当前位置:文档之家› 焊接结构学期末考试复习

焊接结构学期末考试复习

焊接结构学期末考试复习
焊接结构学期末考试复习

焊接结构学复习提纲

§ 焊接热循环

一、焊接结构的特点:优点1)与铆接相比可以节省大量的金属材料

2)焊前准备工作简单,比较省工3)焊接结构具有比铆接好得多的气密性

4)焊接接头强度高5)焊接结构设计灵活性大 6)成品率高,一旦出现缺陷可以修复缺点1)焊接结构的应力集中变化范围比铆接大2)焊接结构存在较大的应力与变形)存在较大的性能不均匀性 4)焊接接头的整体性,对应力集中敏感 焊接热过程的复杂性表现:1)局部性或不均匀性2)瞬时性或非稳态性

3)移动性

二、1)热导率定义: 物体等温面上的热流密度q*[J/mm2s]与垂直于该处等温面

的负温度梯度成正比,与热导率λ 成正比n

T q ??-=

λ量的能力。

2)对流传热定律:由牛顿定律,某一与流动的气体或液体接触的固体的表面微元,其热流密度q 与对流换热系数α和固体表面温度与气体或液体的温度之差(T-T0)成正比:)(0T -T q α=

3)辐射传热定律:根据斯蒂芬—波尔兹曼定律:受热物体单位时间内单位面积上的辐射热量,即其热流密度q 与其表面温度为4次方成正比:40T C q ε=

四、导热微分方程:

五、导热微分方程的边界条件常分为三类:

1)已知边界上的温度值 2)已知边界上的热流密度分布 3)已知边界上物体与周围介质间的热交换 六、热源空间尺寸形状的简化:

1)点热源:作用于半无限体或立方体表面层,可模拟立方体或厚板的堆焊,热量向X 、Y 、Z 三个方向传播。

2)线热源:对应薄板,热量二维传播。将热源看成是沿板厚方向上的一条线,在厚度方向上,热能均匀分布,垂直作用于板平面。

3)面热源:作用于杆的横截面上,可横拟电极端面或磨擦焊接时的加热,认为热量在杆截面上均匀分布,此时只沿一个方向传热。

七、焊接温度场:焊接过程中,焊件上(包括内部)某瞬时的温度分布。可以用等温线或等温面来表示。

准稳定温度场:如果忽略焊接加热过程的起始阶段和收尾阶段,则作用于无限体上的匀速直线运动的热源周围的温度场是准稳定温度场。

1)作用于无限大体的移动点热源的等温线:封闭的椭圆形

八、焊接热循环:焊接过程中,焊件上某点温度有低到高,达到最大值后,又由高到低随时间的变化称为焊接热循环。参数:1)加热速度2)加热的最高温度3)冷却速度4)高温停留时间

t Q c z T y T x

T c t T v ??+??+??+??=??ρρλ1)(222222

§ 焊接应力与变形

一、内应力:在没有外力作用下平衡于物体内部的应力。

1)温度应力:是由构件不均匀受热引起的

2)残余应力:如果不均匀温度场所造成的内应力达到材料的屈服极限,使局部区域产生了塑性变形,当温度恢复原始的均匀状态后,就产生了残余应力。

二、自由变形T L ?、外观变形e L ?、内部变形L ?:T e εεε-=;εσ?=E

三、焊接残余变形:(一) 纵向收缩变形:构件焊后在焊缝方向发生收缩;

(二) 横向收缩变形:构件焊后在垂直焊缝方向发生收缩;

(三) 挠曲变形:构件焊后发生挠曲;纵、横向收缩均可引起。

(四) 角变形:焊后构件的平面围绕焊缝产生的角位移;

(五) 波浪变形:焊后构件呈波浪形;

(六) 错边变形:焊接过程中,两焊间的热膨胀不一致,引起长度

和厚度方向 上的错边。

(七) 螺旋形变形:焊后构件上出现的扭曲。

四、1)纵向收缩变形

塑性变形区:在焊接时,焊缝及其附近的金属由于在高温下的自由变形受到阻碍,产生了压缩塑性变形,这个区域称之为塑性变形区。

影响因素:a 、焊接规范b 、焊缝长度c 、材质的影响d 、相变

2)横向收缩变形

直接原因是来自焊缝冷却时的横向收缩,间接原因是来自焊缝的纵向收缩。a 、纵向收缩的影响:中间拉,两端压b 、横向收缩的影响:最后焊的地方——拉应力

影响因素:a 、焊接方法与顺序b 、焊缝长度c 、拘束度

3)角变形

角变形的根本原因是横向收缩变形在厚度方向上的不均匀分布。

影响因素:a 、热输入b 、板厚

4)焊接错边

焊接过程中对接边的热不平衡是造成焊接错边的主要原因之一。 螺旋形变形(扭曲变形)产生原因与焊缝角变形沿长度上的分布不均匀性和工件的纵向错边有关。

5)波浪变形

失稳:薄板在承受压力时,当其中的压力达到某一临界值时,薄板将出现波浪变形 丧失承载能力的现象。 五、预防变形的措施——设计、工艺、焊后校正

(一)设计措施

1. 合理地选择焊缝的尺寸和形式

1)在保证焊接质量的前提下,选择工艺上可能的最小尺寸。

2)对于受力较大的丁字接头和十字接头,在保证相同强度下,采用开坡口可减少焊缝金属。

3)对接焊缝不同坡口型式焊缝金属相差很大。

4)薄板采用点焊可减少变形。

2. 尽可能减少不必要的焊缝

3. 合理的安排焊缝的位置,尽可能的对称。

(二)工艺措施 :1.反变形法2.刚性固定法3.合理的选择焊接方法和规范

4. 选择合理的装配焊接顺序例:焊接梁罐底与罐壁的焊接

(三)矫正焊接变形的方法

1.机械矫正法利用外力使构件产生与焊接变形方向相反的塑性变形,使两者相互抵消。例压机、锤击、碾压。

2.火焰加热矫正利用火焰局部加热时产生压缩塑性变形,使较长的金属在冷却后收缩,达到矫形的目的。

六、在焊接过程中调节内应力的措施:(一)合理的焊接顺序和方向:1.尽量使焊缝能自由收缩,先焊收缩量较大的焊缝;2.先焊工作时受力较大的焊缝。3.拼板时先焊错开的短焊缝再焊直通的长焊缝

(二)在焊接封闭焊缝或其它刚性较大,自由度较小的焊缝时,可采用反变形来增加自由度。

(三)锤击或碾压焊缝

(四)在结构适当部位加热使之延长加热区的伸长带动焊接部位使它产生一个与焊缝收缩方向相反的变形,冷却时加热区和焊缝同时收缩,降低内应力。(五)焊后消除焊接内应力的方法:1、整体高温回火 2、局部高温回火 3、机械拉伸法(过载法)4、温差拉伸法(低温消除应力法)5、振动法

七、焊接残余应力的影响

(一)内应力对静载强度的影响

1.只要材料的延性足够(如中低强钢),能进行塑性变形,内应力的存在不影响构件的承载能力,对静强度无影响

2.材料处于脆性状态(如灰铸铁),材料不能进行塑性变形,外力的增加,

,发生局部破坏,导构件上不能产生应力的均匀化,应力峰值不断增加直至

b

致整个构件断裂。即使静强度下降。

(二)内应力对疲牢强度的影响

(三)内应力对机械加工精度的影响

(四)内应力对受压杆件稳定性的影响

(六)内应力对应力腐蚀开裂的影响

八、焊接残余应力的测定

(一)应力释放法:1、切条法2、套孔法3、小孔法4、逐层切削法

(二) X 射线衍射法晶体在应力作用下原子间距离发生变化,与应力成正比。无破坏性。

§焊接接头

一、焊接接头是由焊缝金属、熔合线、热影响区和母材组成。特点:不均匀性、应力集中

1.焊接接头是一不均匀体。(成分、几何、组织、性能)

