当前位置:文档之家› 旋转设备振动在线监测系统

旋转设备振动在线监测系统

旋转设备振动在线监测系统
旋转设备振动在线监测系统

旋转设备振动在线系统

技术方案

合肥优尔电子科技有限公司

2016. 8

一.现状分析

随着我国工业现代化进程的加快,对于连续生产的企业而言,大型旋转设备的稳定运行十分重要,一旦发生故障,都有可能导致整个生产线停机,造成极大的损失。这种损失可达每小时数十万元之巨,特别是生产过程智能控制系统的采用,对关键设备安全运行的依赖程度越来越高,因此,对这些设备进行在线监测就显得非常重要。

各种旋转设备运转过程中各零部件磨损并非相同,随其工作条件而异,但磨损的发展是有其规律的,如果能够对设备受到的这种磨损失效规律进行掌握,设备各零部件的相对运动趋势将反应出振动、温度、声音的连锁效应,使我们提前知晓设备各项功能发生改变的趋势与结果。国网铜陵发电有限公司拥有多种大、中、小型旋转设备,其较多旋转设备占据着生产中的核心地位。

二、系统架构

旋转设备振动在线监测系统,通过无线自组网和现场总线的方式,将从各传感单元采集的数据汇集到管理后台,通过计算机系统处理实现应用服务,计算机系统主要由数据前端设备、服务器机和管理端PC组成。

系统拓扑如下图所示:

三、振动采集终端

3.1振动传感器

在旋转设备两端轴座(具体部位可根据现场情况确定)设置两组三维(X、Y、Z方向)加速度振动传感器,测量振动位移矢量,监测主轴与轴瓦(轴座)之间的轴向、径向游离与波动情况。

振动传感器利用压电晶体的正压电效应,当压电晶体在一定方向的外力作用下,它的晶体面产生电压,采集电路检测出这个电压值后换算成受力大小F,由

公式a=F/m可以得出瞬间加速度大小a,对加速度二次积分得出瞬间位移量,从而得出被测对象振动频谱和振动位移。

主要技术参数:

●传感器类型:IEPE

●灵敏度:100mV/g?

●加速度量程:?0.1~100mm/s2

●速度量程:0.1~250mm/s

●位移量程:1~3000μm

●频率范围:0.3~12000Hz(±10%)

●谐振点: 27kHz

●分辨率:?0.001g

●非线性:≤1%

●横向灵敏度:≤3%

●恒定电流:4mA

●输出阻抗:<100Ω

●激励电压:DC24V

●温度范围:-40~+80℃

●放电时间常数:≥1秒

3.2振动采集器

?YT-400?振动采集器是合肥优尔电子科技自主研发的一款高性能IEPE类传感器信号采集终端,内置了传感器所需的恒流激励和信号调理电路,可以不需外部的信号调理器而直接采集IEPE传感器的输出信号。YT-400具有四路大量程、高采样率、低噪声的高性能同步信号采集通道。每个通道的量程为±10V,采样率高达128Ksps,并能保证实时传输到后台服务器进行显示与分析。通过高性能ADC和先进的DSP信号处理技术,使YT-400具备极低的采样噪声,在1Ksps 采样率下采样噪声峰峰值仅为0.00004V,满量程信号的信噪比高达50万。多通道、高采样率和低噪声和同步采样使YT-400能够满足科研与生产中高端信号监测的需要。?

YT-400系列采用跨平台通用的动态链接库作为驱动函数接口,可工作在

Server 03/Server 08/Win2000/XP/WIN 7/WIN 8 等操作系统下,支持VB, VC, C++Builder, Dephi,LabVIEW,Matlab等大多数编程语言。

主要技术参数:

?输入通道

?4路同步采集通道

?支持IEPE(ICP)类传感器

?BNC接线端子

??交流输入

IEPE调理

?输出电流:恒定4mA

?驱动电压:24V

?隔直电容:10微法

???电压量程

?-10.5V到+10.5V

???采样率

?128K、64K、32K、16K、8K、4K、2K、1K八档可调

???分辨率

?128K采样率下,噪声峰峰值< 400微伏,无噪声分辨率15.7bit;噪声有效值< 60微伏,有效分辨率18.6bit,信噪比103dB;

?64K采样率下,噪声峰峰值< 250微伏,无噪声分辨率16.2bit;噪声有效值< 38微伏,有效分辨率19.0bit,信噪比105dB;

