当前位置:文档之家› 高三数学正弦余弦应用举例

高三数学正弦余弦应用举例

1.2.2正弦、余弦定理应用

1.2.2解斜三角形 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题, 要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用二:测量高度 例1 如图,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。设计一种测量建筑物高度AB 的方法 分析:由于建筑物的底部B 是不可到达的,所以不能直接测量建筑物的高。由解直角三角形的知识,只要能测出一点C 到建筑物的顶部A 的距离CA ,并测出由点C 观察A 的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA 的长。 解:选择一条水平基线HG , 使H 、G 、B 三点在同一条直线上,由在H, G 两点用测角仪器测得A 的仰角分别为α,β,CD=a. 测角仪器的高为h, 那么,在△ACD 中,根据正弦定理可得: sin sin() a AC βαβ= - sin asin sin = sin(-) AB AE h AC h h ααβαβ=+=++ 例2 如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=54°40′, 在塔底C 处测得A 处的俯角β=50°1′ 。已知铁塔BC 部分的高为27.3m, 求出山高CD (精确到1m ) 分析:根据已知条件,应该设法计算出AB 或AC 的长 解:在△ABC 中, ∠BCA=90°+ β , ∠ABC=90°-α, , ∠BAC= α -β, ∠BAD=α. 根据正弦定理得: E D G H C A B A α β

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (侧角和俯角 与目标线在同一铅垂平面内的水平■视线和目标视线的火角,目标视线在水平■视线白勺角叫仰角,目标视线在水平■视线下方的角叫俯角(如图①). (2) 方向角:相对丁某正方向的水平■角,如南偏东30°,北偏西45°,西偏北60等; (3) 方位角 指从正北方向顺时针转到目标方向线的水平■角,如B点的方位角为g如图②). (4) 坡度:坡面与水平■面所成的二面角的度数. 【助学微博】 解三角形应用题的一般步骤 (1) 阅读理解题意,弄活问题的实际背景,明确已知与未知,理活量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2汁艮据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3汁艮据题意选择正弦定理或余弦定理求解.

(4)#三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1) 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2) 实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有 时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1. (2012江苏金陵中学)已知^ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等丁 - 解析记三角形三边长为a-4, a, a+ 4,则(a + 4)2 = (a-4)2 + a2— 2a(a-4)cos 1 120,解得a= 10,故S= 2 X 10x 6X sin 120 = 15寸3. 答案15 3 2. 若海上有A, B, C三个小岛,测得A, B两岛相距10海里,/ BAC= 60°, / ABC= 75°,则B, C问的距离是__________ 渔里. ................................ BC AB - 解析由正弦正理,知sin 60° = sin 1800-60°-75°.解侍BC= 5V6(海里)? 答案5 6

高中数学应用题汇总

高中数学应用题汇总 1.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065. (1)将y表示成x的函数; (11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。 解(1)如图,由题意知AC⊥BC,, 其中当时,y=0.065,所以k=9 所以y表示成x的函数为 (2)令得所以即当时,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数 有最小值 (注:该题可用基本不等式求最小值。)

2.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数k (1≤k≤3)。 (1)求该企业正常生产一年的利润F(x)与出厂价x的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润. (1)依题意,F(x)=(x-3)(11-x)2-k(11-x)2=(x-3-k)(11-x)2,x∈[7,10]. (2)因为F′(x)=(11-x)2-2(x-3-k)(11-x)=(11-x)(11-x -2x+6+2k) =(x-11)[3x-(17+2k)]. 由F′(x)=0,得x=11(舍去)或x=.(6分) 因为1≤k≤3,所以≤≤. ①当≤≤7,即1≤k≤2时,F′(x)在[7,10]上恒为负,则F(x)在[7,10]上为减函数,所以[F(x)]max=F(7)=16(4-k).(9分) ②当7<≤,即2

正弦定理和余弦定理的应用

第二节应用举例 题型一 测量距离问题 A 、 B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点 C ,测出 AC 的距离是55m, 51=∠BAC , 75=∠ACB .求A 、B 两点间的距离(精 确到1.0m ). 分析 所求的边AB 的对角是已知的,又已知三角形的一边AC ,根 据三角形内角和定理可计算出AC 的对角,根据正弦定理,可以计算出边AB . 解答 根据正弦定理,得 ABC AC ACB AB ∠= ∠sin sin ABC ACB ABC ACB AC AB ∠∠= ∠∠=sin sin 55sin sin 76554 sin 75sin 55)7551180sin(75sin 55?≈=--= (m) 点拨 本题是测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决。 本题型的解题关键在于明确:(1)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决。(2)测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化 A B C