2.因焊缝形状和布置的不同产生不同程度的应力集中。

3.影响接头性能的因素:力学因素和材质因素

力学影响:接头形状的不连续性、缺陷、残余应力和焊接变形

材质方面:焊接热循环、焊缝化学成分、焊接热塑性、焊后热处理

二、焊接热影响区(HAZ):母材因受焊接热的影响(但未溶化)而发生的金相组织和机械性能变化的区域。包括粗晶区(1200-1500c),细晶区(900-1200c ),部分相变区,蓝脆区。

三、焊缝金属强度比母材高的称为高组配,比母材低称为低组配。 高组配时接头断裂多发生在母材上,低组配时多发生在焊缝上。 但强度并不等 于焊缝金属本身的强度。

四、焊缝及接头的基本形式

(一)对接焊缝:对接焊缝开坡口的根本目的是为了确保接头的质量及其经济性,坡口型式必须考虑以下问题:1、焊材的消耗量2、可焊到性3、坡口加工4、焊接变形

(二)角焊缝

1、按其截面形状可分为四种:平角、凹角、凸角、不等腰

2、按其承载方向分为三种:焊缝与载荷垂直的正面角焊缝,焊缝与

载荷平行的侧面角焊缝 ,焊缝与载荷倾斜的斜向角焊缝

3、应用最多的是直角等腰的,用腰长K 表示其大小, 称为焊脚尺寸

(三)接头的基本形式有四种: 对接,搭接,丁字,角接

五、应力集中:焊接接头工作应力的分布是不均匀的,其最大应力值( m ax σ)比平均 应力值(m σ)高,这种情况称为应力集中。

1) 应力集中系数m

max T K σσ=,可用实验测得。 2) 应力集中的原因:

1、焊缝中的工艺缺陷如气孔、夹渣、裂缝和未焊透,裂缝和未焊透引起的应力集中严重。

2、不合理的焊缝外形,如加厚高过大。

3、设计不合理的焊接接头,如接头截面突变、单侧焊缝的丁字接头

一.工作焊缝和联系焊缝

1、工作焊缝:焊缝与被连接的元件是串连的,焊缝承担着传递全部载荷的作用, 一旦断裂,结构立即失效,其应力称为工作应力。

2、联系焊缝:焊缝与被连接的元件是并连的,它传递很小的载荷,主要起元件间相互联系作用,焊缝一旦断裂,结构不会立即失效,其应力称为工作应力。

二.焊接接头强度计算的假设

1、残余应力对接头强度无影响

2、焊趾处和加厚高等处的应力集中对接头强度无影响

3、接头的工作应力是均布的,以平均应力计算

4、正面角焊缝和侧面角焊缝强度没有差别

5、焊角尺寸的大小对角焊缝强度无影响

6、角焊缝都是切应力作用下破坏的,按切应力计算强度

7、角焊缝的破断面(计算断面)在角焊缝截面的最小高度上,其值等于内接三角形高度a (计算高度),直角等腰三角形的计算高度:

a==0.7K

§焊接结构的脆性断裂

一、焊接结构制造工艺的特点与脆性断裂的关系

(一)应变时效引起的局部脆性

(二)金相组织改变对脆性的影响

(三)焊接缺陷的影响

(四)角变形和错边的影响

(五)残余应力和塑变的影响

二、预防焊接结构脆性断裂的措施

造成结构的脆性断裂的基本原因是:

材料在工作条件下韧性不足;结构上存在严重的应力集中;过大的拉应力;一.正确选择材料基本原则:安全、经济;保证母材和焊材在使用温度下具有合格的缺口韧性。

二.采用合理的焊接结构设计

1. 尽量减少结构或焊接接头部位的应力集中;1)圆滑过度2)尽量采用对接接头3)不等厚对接应尽量圆滑过度4)避免和减少焊接缺陷,应将焊缝布置在便于焊接和检验的地方 5)避免焊缝密集

2.满足使用条件下,尽量减少结构的刚度以降低应力集中和附加应力;

3.不采用过厚的截面;

4.辅助焊缝也应足够重视

5.减少和消除焊接残余拉应力的不利影响§焊接接头和结构的疲劳强度

一、影响焊接接头疲劳强度的因素

(一)应力集中的影响

1.对接接头由于形状变化不大,应力集中比较小,加厚高,θ角;

2.丁字和十字接头过渡处有明显的截面变化,应力集中系数较高;

3. 搭接接头的疲劳强度很低

(二) 近缝区金属性能变化的影响

1.在常用的线能量下,HAZ和基本金属的疲劳强度相当接近;

2.HAZ 尺寸不大,不会降低接头的疲劳强度;

(三)残余应力的影响消除内应力后的疲劳强度均高于未热处理的,内应力的影响在应力集中较高时更大。

(四)缺陷的影响

1.片状缺陷比圆角形的影响大;表面缺陷比内部的影响大;与作用力方向垂直的片状缺陷比其它方向的大;位于应力集中区的缺陷比在均匀应力场的大;5. 位于残余拉应力场内的比压应力场内的影响大;

二、提高焊接接头疲劳强度的措施

(一)降低应力集中

1.合理的结构形式

2.应力集中系数小的接头a、角接改为对接;B、平滑过度

3.角焊缝时,采取综合措施,保证根部焊透,降低应力集中;

4.开缓和槽;

5. 表面机加工。

(二)调整残余应力场

消除接头应力集中处的残余拉应力或使之产生压应力: a、整体热处理

b、局部处理

(三)改善材料的机械性能

表面强化处理挤压、锤击、喷丸四.特殊保护措施保护涂层

焊接结构生产试题(卷)与答案解析

《焊接结构生产》试题 使用教材:焊接结构生产试题围:全册 :机械工业版次:第2版 学校名称:市工业学校 填空题 1.由焊接而引起的焊件尺寸的改变称为。 2.按照变形外观形态来分,可将焊接变形分为、 、、、5种基本变形形式。 3.常用的矫正焊接变形的方法有、 、三种。 4.焊接接头由、、三个部分组成。 5.根据构件的图样,按1:1的比例或一定比例在放样台或平台上画出其所需要图形的过程称为。 6. 、、是装配工序的三个基本条件。 7.装配—焊接夹具一般由、和 组成。 8.应用夹紧机构的核心问题是如何正确施加夹紧力,即确定夹紧力的、、三个要素。 9.焊接变位机械是改变、、的操作位置,达到和保持的装配—焊接工艺装备。 10. 是工艺过程的最小组成部分。 名词解释 1.应力: 2.预处理:

3划线: 4.装配: 5.装配—焊接工艺装备: 6.工序: 7.变形: 8.焊接工艺规程: 9.焊接接头: 10.应力集中: 判断题 1.焊接过程是一个不均匀加热和冷却的过程,因而焊接结构必然存在焊接残余应力和变形。() 2.材料的塑性越好,其允许变形的程度越大,则最小弯曲半径越大。() 3.钢材矫正的方法按钢材作用力的不同分为手工矫正、机械矫正、火焰矫正和高频热点矫正。() 4.旋压是利用凸模把板料压入凹模,使板料变成中空形状零件的工序。() 5.定位焊必须按正式焊缝的工艺条件施焊。() 6.焊接回转台属于焊机变位机械。() 7.焊接滚轮架是一种焊件变为机械。() 8.焊工变位机又称焊工升降台。() 9.工位是工艺过程的最小组成部分。() 10.焊接结构的技术要求一般包括使用性能要求和工艺性能要求。() 简答题 1.产生焊接应力与变形的原因有哪些? 2.消除或减小焊接残余应力的方法有哪些?