?32K采样率下,噪声峰峰值< 150微伏,无噪声分辨率17.0bit;噪声有效值< 23微伏,有效分辨率19.8bit,信噪比109dB;

?16K采样率下,噪声峰峰值< 100微伏,无噪声分辨率17.7bit;噪声有效值< 16微伏,有效分辨率20.6bit,信噪比113dB;

?8K采样率下,噪声峰峰值< 70微伏,无噪声分辨率18.4bit;噪声有效值< 10微伏,有效分辨率21.3bit,信噪比115dB;

??4K采样率下,噪声峰峰值< 50微伏,无噪声分辨率18.6bit;噪声有效值< 9微伏,有效分辨率21.5bit,信噪比117dB;

?2K采样率下,噪声峰峰值< 40微伏,无噪声分辨率18.9bit;噪声有效值< 6微伏,有效分辨率21.8bit,信噪比121dB;

?1K采样率下,噪声峰峰值< 35微伏,无噪声分辨率19.0bit;噪声有效值< 5微伏,有效分辨率21.9bit,信噪比123dB;

???缓存

?DAQ Buffer:192K Bytes

?FIFO? :1K Bytes

四、后台监测软件

4.1 软件功能

后台软件实现的功能如下图所示:

4.2 系统主要功能概述

(1)实时状态监测

在旋转设备示意图相应监测部位实时显示设备振动峰峰值,及时反映设备当前运转情况和运行状态。点击监测点可进一步显示每个监测点振动变化曲线以及频谱图。

下图为实时状态图案例:

下图为振动频谱时域图案例:

(2)异常告警管理

在实时状态监测时对状态数据进行阈值分析,超出阈值或装备规格标准时自动进行异常告警,在实时监测图中通过变化红色告警提示,可以以声音形式提示用户。提供对历史告警数据进行查询、分类统计和比较。

(3)振动数据分析

通过对历史状态数据的分类、梳理和模拟,进行时序分析直观描述,对设备状态及变化趋势进行分析,绘制趋势曲线,来展现设备状态重要数据点的变化情况。下图为监测数据拟合图案例:

(4)故障预测诊断

根据预先设置的故障线阈值和劣变规律,进行劣化倾向的定量化管理,基于在/离线数据分析对象设备的劣化倾向程度和减损量的变化趋势,通过周期性对设备劣化倾向进行检测记录,按时间绘制成图表和曲线,拟合其变化趋势,预测最佳检修周期和更换周期,为制定设备检修计划提供依据。

根据旋转设备的部件参数和运行参数(转速/轴承类型及型号/齿轮齿数等),自动计算出轴承内圈、外圈、保持架、滚动体的故障频率,结合轴承水平、垂直、径向的时域波形和频谱波形,判断可能故障,如不平衡、不对中、松动、齿轮磨损等;并结合专家数据库中前期积累的知识和经验等数据,为有效地诊断轴承的故障提供参考。

(5)系统管理

提供对旋转设备及监测部位、技术参数等基本信息维护,提供对采集网络、采集周期等采集基本信息维护,提供对系统用户及权限配置等系统基础功能。

五、实施单位简介

合肥优尔电子科技有限公司,是由中国科技大学多名博士基于科研成果产业化发起并组建的创新型企业,位于合肥高新区国家大学科技园,系国家“高新技术”企业和安徽省“双软认证”企业,公司管理体系通过GB/T 19001-2008/ ISO 9001:2008认证,并且正在按照CMMI 1.3集成模型框架管理和改进工程过程,建立高标准、高效率、低成本的软件成果产业化机制。

企业致力于能源电力、化工建材和冶金制造等工业企业信息化与工业化融合技术开发应用,拥有多项核心技术成果和数十项自主知识产权,具有高水平的系统技术集成能力和嵌入式产品开发经验,其专业技术处于国内领先水平。

企业主要产品为:工业一体化智能巡检仪、分布式无线采集器、无线数据中继器、数据收发器、综合环境数据探测器等工业移动计算终端,并基于专业化终端产品为用户定制工业设备点巡检系统、设备状态监测与故障诊断系统、企业能源管理系统、煤场数字化及燃煤优化配比管理系统、设备远程监测系统等应用方案与工程实施。