为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题。 衍生1★★ 如图所示,客轮以速度v 2由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度V 沿直线匀速航行,将货物送达客轮,已知BC AB ⊥,且50=-BC AB 海里。若两船同时启航出发,则两船相遇之处距C 点 海里。(结果精确到小数点后1位) 解析 AB DB 2< ∴两船相遇点在BC 上,可设为E ,设x CE =,则 V BE AB DE 22+= 故 V x x 45cos 2252)225(22??-+V x 2)50(50-+= 得 3 5000 2= x ,∴8.40≈x 答案 8.40 点拨 本题考查了测量距离问题。 衍生2★★★如图所示,B A ,两点都在河的对岸(不可到达),设计一种测量B A , 两点间距离的方法。 分析 可以先计算出河的这一岸的一点C 到对岸两点的距离, 再测 A B C D α β A γ δ

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

正余弦定理的应用举例

正余弦定理的应用举例 正、余弦定理的应用举例 知识梳理 一、解斜三角形应用题的一般步骤: 分析:理解题意,分清已知与未知,画出示意图 建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题. 三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决. 典例剖析 题型一距离问题 例1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲

船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里? 解:如图,连结,由已知, 又,是等边三角形, 由已知,,, 在中,由余弦定理,.. 因此,乙船的速度的大小为.答:乙船每小时航行海里.题型二高度问题 例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30,至点c处测得顶端A的仰角为2,再继续前进10至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。 解法一:由已知可得在AcD中, Ac=Bc=30,AD=Dc=10,ADc=180-4, =。sin4=2sin2cos2 cos2=,得2=30=15,在RtADE中,AE=ADsin60=15 答:所求角为15,建筑物高度为15 解法二:设DE=x,AE=h 在RtAcE中,+h=30在RtADE中,x+h= 两式相减,得x=5,h=15在RtAcE中,tan2== =30,=15

高中数学应用题

函数、不等式型 1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3 a y x x = +--,其中3

浅谈正弦、余弦定理在中考中的应用.doc

浅谈正弦、余弦定理在中考中的 应用 (1)余弦定理:c2=a2+b2-2ab*cosC 文字表述:三角形任何一边的平方等于其他两边平方的和减去这两边 与它们夹角的余弦的积的两倍。 (2)正弦定理:a/sinA=b/sinB=c/sinC=2r(r 为Z\ABC 外接圆的 半径) 文字表述:在一个三角形中,各边和它所对角的正弦的比值相等。 F面我们来证明: 证明:(1)作BC上的高AD=h,设CD二x,则BD=a-x 贝ij b2=h2+x2=c2- (a~x) 2+x2=c2-a2+2ax-x2+ x2 又x二b*cosC 所以c2=a2+b2-2ab*cosC (2)因为sinB=h/c, sinC=h/b 所以h二b*sinC二c*sinB 所以b/sinB=c/sinC 同理可得:a/si nA二b/s i nB二c/sinC 下面我们来看如何运用正弦、余弦定理解题: 例1: 25-右「/XABC 中,AC-BC. ZACB^90: , D、E 是用线AB 上两点.ZDCE^45c (1)当CE丄AB时,点D与点A晅合?能然DE‘=AD ‘十BE’(不必证明) (2)如图,当点D不与点A直合时,求证:DE2=AD-4-BE2 (3 )当点D衽BA的延L3上时.(2 )中的结论是否成立?训山图形.说明理由? (2)证明:令ZACD二Zl, ZBCE=Z2,则Z1 + Z2=ZACB~ZDCE=45° 因为AD/sinZl=CD/sinZA, BE/sinZ2=CE/sinZB, sinZA= sinZB= sin45° C 所以AD2+ BE2 = (CD:f:sinZl/sinZA) 2+ (CE* sinZ2/sinZB) 2 =(CD2* sin2Z 1+ CE2* sin2Z2)/ sin245°又 CD/sin(45°+Z2)= CE/sin(45°+ Z1 )=DE/sin45°所以AD2+ BE2={[ DE* sin(45°+ Z2) *sinZl/sin450]2 + A [DE* sin(45°+Zl) *sinZ2 /sin450]2}/ sin245°因为sin(45°+Z2) *sinZl = sin(45°+Z2) *sin (Z45°-Z2) =cos2Z2/2, sin(45°+Zl) *sinZ2= sin(45°+Zl) *sin (Z45°-Z1) =cos2Zl/2, 2 (Z1+Z2) =90° 所以AD2+ BE2 =DE2 cos22Z2+ DE2COS22Z1= DE2(cos22Z2+sin22Z2)= DE2 即DE2=

正余弦定理的应用举例教案

天津职业技术师范大学 人教A版数学必修5 1.2正弦定理余弦定理 的应用举例 理学院 数学0701 田承恩

一、教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤 (二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维品