焊接结构复习记忆知识点

第一章 1.内应力的分类: 根据内应力所涉及的范围,可分为三类 超微观应力:在晶格范围平衡的应力 微观应力:在晶粒范围内相互平衡的应力 宏观应力:在整个焊接范围平衡的应力 按其作用的时间 残余应力:焊后留下的应力 瞬时应力:焊接过程出现的应力 根据应力形成原因 组织应力:由于接头金属组织转变时体积变化受阻 拘束应力:由于焊件热变形受到拘束引起的应力 温度应力:由于焊件不均匀加热引起的应力 2.变形的基本形式: 1)自由变形:当金属物体温度发生变化,或发生了相变,其尺寸和形状就要发生变化,如果这种变化没有受到外界的阻碍而自由的进行我们称之为自由变形。 2)外观变形:当金属在温度变化过程中受到阻碍,不能完全的自由变形,把能表现出来的这部分变形,称为外观变形。是指能用肉眼看到的或能用仪器直接测量 的变形。 3)内部变形:把未表现出来的那部分变形,称为内部变形;表示金属内部原子间的相对位移,这种变形产生了内应力并直接决定杆件的强度。其变形率用ε表示。 3.在板件中心加热时,如果产生了压缩塑性变形区,当冷却后,将会在板件中产生残余应力 和变形(缩短) 4.焊接残余应力的分类:a.按产生应力的原因分:热应力、相变应力、塑变应力 b.按应力存在的时间分:焊接瞬时应力、焊接残余应力 c.按应力与焊缝的相对位置分:纵向应力、横向应力 纵向残余应力:是指应力作用方向与焊缝平行的残余应力 横向残余应力:与焊缝中心线垂直的残余应力 在对接接头中,沿焊缝中心线的横向残余应力由两个因素引起:a.由焊缝及其近缝区的塑性变形区的纵向收缩引起的。b.由焊缝及其近缝区的塑性变形区的横向收缩的不同时性引起的。 6.焊接结构产生应力和变形的原因: 1)局部加热,构件上温度分布极不均匀。 2.接头形式不同,焊接熔池内的金属散热条件不一。 3.部分金属会发生相变。 4.受焊前加工工艺的影响。 7.4.几种假设 1、平截面假定:假定在焊前所取的横截面再喊后仍保持为平面。 2、金属性能假设:材料的某些物理性能如线胀系数,比热容,热导率等不随温度而变化 3、屈服点的假定 根据简化曲线的假定,低碳钢在600℃时便失去了变形抗力, 这意味着在温度Tmax≥600℃时所产生的压缩塑性变形,对应 力和变形没有影响,所以在分析中可以暂时不考虑

《焊接结构》复习资料

《焊接结构学》 第一章 绪论 1、 焊接结构就是组成构件的各元件之间或构件之间采用焊接连接的结构。 、 焊接结构的特点是什么? 1)焊接接头强度高; 2)焊接结构设计灵活性大; 3)焊接接头密封性好; 4)焊前准备工作简单; 5)易于结构的变更和改形; 6)焊接结构的成品率高; 7)存在较大的焊接应力和变形; 8)对应力集中敏感; 9)焊接接头的性能不均匀。 2.构件焊接性包含哪几个方面? 答:构件焊接性包含以下几个方面:材料的焊接适应性、设计的焊接可靠性、制造的焊接可行性。 3、 构件焊接性的因素可分为哪几个方面? 答:可分为与材料有关的因素、与设计有关的因素、与制造有关的因素三个方面。 第三章 焊接应力和变形 1. 内应力是指在没有外力的条件下平衡于物体内部的应力。 热应力:当构件受热不均匀时结构内部产生的平衡于构件内部的应力。 2. 内应力分类:按照分布范围可分为宏观内应力、微观内应力和超微观内应力。 按产生机理可分为温度应力(热应力)、拘束应力、组织应力。 根据应力作用产生时间:瞬时应力、残余应力 3. 基本概念 (1)焊接瞬时应力:随焊接热循环过程而变化的应力。 (2)焊接残余应力:如果不均匀的温度场所造成的内应力达到材料的屈服极限,使构件局部 发生塑性变形(加热杆件中将出现压缩塑性变形),当温度恢复均匀后, 产生的内应力会残留在物体里。 (3)焊接瞬时变形:随焊接热循环过程而变化的变形。 (4)焊接残余变形:焊后在室温条件下,残留在工件上的变形。 自由变形:当某一金属物体的温度有了改变,或发生了相变,它的尺寸和形状就要发生变化, 如果这种变化没有受到外界的任何阻碍而自由地进行,这种变形称之为自由变形。 外观变形:受拘束条件决定的,构件能够表现出来的实际变形。 内部变形:受拘束条件约束,未能表现出来的变形。 自由变形为外观变形和内部变形的和。 4. 内部变形率:T εεε-e = 5. 影响焊接应力与变形的主要因素 (1)焊缝及其附近不均匀加热的范围和程度,也就是产生热变形的范围和程度。 影响因素包括焊缝的尺寸、数量、位置、母材的热物理性能(导热系数、比热及热膨胀系数)和力学性能(弹性模量、屈服极限)、焊接工艺方法(气焊、焊条电弧焊、埋弧焊、气体保护焊、电子束焊等等)、焊接规范参数(电流、电压、速度、预热温度、焊后缓冷及焊后热处理等)、施焊方法(直通焊、跳焊、分段退焊等)。 (2)焊件本身的刚度和受到周界的拘束程度,也就是阻止焊缝及其附近产生热变形的程度。 影响因素包括焊件的尺寸和形状、胎夹具的应用、焊缝的布置及装配焊接顺序等。 焊接构件在拘束小的条件下,焊接应力大,变形小;反之,焊接应力小,变形大。

《焊接结构学》期末考试试卷

《焊接结构学》期末考试试卷 一、名词解释 1.内应力:是指在没有外力的条件下平衡于物体内部的力。 2.解理断裂:是沿晶内一定结晶学平面分离而形成的断裂,是一种晶内断裂。 3.应力腐蚀开裂:是指在拉应力和腐蚀共同作用下产生裂纹的现象。 4.温差拉伸法:是利用在焊接结构上进行的不均匀加热造成的适当的温度差,来使焊缝及其附近区域产生拉伸塑性变形,从而抵消焊接时所产生的压缩塑性变形,达到消除部分焊接残余应力的目的。 5.焊接结构:用焊接的方法生产制造出来的结构。 6.焊接温度场:是指在焊接过程中,某一时刻所有空间各点温度的总计或分布。 7.应力集中:是指接头局部区域的最大应力值比平均应力值高的现象。 8.焊接变形:由于焊接而引起的焊件尺寸的改变称为焊接变形。 9.联系焊缝:是一种焊缝与被连接的元件是并联的,它仅传递很小的载荷,焊缝一旦断裂结构不会立即失效,这种焊缝称为联系焊缝。 10.工作焊缝:是一种焊缝与被连接的元件是串联的,它承担着传递全部载荷的作用,即焊缝一旦断裂结构就立即失效,这种焊缝称为工作焊缝。 11.动应变时效:金属和合金在塑性变形时或塑性变形后所发生的时效过程 12.焊接残余应力:焊件在焊接过程中,热应力、相变应力、加工应力等超过屈服极限, 以致冷却后焊件中留有未能消除的应力。这样焊接冷却后的残余在焊件中的宏观应力称为残余焊接应力。 13. 焊接热循环:在焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变 化,温度随时间由低而高,达到最大值后,又由高而低的变化称为焊接热循环。14.延性断裂:伴随明显塑性变形而形成延性断口(断裂面与拉应力垂直或倾斜,其上具有细小的凹凸,呈纤维状)的断裂。 二、简答题 1.焊接结构的优点? 焊接结构的优点:(1)焊接可以把不同形状,不同厚度,不同材料的工件连接起来,且可与母材相当,同时可使产品重量减轻,生产成本明显降低。(2)焊接是一种金属原子间的结合,刚度大,整体性好,不像机械连接那样有间隙,可以减少变形,且能保证容器类结构的气密性和水密性。(3)与铸、锻等其它加工方法相比,生产焊接产品一般不需要大型贵重设备。投资少,见效快。(4)大多数焊接结构生产工艺简单,设备的操作比较容易,应用面非常广泛。(5)焊接特别适用于几何尺寸大,而材料较分散的制品。(6)焊接结构的生产可实现全过程的质量跟踪。比如生产过程中的声发射检测技术,焊前的材料检验,焊后的多种检测手段(X射线,超声波)等。 2.简述焊接残余变形的分类及特点? ①纵向收缩变形,即构件焊后在焊缝长度方向上发生收缩。②横向收缩变形,即构件