作为中国科技大学数据融合实验室的校外基地,企业建立了完备的“产学研”技术开发体系,拥有学风严谨、技术精湛的研发团队,在涉及工控信息化领域的多个研究方向具备学科领头和创新能力。多数员工具有电子信息工程、计算机科学技术和工业控制与自动化等方向良好的教育背景和从业经验。在对业务及需求不断深入理解的基础上,快捷并针对性地为用户提供专业的信息化整体解决方案和周到的技术服务。

通过精心研发和细微服务,企业陆续推出的产品与技术分别在多家大型国企投入应用,接受长期运行考验,充分满足了用户需求,提高了生产管理效率,获得了普遍赞誉。企业仍将不断努力进取,加快先进技术的产业化实施,全心全意为用户服务,为中国工业企业的现代化转型竭尽全力。

旋转机械振动的基本特性 (DEMO)

旋转机械振动的基本特性 一、转子的振动基本特性 大多数情况下,旋转机械的转子轴心线是水平的,转子的两个支承点在同一水平线上。设转子上的圆盘位于转子两支点的中央,当转子静止时.由于圆盘的重量使转子轴弯曲变形产生静挠度,即静变形。此时,由于静变形较小,对转子运动的影响不显著,可以忽略不计,即认为圆盘的几何中心O′与轴线AB上O点相重合,如图7—l所示。转子开始转动后,由于离心力的作用,转子产生动挠度。此时,转子有两种运动:一种是转子的自身转,即圆盘绕其轴线AO′B的转动;另一种是弓形转动,即弯曲的轴心线AO′B与轴承联线AOB组成的平面绕AB轴线的转动。 转子的涡动方向与转子的转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动。 二、临界转速及其影响因素 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转速。Jeffcott用—个对

称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 在正常运转的情况下: (1)ω<n ω时, 振幅A>0,O′点和质心G 点在O 点的同一侧,如图7—3(a)所示; (2)ω>n ω时,A<0,但A>e,G 在O 和O′点之间,如图 7—3(c)所示; 当ω≥n ω时,A e -≈或O O′≈-O′G,圆盘的质心G 近似 地落在固定点O,振动小。转动反而比较平稳。这种情况称为“自动对心”。 (3)当ω=n ω时,A ∞→,是共振情况。实际上由于存在阻尼,振幅A 不是无穷大而是较大的有限值,转轴的振动非常剧烈,以致有可 能断裂。n ω称为转轴的“临界角速度” ;与其对应的每分钟的转数则称为“临阶转速”。 如果机器的工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴。由上面分析可知,只有柔性轴的旋转机器运转时较为平稳 但在启动过程中,要经过临界转速。如果缓

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择

旋转设备振动在线监测系统

旋转设备振动在线系统 技术方案 合肥优尔电子科技有限公司 2016. 8

一.现状分析 随着我国工业现代化进程的加快,对于连续生产的企业而言,大型旋转设备的稳定运行十分重要,一旦发生故障,都有可能导致整个生产线停机,造成极大的损失。这种损失可达每小时数十万元之巨,特别是生产过程智能控制系统的采用,对关键设备安全运行的依赖程度越来越高,因此,对这些设备进行在线监测就显得非常重要。 各种旋转设备运转过程中各零部件磨损并非相同,随其工作条件而异,但磨损的发展是有其规律的,如果能够对设备受到的这种磨损失效规律进行掌握,设备各零部件的相对运动趋势将反应出振动、温度、声音的连锁效应,使我们提前知晓设备各项功能发生改变的趋势与结果。国网铜陵发电有限公司拥有多种大、中、小型旋转设备,其较多旋转设备占据着生产中的核心地位。 二、系统架构 旋转设备振动在线监测系统,通过无线自组网和现场总线的方式,将从各传感单元采集的数据汇集到管理后台,通过计算机系统处理实现应用服务,计算机系统主要由数据前端设备、服务器机和管理端PC组成。 系统拓扑如下图所示: 三、振动采集终端 3.1振动传感器 在旋转设备两端轴座(具体部位可根据现场情况确定)设置两组三维(X、Y、Z方向)加速度振动传感器,测量振动位移矢量,监测主轴与轴瓦(轴座)之间的轴向、径向游离与波动情况。 振动传感器利用压电晶体的正压电效应,当压电晶体在一定方向的外力作用下,它的晶体面产生电压,采集电路检测出这个电压值后换算成受力大小F,由