质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

【创新方案】高考数学(理)一轮突破热点题型:第3章 第7节 解3角形应用举例

第七节解三角形应用举例 高频考点考点一测量距离问题 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. [例1](1)(2011·上海高考)在相距2千米的A,B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离是________千米. (2)(2013·江苏高考) 如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山 路AC长为1 260 m,经测量,cos A= 12 13,cos C= 3 5. ①求索道AB的长; ②问乙出发多少分钟后,乙在缆车上与甲的距离最短? ③为使两位游客在C处互相等待的时间不超过3 min,乙步行的速度应控制在什么范围内? [自主解答](1)如图,∠C=180°-60°-75°=45°. 由正弦定理 AC sin B= AB sin C,得AC=AB· sin B sin C=2× 3 2 2 2 = 6 千米. (2)①在△ABC中,因为cos A= 12 13,cos C= 3 5,所以sin A= 5 13,sin C= 4 5. 从而sin B=sin[π-(A+C)]=sin(A+C)=sin A cos C+cos A sin C= 5 13× 3 5+ 12 13× 4 5= 63 65. 由正弦定理 AB sin C= AC sin B,得AB= AC sin B×sin C= 1 260 63 65 × 4 5=1 040 m. 所以索道AB的长为1 040 m. ②假设乙出发t min后,甲、乙两游客距离为d,此时,甲行走了(100+50t) m,乙距离A处130t m,所以由余弦定理得

上海市高三数学练习题及答案

上海市吴淞中学2009届高三数学训练题 班级_____________姓名______________学号_____________成绩__________________ 一、 填空题 1、已知函数1 22)(1 +=+x x x f ,则()=-11 f ________ 2、设平面α与向量{}4,2,1--=→ a 垂直,平面β与向量{}1,3,2=→ b 垂直,则平面α与β位置关系是___________. 3、已知32cos 2,cos sin ,4 3sin π π x x -依次成等比数列,则x 在区间[)π2,0内的解集 为 . 4、椭圆19 252 2=+y x 上到两个焦点距离之积最小的点的坐标是________________. 5、 若函数)24lg(x a y ?-=的定义域为}1|{≤x x ,则实数a 的取值范围是 . 6、设4 3 ,)1(112161211=?+++++= +n n n S S n n S 且 ,则n 的值为 . 7、设1F 、2F 为曲线1C :1262 2=+y x 的焦点,P 是曲线2C :13 22=-y x 与1C 的一个交 21的值为 . 8、从-3,-2,-1,1,2,3中任取三个不同的数作为椭圆方程022=++c by ax 中的系数,则确定不同椭圆的个数为 . 9、 一张报纸,其厚度为a ,面积为b ,现将报纸对折(即沿对边中点连线折叠)7次,这 时报纸的厚度和面积分别为_________________。 10、 已知矩形ABCD 的边⊥==PA BC a AB ,2,平面,2,=PA ABCD 现有以下五个数据: ,4)5(;2)4(;3)3(;1)2(;2 1 )1(===== a a a a a 当在BC 边上存在点Q ,使QD PQ ⊥时,则a 可以取________ _____。(填上一个正确的数据序号即可) 11、某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当住在 第n 层楼时,上下楼造成的不满意度为n ,但高处空气清新,噪音较小,因此随楼层升 高,环境不满意程度降低,设住在第n 层楼时,环境不满意程度为n 8 ,则此人应选____楼。 12、对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数”。在实数 轴R (箭头向右)上[x ]是在点x 左侧的第一个整数点,当x 是整数时[x ]就是x 。这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。那么 ]1024[log ]4[log ]3[log ]2[log ]1[log 22222+++++ =___________________ 二、选择题 13、已知二面角βα--l ,直线α?a ,β?b ,且a 与l 不垂直,b 与l 不垂直,那么( ) (A )a 与b 可能垂直,但不可能平行 (B )a 与b 可能垂直,也可能平行

正弦、余弦定理应用

1.2.3正弦、余弦定理应用 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用三:测量角度 例1 如图 一艘海轮从A 出发,沿北偏东75°的方向航行67.5 n mile 后到达海岛C. 如果下次航行直接从A 出发到达C, 此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01 n mile ) 0000 ABC ABC=1807532137∠-+=解:在中, 220 AC AB BC 2AB BC cos 67.554267.554cos137 =113.15 ABC +-??∠+-???22根据余弦定理可知: =BC sin AC CAB ABC =∠∠根据正弦定理可知:sin 0 sin 54sin137sin 0.3255113.15 BC ABC CAB AC ∠∠==≈ 00019 7556CAB CAB ∠=-∠= 答:此船应该沿北偏东56°的方向航行,需要航行113.15 n mile. 应用四:有关三角形计算 知识1:在△ABC 中,边BC,CA,AB 上的高分别记为h a , h b ,h c ,那么容易证明: h a =bsinC=csinB h b =csinA=asinC h c =bsinC=csinB 32C B 0