IWE焊接结构设计

焊接结构设计 2、不同载荷下的焊接结构 ?不同载荷条件下的破坏形式 ——在静载及主要承受静载的状态下,将导致:形变断裂、脆性断裂、层状撕裂和失稳破坏。 ——在热负荷状态下,将导致:低温的影响—脆性断裂,高温的影响—屈服极限的高温失效及蠕变失效。 ——在动载荷状态下,将导致:疲劳断裂。 ?层状撕裂的产生和防止 ——应用低硫含量和/或高E D(板材厚度方向的断面收缩率)值的材料。 ——设计及生产技术方面:尽可能避免厚度方向上由于焊接残余应力引起的应力或者把它降至很低。 ——作用于收缩方向上的焊缝厚度a D尽可能低 焊缝连接基础应尽可能大 焊道数应少 焊道次数应考虑局部缓冲 尽可能选择对称焊缝形式和对称焊接顺序 尽可能使用轧制产品所有层次与焊缝连接 通过连接范围的缓冲减少层状撕裂倾向 予热(>100℃) 3、主静载焊接结构 ?钢结构特点 ——钢材强度高,塑性、韧性较好;重量轻;材质均匀和力学计算的假定比较符合; 制作简便,施工工期短;密闭性好;耐蚀性差;耐热不耐火;低温和其它条件 下,可能发生脆断。 ?构件结构设计要求(受压条件下的失稳、桁架梁和实壁梁) ——受压构件的弯曲失稳 ——轴心受力构件(轴心受力构件的常用截面形式可分为实腹式和格构式两大类)——受弯构件(实腹式受弯构件梁、格构式受弯构件桁架梁、梁的局部稳定和腹板加劲肋设计) ?按DIN18800-1钢制构件的限定和结构基础 ——钢材种类 ——钢材选择和证书 ——冷变形区域的焊接 ——焊接填充材料及辅助材料 ?焊接的实壁梁 ——使用轧制型材可以很方便地改变实壁梁的高度,只需改变腹板的高度,可增大该处的惯性矩,并减小支座,但应注意在支承处验证其抗剪能力。

焊接结构复习题自己整理

焊接结构课复习题() 第一章序论 1.什么是焊接结构?它有何优缺点? 答:全焊结构,铆焊接构,栓焊结构3种结构的总称就叫焊接结构。 焊接结构的优点:1、连接效率高2、水密性和气密性好3、重量轻4、成本低、制造周期短5、厚度不受限制 缺点:1.应力集中变化范围大2.有较大的应力和变形3.有较大的性能不均匀性,且对材料敏感4.焊接接头的整体性导致止裂困难 5.焊接接头缺陷难以避免,具有隐蔽性。 第二章焊接应力与变形 1.何谓内应力?内应力有何性质及推论? 答:在没有外载荷作用时,平衡于物体内部的应力叫内应力。 性质:自身平衡,不稳定性 推论:内应力的波形图至少应该是三波形的,因为单波形,两波形都不能满足合力为零,合力矩为零。 2.内应力的分类?热应力和组织应力概念。 答:按内应力产生的原因来分:有热应力和组织应力。焊接应力的平衡范围较大,属于宏观内应力。 热应力:也叫温度应力,是由于构件受热不均匀而引起的应力。 组织应力:金属冷却时,在刚性恢复温度之下产生相变导致体积变化而引起的应力叫组织应力。(对于低碳钢,刚性恢复温度是600度,而它的奥氏体转变温度是600~700度之间,600度以下没有相变发生,所以低碳钢不存在组织应力) 按内应力平衡的范围分第一,二,三类内应力。 按内应力产生的时间来分:有瞬时应力和残余应力 3.何谓自由变形、外观变形、内部变形?搞懂他们的相互关系。利用三等份板条中间 板均匀加热的模型理解焊接应力与变形产生的原因? 答:1.自由应变εT:当某一金属物体的温度有了改变,或发生了相 变,它的尺寸和形状就要发生变化,如果这种变化没有受到外界的 任何阻碍而自由地进行,这种变形称之为自由变形。如果增加一个 一个约束条件,自由应变εT就不能完全表现出来,表现出来的部分为外观应变εe,而未表现出来的部分就叫内部应变ε。(弹性内部应变ζS和塑性内部应变εp)在温度恢复到T0之后,塑性内部应变将保留下来,这样原杆件将缩短εp 。 三等分板条的力学模型:如果中间部分的温度上升小,出现的不可见变形处于弹性范围内,当温度恢复到原始状态,则刚才出现的应力和变形都会消失,不会有残余应力和变形出现. 如果中间部分的温度上升大,温度恢复后,中间部分受拉应力而两侧部分则受压应力。 4.研究焊接应力与变形的基本假设。 答:1.热物理性能的简化:设材料的热物理参数不随温度变化 2.在500℃度以下屈服极限ζs为常量,500~600℃之间,线性下降到0.大于600℃度认为材料丧失弹性。 3.平截面假设:构件的某截面在加热前是平面,那么加热变形后仍然保持平面。 5.焊缝的纵向收缩和横向收缩是以焊缝为参照系的,而与焊件的纵横无关。 6.各种焊接变形(收缩变形,弯曲变形,角变形、波浪变形、焊接错边、扭曲变形)

焊接工艺设计试题和答案解析

一、填空题 1、焊接结构是以金属材料轧制的板材和型材作基本元件,采用焊接加工方法,按照一定的结构组成的,并能承受载荷的(金属)结构。P1 2、焊接结构的分类:按钢材类型可分为板结构和格架结构;按综合因素分类可分为容器和管道结构、房屋建筑结构、桥梁结构、船舶与海洋结构、塔桅结构和机器结构。P2-4 3、管材对接的焊接位置可分为:平焊位置、横焊位置和多位置;板材对接的焊接位置可分为:平焊位置、横焊位置和立焊位置;板材角接的焊接位置可分为:平焊位置、横焊位置和立焊位置。P15 5、凡是用文字、图形和表格等形式,对某个焊件科学地规定其工艺过程方案和规范及采用相应工艺装备的技术文件,称之为焊接生产工艺规程。它是生产中的技术指导性文件,是技术准备和生产管理及制定生产进度计划的依据。P21 6、焊接结构制造工艺过程的主要工序有:划线(放样或号料)、切断、成形、边缘加工、制孔、装配、焊接、检验、涂漆等。P22 7、焊接结构的生产通常由四部分组成,分别是:1 生产前的准备、2 金属加工或零、部件的制作、3 装配焊接、4 成品加工、检查验收和包装出厂。P27 8、在焊接结构制造的零件加工过程中,根据对工件所产生的作用和加工结果,钢材的基本加工方法可分为:变形加工和分离加工。P38 9、在焊接结构制造的零件加工过程中,钢材经过划线和号料后,就转入下料工序,其中,主要的完成方式主要有:机械切割和热切割。P62 10、在进行焊接结构生产的装配过程中,必须具备以下三个基本条件:定位、夹紧、以及测量。 11、在焊接结构生产中,选择合理的装配一焊接顺序很关键,目前,装配一焊接顺序基本有三种类型:整装整焊、分部件装配、和随装随焊。P144 12、在焊接结构生产的转配过程中,根据不同产品、不同生产类型,有不同的装配工艺方法,主要有:互换法、选配法、和修配法。P144 13、焊接变位机械是改变焊件、焊机或焊工的空间位置来完成机械化、自动化焊接的各种机械装备。P174 14、焊接机器人工作站通常由工业机器人、焊接设备、周边设备、系统控制设备、辅助装置、等部分组成。P208 15、焊接生产线可分为三种类型,分别是:刚性焊接生产线、柔性焊接生产线、和介于二者之