公式a=F/m可以得出瞬间加速度大小a,对加速度二次积分得出瞬间位移量,从而得出被测对象振动频谱和振动位移。 主要技术参数: ●传感器类型:IEPE ●灵敏度:100mV/g? ●加速度量程:?0.1~100mm/s2 ●速度量程:0.1~250mm/s ●位移量程:1~3000μm ●频率范围:0.3~12000Hz(±10%) ●谐振点: 27kHz ●分辨率:?0.001g ●非线性:≤1% ●横向灵敏度:≤3% ●恒定电流:4mA ●输出阻抗:<100Ω ●激励电压:DC24V ●温度范围:-40~+80℃ ●放电时间常数:≥1秒 3.2振动采集器 ?YT-400?振动采集器是合肥优尔电子科技自主研发的一款高性能IEPE类传感器信号采集终端,内置了传感器所需的恒流激励和信号调理电路,可以不需外部的信号调理器而直接采集IEPE传感器的输出信号。YT-400具有四路大量程、高采样率、低噪声的高性能同步信号采集通道。每个通道的量程为±10V,采样率高达128Ksps,并能保证实时传输到后台服务器进行显示与分析。通过高性能ADC和先进的DSP信号处理技术,使YT-400具备极低的采样噪声,在1Ksps 采样率下采样噪声峰峰值仅为0.00004V,满量程信号的信噪比高达50万。多通道、高采样率和低噪声和同步采样使YT-400能够满足科研与生产中高端信号监测的需要。? YT-400系列采用跨平台通用的动态链接库作为驱动函数接口,可工作在

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

振动监测参数及标准(特选参考)

机械设备振动监测参数及标准 一、振动诊断标准的制定依据 1、振动诊断标准的参数类型 通常,我们用来描述振动的参数有三个:位移、速度、加速度。一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。 诊断参数在选择时主要应根据检测目的而选择。如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。 2、振动诊断标准的理论依据 各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。振动的存在必然引起结构损伤及材料疲劳。这种损伤多属于动力学的振动疲劳。它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。

美国的齿轮制造协会(AGMA )曾对滚动轴承提出了一条机械发生振动时的预防损伤曲线,如下图所示。 图中可见,在低频区(10Hz 以下),是以位移作为振动标准,中频(10~1000Hz )是以速度作为振动标准,而在高频区(1KHz 以上)则以加速度作为振动标准。 理论证明,振动部件的疲劳与振动速度成正比,而振动所产生的能量与振动的平方成正比。由于能量传递的结果造成了磨损好其他缺陷,因此,在振动诊断判定标准中,是以速度为准比较适宜。 而对于低频振动,,主要应考虑由于位移造成的破坏,其实质是疲劳强度的破坏,而非能量性的破坏。但对于1KHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振的影位移恒定 一定的速度 加速度恒 定

机械设备振动标准

机械设备振动标准 1 设备振动测点的选择与标注 1.1 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分2进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。水平方向标注为H,铅垂方向标注为V ,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2 在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注(1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001 开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3 ~6-5 。 图6-3 振动监测点的标注 图6-4 振动监测点的标注 (2)立式机器遵循与卧式机器同样的约定 1.3 现场机器测点标注方法机壳振动测点的标注可以用油漆标注(最简单的一种方 法),标注大小与传感 器磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标

注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径 30mm, 用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7 至14 天;对接 近或高于3000转/ 分的高速旋转设备,应至少每周监测 1 次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1 次或每班1 次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为 1 天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择对于超低频振动,建议测量振动位移和速度;对于低频振动, 建议测量振动 速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz 以下。 2)低频振动,振动频率在10Hz 至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下 几个“同” : 1 )测量仪器同; 2 )测量仪器设置同; 3 )测点位置、方向同; 4 )设备工况同; 5 )背景振动同。并尽量由同一个人测量。 3.3 振动数据采集应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋

