡的特征,但是在转子旋转时,表现为一个与转动频率同步的离心力矢量,离心力F=Mew2,从而激发转子的振动。这种现象称之为动不平衡。静不平衡的转子,由于偏心距e较大,表现出更为强烈的动不平衡振动。 虽然做不到质量中心与旋转中心绝对重合,但为了设备的安全运行,必须将偏心所激发的振动幅度控制在许可范围内。 1、不平衡故障的信号特征 1)时域波形为近似的等福正弦波。 2)轴心轨迹为比较稳定的圆或椭圆,这是因为轴承座及基础的水平刚度与垂直刚度不同所造成。 3)频谱图上转子转动频率处的振幅。 4)在三维全息图中,转动频率的振幅椭圆较大,其他成分较小。 2、敏感参数特征 1)振幅随转速变化明显,这是因为,激振力与角速度w是指数关系。

相关主题
文本预览
相关文档 最新文档