焊接结构学复习

焊接复习soingon 0.焊接结构优点:焊接接头强度高、焊接结构设计灵活性大、焊接接头密封性好、焊前准 备工作简单、易于结构的变更和改型、焊接结构成品率高。 1.焊接结构缺点:存在较大的焊接应力和变形、对应力集中敏感、焊接接头的性能不均匀。 2.影响构件焊接性的因素:与材料有关的因素、与设计有关的因素、与制造有关的因素。 3.焊接热复杂性表现:焊接热过程的局部性或不均匀性。焊接热过程的瞬时性、焊接热源 的相对运动。 4.焊接热循环的主要参数:加热速度、加热最高温度、在相变温度以上停留时间、冷却速 度。 5.内应力:指在没有外力的条件下平衡于物体内部的应力。热应力是由于构件不均匀受热 所引起的。 分类:按作用时期分: 焊接过程中出现的称瞬时应力(热应力或温度应力);焊接后保留下来的称残余应力。 按分布范围分:宏观内应力(范围一般与结构尺寸相当)、微观内应力(晶粒尺寸) 和超微观内应力(晶格)。 6. 自由变形、外观变形和内部变形的区别。 ,所得的变形称之为自 1)自由变形: 一端固定的直杆均匀加热时,杆件将自由伸长△L T 由变形。 2)外观变形: 假如杆件受到约束,实际只能伸长△Le,这是可见的变形,称之为外观变形。 3)内部变形 :由于存在约束,杆件在自由状态下所应有的变形与实际存在的变形有所不同,构件内部由于压缩而未表现出来的那部分变形△L,称为内部变形。 7.焊接残余变形有哪些种类?角变形产生的原因。 1)纵向变形:---焊后沿焊接方向发生收缩。 2)横向变形:---焊后垂直于焊接方向发生收缩。 3)挠曲变形:─在穿过焊缝线并与板件垂直的平面内变形。 ─非对称结构、焊缝不在构件中性线上时发生。 4)角变形:─焊后构件的平面围绕焊缝产生的角位移。 ─厚度方向的非均匀热分布造成紧靠焊缝线的变形。 5)波浪变形:焊后构件呈波浪形,当板件较薄时,热热压缩应力造成失稳。 6)错边:长度、厚度方向 7)扭转(螺旋形变形) 原因:厚度方向温度分布不均匀─横向塑性变形不均匀→角变形 加热时─焊接面高温,产生压缩塑变;背面低温,甚至产生拉伸变形。 冷却后,产生弯曲变形,即角变形. 8.残余应力的影响:对静载强度的影响、对刚度的影响、对杆件受压稳定性的影响、对构 件精度和尺寸稳定性的影响、对应力腐蚀开裂的影响。 9.焊后调控焊接残余应力与变形的措施:机械方法、加热方法。 10. 在焊接过程中如何调节内应力?焊后消除焊接内应力的主要方法? 在焊接过程中调节内应力的措施 (1)采用合理的焊接顺序和方向尽量使焊缝能自由收缩,先焊收缩量比较大的焊缝。 先焊工作时受力较大的焊缝。 (2)在焊接封闭焊缝或其它刚性较大,自由度较小的焊缝时,可以来用反变形法来增加

焊接结构复习资料

1.焊接结构与铆接结构相比有什么特点? 优点1) 焊接接头强度高。 2) 焊接构件设计灵活性大。 3) 焊接接头密封性好。 4) 焊前准备工作简单。 5) 易于构件的变更和改型。 6)焊接构件的成品率高。 缺点1)焊接结构具有较大的焊接应力和变形 2)对应力集中敏感 3)焊接接头的性能不均匀 2.构件焊接性及影响因素。 与“材料焊接性”的概念相比,构件焊接性的意义更为广泛,它可以包括:“材料的焊接适应性”、“设计的焊接可靠性”、“制造的焊接可行性”。焊接残余应力和焊接变形是焊接性的重要组成部分,它影响到冷热裂纹的产生,使用性能并妨碍制造过程。 影响因素: 1)与材料相关的因素母材和填充材料的类型(化学)成分和显微组织 2)与设计有关的因素构件的形状、尺寸、支撑条件和负载、焊接类型、厚度和配置3)与制造有关的因素焊接方法、速度、操作、坡口形状、焊接顺序、多层焊、定位焊、夹紧、预热和焊后热处理。 3.焊接内应力种类,温度应力产生原因。 分类:按作用时期分: 焊接过程中出现的称瞬时应力(热应力或温度应力);焊接后保留下来的称残余应力。 按分布范围分:宏观内应力(范围一般与结构尺寸相当)、微观内应力(晶粒尺寸)和超微观内应力(晶格)。 温度应力产生原因: 热应力是由于构件不均匀受热引起的。物体受热膨胀,冷却收缩,即温度变化引起变形。若课、可自由变形,则变形是温度变化唯一反映,若受拘束,则在物体内部产生内应力,即为温度应力。 4.自由变形、外观变形和内部变形的区别。 1)自由变形: 一端固定的直杆均匀加热时,杆件将自由伸长△L T,所得的变形称之为自由变形。 2)外观变形: 假如杆件受到约束,实际只能伸长△Le,这是可见的变形,称之为外观变形。3)内部变形 :由于存在约束,杆件在自由状态下所应有的变形与实际存在的变形有所不同,构件内部由于压缩而未表现出来的那部分变形△L,称为内部变形。 5.纵向和横向残余应力的分布与影响因素。 1)与焊缝方向平行的应力称为纵向应力,用σx表示。 (1)低碳钢情形:对长板条和细长构件,焊缝及其附近区域中的纵向应力是拉应力,数值一般达到材料的屈服极限 (2)钛、铝合金的特殊性: 应力分布总的规律和低碳钢相似,但不同的材料引起纵向应力变化的规律不同。①材焊缝中的纵向应力较低,一般仅为0.5~0.8σs(母材的屈服极限)。 ②铝材焊缝中的纵向应力亦较低,一般仅为0.6~0.8 σs(母材的屈服极限)。 (3)圆筒上环形焊缝引起的纵向应力(对圆筒来讲就是切向应力)的分布与平板不同。 ①当圆筒直径与厚度之比较大时,σx的分布和平板上的情况相似。切向的最大应力可以