石油化工旋转机械振动标准

第三章.石油化工旋转机械振动标准 (SHS01003-2004) 1总则 1.1主题内容与适用范围 1.1.1本标准规定了石油化工旋转机械振动评定的现场测量方法(包括测量参数、测量仪器、测点布置、测试技术要求、机器分类等)及评定准则。石油化工旋转机械振动分析的现场测量方法应满足本标准的规定但不仅限于此。 1.1.2本标准适用的设备包括电动机、发电机、蒸汽轮机、烟气轮机、燃气轮机、离心压缩机、离心泵和风机等类旋转机械。 按照本标准规定的方法进行测试得到的振动数据,可作为设备状态评定和设备验收的依据。经买卖双方协商认可,亦可采用制造厂标准或其他标准。 1.1.3本标准不适用于主要工作部件为往复运动的原动机及其传动装置。 本标准也不适用于振动环境中的旋转机械的振动测量。振动环境是指环境传输的振动值大于运行振动值1/3的情况。 1.1.4未能纳入本标准范围的其他旋转机械,暂按设备出厂标准进行检验和运行。 1.2编写修订依据 GB/T 6075.1-1999 在非旋转部件上测量和评价机器的机械振动第1部分:总则 GB/T 6075.3-2001 在非旋转部件上测量和评价机器的机械振动第3部分:额定功率大于15kw、额定转速在120~15000r/min之间的现场测量的工业机器 GB 11348.1-1999 旋转机械转轴径向振动的测量和评定第一部分:总则 1.3本标准提供两种振动评定方法,即机壳表面振动及轴振动 的评定方法。 在机壳表面,例如轴承部位测得的振动是机器内部应力或运动状态的一种反映。现场应用的多数机泵设备(电动机、各种油泵、水泵等),由

机壳表面测得的振动速度,可为实际遇到的大多数情况提供与实践经验相一致的可信评定。 汽轮机、离心压缩机等大型旋转机械(如炼油催化三机、化肥五大机组、乙烯三大机组和空分装置的空压机等)通常含有挠性转子轴系,在固定构件上(如轴承座)测得的振动响应不足以表征机器的运转状态,对这类设备必须测量轴振动,根据实际需要,结合固定构件上的振动情况评定设备的振动状态。 2机壳表面振动 2.1本标准适用于转速为10~200r/s(600~12000r/min)旋转机 械振动烈度的现场测量与评定。 2.2测量参数 本标准规定在机壳表面(例如轴承盖处)测得的、频率在10~1000Hz 范围内的振动速度的均方根(Vrms)作为表征机械振动状态的测量参数,在规定点和规定的测量方向上测得的最大值作为机器的振动烈度。 2.3测量点的布置 测点一般布置在每一主轴承或主轴承座上,并在径向和轴向两个方向上进行测量,如图1所示。对于立式或倾斜安装的机器,测量点应布置在能得出最大振动读数的位置或规定的位置上,并将测点位置和测量值一同记录。测点位置应固定,一般应作明显标记。机器护罩、盖板等零件不适宜作测点。 2.4测量仪器 2.4.1一般采用由传感器、滤波放大器、指示器和电源装置等组成的测量仪表。允许采用能取得同样结果的其他仪器。 2.4.2测量登记表滤波放大器的带通频率为10~1000Hz。 2.4.3测量仪表系统误差不超过±10%。 2.4.4传感器振动速度线性响应的最大值至少为感受方向上满量程振动速度的3倍,传感器横向灵敏度应小于10%。 2.4.5直读仪器应能指示或记录振动速度的均方根值。 2.4.6测量登记表尽可能采用电池为电源装置。 2.4.7测量仪表需定期校准,保证它具有可靠的测量结果。 2.5测量技术要求

旋转机械振动的临界转速及其影响因素(一)

旋转机械振动的临界转速及其影响因素(一) 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转 速。 Jeffcott用一个对称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 1.转子的临界转速 如果圆盘的质心G与转轴中心O′不重合,设e为圆盘的偏心距离,即O′G=e,如图1-2所示,当圆盘以角速度ω转动时,质心G的加速度在坐标上的位置为 图1-2 圆盘质心位置 (1-5) 参考式(1-2),则轴心O′的运动微分方程为 (1-6) 令则: (1-7)

式(1-7)中右边是不平衡质量所产生的激振力。令Z=x+iy,则式(1-7)的复变量形式为: (1-8) 其特解 为 (1-9) 代入式(1-8)后,可求得振幅 (1-10) 由于不平衡质量造成圆盘或转轴振动响应的放大因子β为 (1-11) 由式(1-8)和式(1-11)可知,轴心O′的响应频率和偏心质量产生的激振力频率相同,而相位也相同(ω<ω。时)或相差180°(ω>ω。时)。这表明,圆盘转动时,图1-2的O、O′和G三点始终在同一直线上。这直线绕过O点而垂直于OX Y平面的轴以角速度。转动。O′点和G点作同步进动,两者的轨迹是半径不相等的同心圆,这是正常运转的情况。如果在某瞬时,转轴受一横向冲击,则圆盘中心O′同时有自然振动和强迫振动,其合成的运动是比较复杂的。O、O′和G三点不在同一直线上,而且涡动频率与转动角度不相等。实际上由于有外阻力作用,涡动是衰减的。经过一段时间,转子将恢复其正常的同步进动。 在正常运转的情况下,由式(1-10)可知: (1)ω≤ωn时,A>0,O′点和G点在O点的同一侧,如图1-3(a)所示; (2)ω>ωn 时,A<0,但A>e ,G在O和O′点之间,如图1-3(c)所示; 当ω≥ωn 时,A≈-e,或OO′≈-O′G,圆盘的质心G近似地落在固定点O,振动很小,转动反而比较平稳。这种情况称为“自动对心”。

旋转机械振动故障诊断的图形识别方法研究(2020版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械振动故障诊断的图形识别方法研究(2020版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械振动故障诊断的图形识别方法研 究(2020版) 我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械

故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则采集诊断依据 被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选

旋转机械振动故障诊断的图形识别方法研究

编号:AQ-JS-04028 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 旋转机械振动故障诊断的图形 识别方法研究 Research on graphic recognition method for vibration fault diagnosis of rotating machinery

旋转机械振动故障诊断的图形识别 方法研究 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械

故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则采集诊断依据 被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选

旋转机械状态监测及预测

旋转机械状态监测及预测技术研究 关键词旋转机械;工作状态;监测及预测 一、引言 旋转机械状态监测技术,是近年来研究的热门课题,这里着重考虑的是避免设备的随机性故障。自动在线监测方式与定期监测方式、在线检测离线分析监测方式相比技术水平先进,既避免设备突发性故障又无需专业人员现场操作。旋转机械状态在线预测技术,是研究的新兴课题之一,这里着重考虑的是预测设备的时间依存性故障和改变设备的维护方式。该技术是在状态监测及故障分析基础上发展起来的,是实现以先进的预知维护取代以时间为基础的预防性维护的关键技术。本课题着重研究的是设备状态在线监测及趋势预测的方法。 二、旋转机械状态监测技术的发展 1.旋转机械状态监测技术的发展历程 旋转机械是工业上应用最广泛的机械。许多大型旋转机械,如:离心泵、电动机、发动机、发电机、压缩机、汽轮机、轧钢机等,还是石化、电力、冶金、煤炭、核能等行业中的关键设备。本世纪以来,随着机械工业的迅速发展,现代机械工程中的机械设备朝着轻型化、大型化、重载化和高度自动化等方向发展。出现了大量的强度、结构、振动、噪声、可靠性,以及材料与工艺等问题,设备损坏事件时有发生,国内外大型汽轮机严重事故是其典型实例。 大型旋转机械状态监测技术研究是国家重点的攻关项目,目的是提高大型旋转机械的产品质量,减少突发性事故,避免重大经济损失。50年代,各种类型和性能的传感器和测振仪相继研制成功,并开始应用于科学研究和工程实际。六七十年代,数字电路、电子计算机技术的发展、“信号数字分析处理技术”的形成,推动了振动检测技术在机械设备上的应用。70年代至80年代,机械设备的状态监测与故障诊断技术在许多发达国家开始研究。随着电子计算机技术、现代测试技术、信号处理技术、信号识别技术与故障诊断技术等现代科学技术发展,机械设备的监测研究跨入系统化的阶段,并把实验室的研究成果逐步推广到核能设备、动力设备以及其它各种大型的成套机械设备中去,进入了蓬勃发展的阶段。例如:日本三菱公司的“旋转机械健康管理系统”(machinery health monitoring,简称MHM),美国西屋公司的“可移动诊断中心”(mobile diagnosi s center,简称MDC),丹麦B&K公司的2500型振动监测系统等,都具备了机组信号数据的采集、分析、计算、显示、打印、绘图等功能,并配有专项诊断软件。先进的状态监测系统把体现机械动态特性的振动、噪声作为主要监测和分析的内容。由于振动、噪声是快速的随机性信号, 不仅对测试系统要求高,而且在分析中要进行大量的数据处理,国内外在80年代用小型计算机或专用数字信号处理机做为主机完成机械动态特性的数据处理(如:HP5451C), 该类主机不仅价格昂贵(一般价格为数十万元)而且对工作环境要求苛刻(需要专用机房),因而通常采用离线监测与分析的方式。 90年代以来,高档微机不断更新且价格迅速下降,适合数字信号处理的计算方法不断优化,使数据处理速度大为提高,为在工业现场直接应用状态监测技术创造了条件。丹麦、美国、德国、日本等发达国家的专家学者对旋转机械工作状态监测技术进行了深入研究,研制出不同系统。该类系统以丹麦B&K公司的2520型振动监测系统、美国BENTLY 公司的3300 系列振动监测系统、美国亚特兰大公司的M6000系统为代表已经达到较高的水平。在功能上比较典型的系统之一是丹麦B&K公司的2520型振动监测系统(vibrati on monitor-type 2520),主要功能有:自动谱比较并进行故障预警报警;对6%和23%恒百分比带宽谱进行速度补偿;幅值增长趋势图显示;三维谱图显示;振动总均方根值(振动烈度)计算;支持局域网。美国IRD公司的IQ2000系统可认为是至今为止有报道的功能最齐全的监测与诊断系统。 我国在工业部门中开展状态监测技术研究的工作起步于1986年,在此之前从国外引进的