第四章 船体焊接中的力学问题

第四章船体焊接中的力学问题 船体是一种典型的大型焊接结构。船体结构复杂、刚性大,船体中各种纵、横构件相互交叉、相互连接,尤其是首尾部分还有不少曲型结构。这些构件用焊接连接成一体,使船体成为一个整体结构。一旦某一焊缝或结构中不连续处产生微小裂纹,在应力的作用下,就会迅速扩展到相邻构件,造成部分结构乃至整个船体发生破坏。另外,焊接应力导致的焊接变形直接影响船体结构的质量(尤其是船体的薄板上层建筑)等。这些都是焊接力学研究的问题。 随着包括船体结构在内的焊接结构大型化、精密化、高参数化和材料多样化的发展,对船体结构的质量要求也越来越高,从而推动了焊接力学的发展。例如,关于焊接应力与变形的数值分析研究,目前已发展成为一门新的专门学科“计算焊接力学”。低应力无变形焊接技术的开发,对于焊接弹塑性力学过程现象的计算机仿真,预示着焊接应力与变形是可以精确控制的,不再是不可避免的。同样,在焊接接头断裂力学研究方面也取得了很大的进展。焊接力学的进展,反过来促进包括船体结构在内的焊接结构建造质量和安全可靠性的进一步提高。 船舶焊接所涉及的力学问题复杂,目前尚未见针对造船的焊接力学专著。本章引用霍立兴编著的《焊接结构工程强度》(机械工业出版社);王家麟、侯贤忠主编的《球形储罐焊接工程技术》(机械工业出版社)和孙志雄编的《焊接断裂力学》(西北工业大学出版社)等书的内容,结合船舶建造的实际进行编写,读者若想对所涉及的问题深入了解,可阅读上述书籍。 4.1结构焊接力学行为 4.1.1 焊接接头类型 在焊接结构中可采用不同形式的焊接接头。具体地说,对接接头、T型接头、角接头和搭接接头是焊接接头的基本类型。在不同的结构标准中,对不同接头形式均有具体规定,本节所引用的是其通用形式。 对接接头:不同板厚的对接接头如图4.1所示.薄板对接接头(B≤3mm)可采用卷边接头或采用不开坡口单面焊缝(B<6mm),板厚增加,可采用带垫板的不开坡口的单面焊缝接头,但推荐采用不带垫板的双面焊缝对接接头(图4.1(d))。为了保证焊透,对接接头可在单面开坡口或双面开坡口后焊接,具体的坡口可以是V形、U形、X形和K形(图4.1(e)~(h))。 T形接头:它同样有开坡口和不开坡口等形式,在该类接头中,采用不开坡口角焊缝施焊类型应用的最广泛,其焊脚尺寸有采用等脚的,也有采用不等脚的。 角接头:其特性介于对接接头和T形接头之间,其焊缝有的接近于对接焊缝,有的接近于角焊缝或就是角焊缝。 搭接接头:搭接接头一般采用角焊缝施焊形成。塞焊也是焊接搭接接头方法。 很明显,作为焊接接头主要组成部分的焊缝,主要分为对接焊缝和角焊缝。焊缝表面形状往往呈平面形或上凸形,在角焊缝中还可见到下凹形。上凸焊缝从表面上看似乎加强了焊缝,实际上上凸焊缝对接头的工作是不利的。由于传力线的歪扭,在焊缝向基本金属过渡处产生应力集中。因此,为了提高对接焊缝的工作性能,在许多情况下,可采用图4.2(c)所示的焊缝外形,它有利传力线的均匀过渡,减少了应力集中。对于角焊缝,可采用下凹外形的焊缝,由于实现了焊缝向基本金属的平滑过渡,减少了应力集中,因而对提高焊接接头的工作性能在许多情况下是有利的。

焊接结构学重点归纳全

《焊接结构学》重点归纳 1.焊接结构的优点:(1)焊接接头强度高;(2)焊接结构设计灵活性大;(3)焊接接头密封性好;(4)焊前准备工作简单;(5)易于结构的变更和改型;(6)焊接结构的成品率高. 焊接结构的缺点:(1)存在较大的焊接应力和变形;(2)对应力集中敏感;(3)焊接接头的性能不均匀. 2.内应力:所谓内应力是指在没有外力的条件下平衡于物体内部的应力. 3.内应力的分类:按其分布范围可分为三类:宏观内应力,微观内应力,超微观内应力. 按其产生机理分类:热应力(温度应力),残余应力,相变应力,相变残余应力. *热应力是由于构件不均匀受热所引起的. 4.焊接残余应力的分类:(1)纵向残余应力;(2)横向残余应力;(3)厚板中的残余应力;(4)拘束状态下焊接的内应力;(5)封闭焊缝引起的内应力;(6)相变应力. 5.纵向应力沿板材横截面上的分布表现为中心区域是拉应力,两边为压应力,拉应力和压应力在截面内平衡. 6.横向残余应力产生的直接原因是来自焊缝冷却时的横向收缩,间接原因是来自焊缝的纵 向收缩. 7.焊接残余应力的影响:(1)内应力对静载强度的影响;(2)内应力对刚度的影响;(3)内应力对杆件受压稳定性的影响;(4)内应力对构件精度和尺寸稳定性的影响;(5)内应力对应力腐蚀开裂的影响. 8.焊接残余变形的分类:(1)纵向收缩变形;(2)横向收缩变形;(3)挠曲变形;(4)角变形;(5)波浪变形;(6)错变变形;(7)螺旋形变形. 9.焊接变形的危害影响:(1)需要进行校正,耗工耗时;(2)比较复杂的变形的校正工作量可能比焊接工作量还要大,而有时变形太大,造成废品;(3)增加了机械加工工作量,同时也增加了材料消耗.焊接变形的出现还会影响构件的美观和尺寸精度,并且还可能降低结构的承载能力,引发事故. 10.纵向收缩引起的挠曲变形:当焊缝在构件中的位置不对称,即焊缝处于纵向偏心时,所引起的收缩力Ff是偏心的.因此,收缩力Ff不但使构件缩短,同时还造成构件弯曲. 11.焊缝对于整个构件的中性轴对称,并不意味着在组焊的过程中始终是对称的.因为,随着组焊过程的进行,构件的中性轴位置和截面惯性矩是变化的.这也意味着,通过变化组焊的顺序,有可能对挠曲变形进行调整. 12.波浪变形:薄板所承受的压应力超过某一临界值,就会出现波浪变形,或称为压曲失稳变形. 13.焊接错边:是指两被连接工件相对位置发生变化,造成错位的一种几何不完善性. 产生原因:错边可能是装配不当造成的,也可能是由焊接过程造成的.焊接过程造成错边的主要原因之一是热输入不平衡;焊缝两侧的工件刚度的差异也会引起错边,刚度小的一侧变形位移较大,刚度大的一侧位移小,因而造成错边. 14.焊接残余应力的测量: 1.焊接残余应力的破坏性测量: (1)单轴焊接残余应力的测量:①切条法;②弹性变形法. (2)双轴焊接残余应力的测量:①切块法;②钻孔法;③盲孔法;④套孔法. (3)三轴焊接残余应力的测量. 2.焊接残余应力的非破坏性测量:(1)X射线衍射法;(2)中子衍射法. 3.相似关系. 15.焊接残余应力与变形的调控措施:

《焊接结构生产》复习题教学资料

《焊接结构生产》复 习题

《焊接结构生产》复习题一 一、填空题 1、焊接接头是一个、和都不一样的不均匀体。 2、选择预热温度主要应根据钢材的倾向大小、、条件、结构等因素决定。 3、应力集中是结构产生断裂和断裂的主要原因之一。 4、反变形法主要用来消除焊件的变形和变形。 5、角变形与焊接,接头,坡口等因素有关。 6、根据应力作用方向,焊接应力可分为向应力和向应力。 7、调节焊接应力的主要措施有措施、措施、焊后措施。 8、焊接结构的疲劳强度,在很大程度上决定于构件中的情况。 9、钢材除锈有时用化学除锈法,化学除锈法一般分为和。 10. 焊接接头的两个基本属性是和。 11、焊接接头的基本形式有四种:、、和等。 12、焊接生产中常用热处理法来消除焊接残余应力,常用的热处理方法有和。 二、选择题 1、焊接工艺评定试件的类型有板状试件、()和T型接头试件。 A 板和管接头试件 B 管状试件 C 角接接头试件 2、产生焊接应力与变形的因素很多,其中最根本的原因是焊件()。 A 焊缝金属的收缩 B 受热不均匀 C 金相组织的变化 3、气割操作时,割嘴与工件表面的距离应保持在()范围内。 A 5 -10mm B 10-15mm C 15-20mm 4、既能用来测量水平度,又能用来测量铅垂度的工具是()。 A 水准仪 B 水平尺 C 经维仪 5、焊接热参数主要包括()、后热和焊后热处理。 A 预热 B 中间热处理 C 消氢处理 6、最容易导致脆性断裂的焊接缺陷是()。 A 咬边 B 裂纹 C 未焊透 7、通常,焊接过程中焊件的变形方向与焊后焊件的变形方向()。 A 相同 B 相反 C 无一定关系 8、火焰矫正薄板波浪变形通常采用()加热。 A 点状加热 B线状 C 三角形 9、通常在材料发生塑性变形时,仍有部分弹性变形存在。而弹性变形部分在卸载时要恢复原态,使弯曲件的曲率和角度发生变化,这种现象叫()。 A 卸载现象 B 材料记忆现象 C 回弹现象 10、在焊接结构中,焊缝及其附近区域的纵向残余应力为()。 A 拉应力 B 压应力 C 拉应力和压应力 三、判断题 1、焊接应力与变形产生的根本原因是焊件受热不均匀。() 2、搭接接头的正面角焊缝为减少弯曲应力,搭接长度应大于板厚的4倍。() 3、焊件厚度相同时,焊缝的长度越长,纵向收缩量越小。() 4、卷板时对中的目的是防止工件产生的扭斜。() 5、装配时定位焊缝所用的焊条可任意选取。() 6、产生扭曲变形的原因是焊缝的角变形沿焊缝长度方向分布不均匀。()