大型旋转机械状态监测与故障诊断

大型旋转机械的状态监测与故障诊断 大型旋转机械作为连续化工生产的单系列心脏设备,对其运行的可靠性有非常高的要求,要求它在装置的运行周期内必须稳定的运转。对其进行准确的状态监测和故障诊断就显得尤为重要,必须随时准确的掌握其运行状态,并且在其出现异常时,能够准确的分析出异常原因,找出对策。再不影响其安全运行的基础上进行故障运行或进行特护,以优化生产与设备维护的时间。 本章节对公司内普遍采用的在线及离线状态监测与故障诊断系统作一介绍,并对机组出现的常见故障作一些介绍,并根据经验,教授一些实际处理问题的方法。 第一节:基本参量与监测系统 一部运转的机器,都伴有振动信号的产生,它的变化常常隐含着初期故障特征信号,因此需 对振动信号进行监测,这种监测方法有以下特点: 1. 方便性: 利用现代的各种振动传感器及二次仪表,可以很方便的检测出设备振动的信号。 2. 在线性: 监测可以在现场以及在设备正常运转的情况下进行。 3. 无损性: 在监测过程中,通常不会给研究对象造成任何形式的损坏。 但是一部机械是非常复杂的,仅仅靠振动信号来判断它是否正常,显然不够,这就需要对它多方面进行了解,亦即需要对多方面的参量进行测量。每一种故障在下列参数上均有不同表现,因此测量以下基本参数,再通过分析,可以掌握机器的运转状态。 基本参量 一. 振动参量 1. 振幅 振幅值有三个单位,即振动位移(卩m),速度(mm/s),加速度(mm/s2),都是振动强度的标志, 用来表明机器运行是否平稳,振动位移是通过非接触式的电涡流传感器直接测量的轴与轴承座(探头安装的基础)的相对位移量。 振动速度与加速度是通过测量机壳而得到的振动数据。振动速度是通过惯性式速度传感器 (磁力线圈)测量的,而加速度是通过压电式加速度传感器测量的,振动位移,速度,加速度

5971旋转机械振动在线监测系统方案

5971旋转机械振动在线监测系统方案1方案依据 本方案依据用户所提供的“振动监测系统技术要求”,围绕该要求进行方案设计。2测试内容 测试对象包括以下内容:在线监测设备的振动情况,每套设备有六个振动传感器,总共是四套设备,可以做成四套振动监控,也可以做成一套监控。 3技术要点 振动监测系统所含技术要点或难点或技术关键主要是: 1.传感器部分 振动监测系统主要涉及低频振动信号采集,对传感器的频响要求与灵敏度要求较高,如下: 马达Motor转速为1400rpm,其余轴承转速均约160rpm,工作频率低; 2.测试系统部分 可靠性:系统的可靠性是确定总体方案的主要依据; 使用方便:操作程序明确,能用实时显示测量值及相应的测量数据曲线; 抗干扰能力:系统的电性能稳定,抗干扰能力强,数据真实可靠; 4系统方案 系统架构 振动监测系统核心硬件由计算机、数据采集系统-5971、数据分析软件组成。 每个5971振动监测采集系统均内置高性能嵌入式处理器、高速硬盘,以太网接口。通过以太网络连接到监控计算机上进行数据存储分析。 在采样过程中,各个采集系统采样的数据能实时发送传输到计算机中存储、处理、分析,并可动态实时切换通道显示振动波形、频谱等。 系统配置 对于振动测试系统,根据需要配置如下两个方案:

5971旋转机械运行状态在线监测系统 该系统已包含动态信号测试系统所需的信号调理器、直流电压放大器、低通滤波器、A/D转换器、嵌入式处理器以及采样控制和计算机通讯的全部硬件,而且提供了充分考虑用户方便操作本系统所需的控制软件及分析软件。 4.3.1特点 4.3.1.1系统的抗干扰设计 4.3.1系统信号地与被测地完全隔离,克服被测地的不确定对测试系统的影响。. 4.3.1合理的接地和屏蔽,使现场的任何干扰信号均不能进入被测信号回路,因此系统需要具有极强的抗干扰能力;. 4.3.1使用隔离电源,保证现场周边任何设备的起停机及改变工作状态造成的电网电压波动及浪涌等对本系统都不产生任何影响,确保系统的正常工作,避免误报警。. 4.3.1系统的可靠性设计.2 4.3.1根据相关的国家技术标准设计、生产所有产品,并严格执行ISO9001质量管理体系,保证产品的高质量和可靠性;. 4.3.1采用先进的工艺流程,大规模集成电路,全贴片工艺,体积小,功耗低,保证了可靠性;. 4.3.1所有部件和整机根据国家标准,均经过多次高低温试验,保证设备出厂前筛选出器件的早期失效;. 4.3.1所有设备出厂前均进行了应用于航天设备的随机振动筛选(10Hz~2kHz、2g的随机振动,三向每向二十分钟),大大提高了系统的可靠性;. 4.3.1数据采集器内嵌了与研祥工控合作定制的适合恶劣环境使用的工控机,专门用于动态信号的数据采集系统,舍弃不需要的功能,提高可靠性,还加快了处理速度;. 4.3.1每通道均设置了一组DSP信号处理系统,强大的实时处理功能,保证监测信号一点不丢的进行处理,设备的任何瞬间故障,特征信号都不会遗漏;采用硬件处理器(DSP),对于长时间连续工作的CPU,提高可靠性;. 4.3.1数采与工控机之间的通讯,采用了最底层的PCI总线协议,数据传输更加稳定可靠;. 4.3.1工控机的存储媒体,采用大容量硬盘,增强硬件的抗振性和长期连续工作的可靠性;. 4.3.1工控机工作于LINUX操作环境,保证系统长期运行更加稳定、可靠,避免了受病毒入侵的风险;. 4.3.1采集器与外部系统通讯中断时(如网线断开,网络阻塞等),系统可独立工作,等网络恢复时采集终端会自动与数据中心建立连接,数据重新上传到中心数据库中;其独立运行能力取决于采集器自身所带存储器的空间;. 4.3.2产品图形: 4.3.35971旋转机械在线监测系统系统说明 4.3.3.1采集器机箱: 5971为离散式数据采集器,内置专用PC104工控机,每个采集机箱最多32通道振动数采。通过采集箱扩展,数采通道、转速测量通道任选(本项目是否需要提供防爆机箱由用户确定); 4.3.3.2转速采集卡

振动监测参数及标准

振动监测参数及标准 Company Document number : WTUT-WT88Y- W8BBGB-BWYTT-19998 机械设备振动监测参数及标准

、振动诊断标准的制定依据 1、振动诊断标准的参数类型 通常,我们用来描述振动的参数有三个:位移、速度、加速度。一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。 诊断参数在选择时主要应根据检测目的而选择。如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。 2、振动诊断标准的理论依据 各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。振动的存在必然引起结构损伤及材料疲劳。这种损伤多属于动力学的振动疲劳。它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。 美国的齿轮制造协会(AGMA)曾对滚动轴承提出了 条机械发生振动时的预防损伤曲线,如下图所示。

V 图中可见,在低频区(lOHz 以下),是以位移作为振 动标准,中频(10~1000Hz )是以速度作为振动标准,而在 高频区(IKHz 以上)则以加速度作为振动标准。 理论证明,振动部件的疲劳与振动速度成正比,而振动 所产生的能量与振动的平方成正比。由于能量传递的结果 造成了磨损好其他缺陷,因此,在振动诊断判定标准中, 是以速度为准比较适宜。 而对于低频振动,,主要应考虑由于位移造成的破坏, 其实质是疲劳强度的破坏,而非能量性的破坏。但对于 IKHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振 的影响。 3、振动诊断标准的分类 11000 频率HZ

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

相关主题
文本预览
相关文档 最新文档