焊接结构生产试题及答案

焊接结构生产试题及答 案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

《焊接结构生产》试题使用教材:焊接结构生产试题范围:全册 出版社:机械工业出版社版次:第2版 学校名称:白银市工业学校 填空题 1.由焊接而引起的焊件尺寸的改变称为。 2.按照变形外观形态来分,可将焊接变形分为、 、、、 5种基本变形形式。 3.常用的矫正焊接变形的方法有、 、三种。 4.焊接接头由、、三个部分组成。 5.根据构件的图样,按1:1的比例或一定比例在放样台或平台上画出其所需要图形的过程称为。 6. 、、是装配工序的三个基本条件。 7.装配—焊接夹具一般由、和 组成。 8.应用夹紧机构的核心问题是如何正确施加夹紧力,即确定夹紧力的、、三个要素。 9.焊接变位机械是改变、、的操作位置,达

到和保持的装配—焊接工艺装备。 10. 是工艺过程的最小组成部分。 名词解释 1.应力: 2.预处理: 3划线: 4.装配: 5.装配—焊接工艺装备: 6.工序: 7.变形: 8.焊接工艺规程: 9.焊接接头: 10.应力集中: 判断题 1.焊接过程是一个不均匀加热和冷却的过程,因而焊接结构必然存在焊接残余应力和变形。() 2.材料的塑性越好,其允许变形的程度越大,则最小弯曲半径越大。() 3.钢材矫正的方法按钢材作用力的不同分为手工矫正、机械矫正、火焰矫正和高频热点矫正。()

4.旋压是利用凸模把板料压入凹模,使板料变成中空形状零件的工序。() 5.定位焊必须按正式焊缝的工艺条件施焊。() 6.焊接回转台属于焊机变位机械。() 7.焊接滚轮架是一种焊件变为机械。() 8.焊工变位机又称焊工升降台。() 9.工位是工艺过程的最小组成部分。() 10.焊接结构的技术要求一般包括使用性能要求和工艺性能要求。() 简答题 1.产生焊接应力与变形的原因有哪些? 2.消除或减小焊接残余应力的方法有哪些? 3.影响焊接接头性能的因素主要有哪些? 4.预防焊接结构脆性断裂的措施有哪些? 5.提高工件疲劳强度的措施有哪些? 6.焊接结构生产主要包括哪些工艺过程? 7.钢材的矫正方法有哪些? 8.焊接工装的作用是什么?简述焊接工装的分类? 9.什么是焊接结构工艺性分析?它的目的是什么? 10.从减小焊接应力与变形的角度分析焊接结构工艺的合理性。

焊接结构

第一章绪论 1、焊接相对铆接的优缺点 优点:①焊接接头强度高 ②焊接结构设计灵活性大 ③焊接接头密封性好 ④焊前准备工作简单 ⑤易于结构的变更和改型 ⑥焊接结构的成品率高 缺点:①存在较大的焊接应力和变形 ②对应力集中敏感 ③焊接接头的性能不均匀 第二章焊接热过程 1、焊接热过程的复杂性变现在以下几个方面: (1)焊接热过程的局部性或不均匀性 (2)焊接热过程的瞬时性(非稳态性) (3)焊接热源的相对运动 2、焊接温度场:是指在焊接过程中,某一时刻所有空间各点温度的总计或分布。 可以方便地用等温面或等温线来表示。 3、焊接热循环及其主要参数 焊接热循环:在焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变化,温度随时间由低而高,达到最大值后,又由高而低的变化成为焊接热循环。 主要参数:加热速度、加热最高温度、相变温度以上停留时间、冷却速度(或冷却时间) 第三章焊接应力与变形 1、内应力:是指在没有外力的条件下平衡于物体内部的应力。 2、内应力分类: 宏观内应力:和物体的尺度相比较 微观内应力:相当于晶粒尺寸 超微观内应力:可与晶格尺寸来比量 (还可分为:热应力、装配应力、相变应力、残余应力) 3、(1)自由变形:没有受到外界的任何阻碍而自由变形 (2)外观变形(可见变形):当杆件的伸长受到阻碍,使其不能完全自由变形时,变形量只能部分变现出来,则将变现出来的部分变形称为外观变形或

可见变形。 (3)内部变形:未表现出来的那部分变形 4、应力应变图:作业题+完全刚性约束 5、铝合金和钛合金的σx分布规律与低碳钢基本相似,但焊缝中心的纵向应力 值比较低。在焊接过程中,铝合金受热膨胀,实际收到的限制比平面假设时的要小,因此压缩塑性变形量降低,残余应力也因而降低,一般σx只能达到0.6-0.8σs。对于钛合金来说,由于其膨胀系数和弹性模量都比较低,大约只有低碳钢的1/3,所以造成其σs比较低,只能达到0.5-0.8σs。 见P63图3-18 6、焊接残余应力的影响 (1)内应力对静载强度的影响 只要材料具有足够的塑性,能进行塑性变形,则内应力的存在并不影响构件的承载能力,因而对静载强度没有影响。 当材料的塑性变形能力不足时,内应力的存在将影响构件的承载能力,使其静载强度降低。 (2)内应力对刚度低影响 (3)内应力对杆件受压稳定性的影响 (4)内应力对构件精度和尺寸稳定性的影响 7、焊接残余变形分类 (1)纵向收缩变形 (2)横向收缩变形 (3)挠曲变形 (4)角变形 (5)波浪变形 (6)错边变形 (7)螺旋形变形 8、P85 例3-1 9、影响焊接变形的因素 1)焊接方法 2)焊接规范 3)构件截面几何特性 4)焊缝偏离截面型心的距离—焊缝位置—弯曲—角变形 5)焊缝长度 6)施焊方法 7)装配焊接顺序 线能量决定变形量 多层焊比单层焊的变形量小,因为热输入小 10、对接角变形影响因素 (1)坡口角度 (2)坡口形状 11、堆焊角变形影响因素

《焊接结构》课程设计指导书.

焊接结构课程设计指导书 机电工程系 洛阳理工学院

目录 前言 (2) 一.课程设计的性质和目的 (3) 二.课程设计的基本任务 (3) 三.课程设计的基本要求 (3) 四.课程设计的基本步骤 (4) 五.课程设计说明书要求 (4) 六.课程设计内容简介 (4) 七.附录 (6)

前言 课程设计是焊接结构生产课程教学的最后一个环节,是对学生进行全面系统的训练。课程设计可以让学生将学过的零碎知识系统化,真正地把学过的知识落到实处,进一步激发学生学习的热情,因此课程设计是必不少的,是非常必要的。 但是,在教学实践中,一方面,我们感到学生掌握的理论知识和实践知识有限;另一方面课程设计的时间有限。要想学生在规定时间内,运用自己有限的知识去独立完成某一焊接结构的全部设计是不现实的。因此,在两周的课程设计时间内,除了让每个学生清楚地了解焊接结构的整个设计、装配过程外,更应该注重焊接结构设计的某一细节,完全弄懂、弄透,能够达到举一反三的目的,从而培养学生设计焊接结构的初步能力。 基于以上认识,作者编写了《焊接结构课程设计指导书》。 编者

一、课程设计的性质、目的 焊接作为先进制造技术的重要组成部分,在国民经济的发展和国家建设中发挥了重要的作用。焊接技术在航空航天、核能、船舶、电力、海洋钻探、高层建筑等领域得到了广泛的应用。焊接结构是焊接技术应用于工程实际产品的主要形式,也是在许多部门中应用最为广泛的金属结构。焊接结构学作为焊接专业基础课,对学生的专业知识和技能的培养具有重要的作用。《焊接结构》课程设计是在完成焊接结构理论教学课程后,进行的综合运用所学基本知识和技能的一个非常重要的教学环节。本周开展了焊接结构学的课程设计,主要目的:进一步加深学生对焊接结构学理论知识的回顾和焊接结构在实际生产中的应用; 通过本次课程设计,使学生将理论知识与实际的焊接构件设计相结合,培养学生的理论联系实际的能力; 本次课程设计可以采用计算机绘图和手工试图,使学生加深绘图要点和培养计算机绘图技能; 通过本次课程设计培养学生的查阅技术资料、团队协作和独立创新能力。 二、课程设计的主要内容和基本任务 了解焊接结构、工况环境、制造过程的特点,掌握焊接结构的整体设计、焊接工艺规程、焊接工艺卡的编制要领。最终能根据实际需要独立研究设计相应的焊接结构,制定相关的焊接工艺。设计主体可以是梁柱桁架类和压力容器结构,对选择构件进行结构的设计,焊接接头(对接、搭接、T形和角接头)合理性分析,对相关接头的强度进行简单的计算,对易产生的应力应变特征进行分析,绘制部分结构的草图,最后绘制一张A1焊接结构图纸,并编写课程设计说明书一份。 三、课程设计的基本要求 熟悉焊接结构(梁柱桁架类和压力容器结构)的结构特点,了解焊接结构(梁柱桁架类和压力容器)各部分的受力及运行状态、结构特点以及影响制造工艺的因素并能按实际情况具体制定相应的工艺流程卡和工艺卡(具体要求见附录)。 具体要求: 1) 要充分认识课程设计对培养自己的重要性,认真做好设计前的各项准备工作; 2) 既要虚心接受老师的指导,又要充分发挥主观能动性。结合课题,独立思考,努力钻研,勤 于实践,勇于创新;

第四章、化工压力容器焊接结构 新改

第四章、化工压力容器焊接结构 4.1化工压力容器的分类 4.1.1化工压力容器的定义 压力容器一般是指在工业生产中用来完成反应、传热、传质、分离、贮存等工艺过程,并承受0.1MPa表压以上压力的密闭容器。 《特种设备安全监察条例》中明确指出压力容器的定义为:压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),且压力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高工作温度高于或者等于标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶、氧舱等。 4.1.2化工压力容器的分类 1.按用途分类 压力容器按用途分为反应容器(代号R)、换热容器(代号E)、分离容器(代号S)和储运容器(代号C)。 (1)反应容器(R) 主要用来完成工作介质的物理、化学反应的容器称为反应容器。如:反应器、分解锅、蒸球、发生器、聚合釜、合成塔、变换炉等。 (2)传热容器(E) 主要用来完成介质的热量交换的压力容器称为传热容器。如:热交换器、冷却器、加热器、硫化罐等。 (3)分离容器(S) 主要用来完成介质的流体压力平衡、气体净化、分离等的容器称为分离容器。如:分离器、过滤器、集油器、缓冲器、洗涤塔、铜洗塔、干燥器等。 (4)储运容器(C) 主要用来盛装生产和生活用的原料气体、液体、液化气体的容器称为储运容器。如:储槽、储罐、槽车等。 2.按压力分类 按照设计压力的大小,压力容器可分为低压、中压、高压和超高压4类。其划分界限见表1对气瓶而言,设计压力P<12.25MPa为低压,P≥12.25MPa为高压。 (1)低压容器(代号L) 0.1MPa≤P<1.6MPa; (2)中压容器(代号M) 1.6MPa≤P<10MPa; (3)高压容器(代号H) 10MPa≤P<100MPa; (4)超高压容器(代号U) p≥100MPa。

焊接结构复习资料后

一丶名词解释 1.残余应力:如果不均匀温度场所造成的内应力达到材料屈服极限,使局部区域产生塑性变形。当温度恢复原始的均匀状态后就会产生新的内应力,这种内应力是温度均匀后残存在物体中的称为残余应力。 2.自由变形:如果热变形不受外界的任何约束而自由地进行则称为自由变形。 3.外观变形:如果物体在温度变化中受到阻碍,使其不能完全自由变形,只能部分地变现出来,则能表现出来的这部分变形称为外观变形。 4.内部变形:如果物体在温度变化中受到阻碍,使其不能完全自由变形,而未能表现出来的那部分变形称为内部变形 5.横向残余应力:把垂直于焊缝方向的残余应力称为横向残余应力。(σy) 6.纵向残余应力:把沿焊缝方向的残余应力,称为纵向残余应力(σx) 7.焊接热循环:在连续移动热源焊接温度场中,焊接区某点所受的急剧加热和冷却的过程叫做焊接热循环。 8.焊接接头的基本属性:焊接接头因焊缝形状和布局不同会引起不同程度的应力集中,再上焊接接头残余应力与变形和高刚性就构成了焊接接头的基本属性。 9.低组配接头:焊缝金属强度比母材低。高祖配接头:焊缝金属强度比母材高 10.对接接头:两焊件表面构成大于或等于135°,小于或等于180°夹角,即两板件相对端面焊接而形成的接头。 11.搭接接头:两板件部分重叠起来进行焊接所形成的接头 12.T形接头:将互相垂直的被连接件用角焊缝连接起来的接头。 13.角接头:两板件端面构成为直角的焊接接头。 14.应力集中:接头局部区域的最大应力值(σmax)比平均应力值(σav)高的现象。 15.应力集中系数:应力集中的大小,常以应力集中系数Kt表示。即Kt=σmax/σav,式中σmax为截面中最大应力值,σav为截面中平均应力值。 16.余高:在对接接头中,焊缝高度略高于母材表面高出部分叫做焊接的余高 17.工作焊缝和联系焊缝:○1一种焊缝与被连接的元件是串联的,它承担着传递全部载荷的作用, 即焊缝一旦断裂,结构立即失效其应力为工作应力。○2一种焊缝与被连接的元件是并联的,它仅传递很小的载荷,主要起元件相互联系作用,即焊缝一旦断裂结构不会立即失效。其应力称为联系应力。 18.低应力脆性断裂:脆性破坏时的工作应力一般不高,破坏应力往往低于材料的屈服强度,或低于结构的许用应力。因此也把脆性断裂称为低应力脆性断裂。 19.韧性转变温度:大多数塑性金属材料随温度下降会发生从韧性断裂向脆性断裂的过渡这种断裂类型的转变称为韧性—脆性转变,所对应的温度称为韧性—脆性转变温度。 20.应力疲劳和应变疲劳:○1在循环应力水平较低时,弹性应变起主导作用此时疲劳寿命较长,称 为应力疲劳或高周疲劳。○2在循环应力水平较高时,塑性应变其主导作用此时疲劳寿命较短,称为应变疲劳或低周疲劳。 21.咬边:指由于焊接参数选择不当,或操作方法不正确,使焊缝边缘留下的凹陷。 22.错边:由于厚薄不同的钢板对接所引起的焊缝中心线偏移,或由于成型时尺寸公差所引起的对接焊缝错边。 23.S-N曲线:在给定平均应力,最小应力或应力比的情况下,应力幅度或应力范围,最大应力与疲劳破坏时的循环次数的关系称为S-N曲线(应力—寿命曲线) 24.机械拉伸法:对焊接构件进行加载,使焊缝塑性变形区得到拉伸,以减小由焊接引起的局部压缩塑性变形量和降低内应力。 25.反变形法:为了抵消焊接残余变形,焊前先将焊件向与焊接残余变形相反的方向进行人为预设变形。

相关主题
文本预览
相关文档 最新文档