14.2017-2020上海市高三数学二模分类汇编:应用题

19(2019松江二模). 国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入m 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(*x ∈N 且[45,60]x ∈),调整后研发人员的年人均投入增加2x %,技术人员的年人均投入调整为3()50 x m a -万元. (1)要使这100x -名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同, 求调整后的技术人员的人数; (2)是否存在这样的实数a ,使得调整后,在技术人员的年人均投入不减少的情况下,研 发人员的年总投入始终不低于技术人员的年总投入?若存在,求出a 的范围,若不存在,说 明理由. 19(2019静安二模).某文化创意公司开发出一种玩具(单位:套)进行生产和销售.根据以往经验,每月生产x 套玩具的成本p 由两部分费用(单位:元)构成: a.固定成本(与生产玩具套数x 无关),总计一百万元; b. 生产所需的直接总成本50x +1100x 2. (1)问:该公司每月生产玩具多少套时,可使得平均每套所需成本费用最少?此时每套玩具的成本费用是多少? (2)假设每月生产出的玩具能全部售出,但随着x 的增大,生产所需的直接总成本在急剧增加,因此售价也需随着x 的增大而适当增加.设每套玩具的售价为q 元,q =a +x b (a,b ∈R ).若当产量为15000套时利润最大,此时每套售价为300元,试求a 、b 的值.(利润=销售收入-成本费用) 19(2020普陀二模). 某小区楼顶成一种“楔体”形状,该“楔体”两端成对称结构,其内部为钢架结构(未画出全部钢架,如图1所示,俯视图如图2所示),底面ABCD 是矩形,10AB =米,50AD =米,屋脊EF 到底面ABCD 的距离即楔体的高为1.5米,钢架所在的平面FGH 与EF 垂直且与底面的交线为GH ,5AG =米,FO 为立柱且O 是GH 的中点. (1)求斜梁FB 与底面ABCD 所成角的大小(结果用反三角函数值表示); (2)求此楔体ABCDEF 的体积.

人教课标版高中数学必修5《正余弦定理应用举例》教学设计

第一章 解三角形 1.2 正余弦定理应用举例 一、教学目标 1.核心素养 通过学习正余弦定理应用举例,初步形成基本的数学抽象、逻辑推理与运算能力. 2.学习目标 应用正余弦定理解决三角形相应问题、解决实际问题. 3.学习重点 综合运用正余弦定理解三角形问题和实际问题. 4.学习难点 正余弦定理与三角函数知识的综合运用. 二、教学设计 (一)课前设计 1.预习任务 任务 阅读教材P11-P16. 思考:正余弦定理的内容是什么?利用正余弦定理求解实际问题的基本步骤是什么?题中为什么要给出这些已知条件,而不是其他条件? 2.预习自测 1.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A.4 3 B.2 3 C. 3 D.32 答案:B. 2.已知ABC ?中,a 、b 、c 分别为A,B,C 的对边, 30,34,4=∠==A b a ,则B ∠等于( )

A. 30 B. 150 30或 C. 60 D. 60或 120 答案:D. 3.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点测出AC的距离为50m,∠45 CAB=?后,就可以计算出A、B两点 ACB=?,∠105 的距离为( ) A. B. C. m D. 2 答案:A. (二)课堂设计 1.知识回顾 (1)正弦定理和余弦定理

(2)在ABC ?中,已知a 、b 和角A 时,角的情况如下: 2.问题探究 问题探究一 正弦定理与余弦定理 ●活动一 回顾正弦定理 任意三角形中,都有 sin a A =sin b B =sin c C . ●活动二 回顾正弦定理能解决的问题类型 一般地,我们把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 利用正弦定理可以解决一些怎样的解三角形问题? (1)已知三角形的两个角(也就知道了第三个角)与一边,求解三角形; (2)已知三角形的任意两边和其中一边的对角,求解三角形. ●活动三 余弦定理及其所能求解的问题类型 利用余弦定理可以求解如下两类解三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 问题探究二 掌握以下几个常用概念 坡度:坡度---沿坡向上的方向与水平方向的夹角. 仰角:视线方向向上时与水平线的夹角.(反之为俯角). 方位角:从指北方向顺时针转到目标方向线的水平转角.

高三数学应用题练习

高三数学应用题练习 【南京市】17. (本题满分14分) 如图,在半径为30cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上。 (1)怎样截取才能使截得的矩形ABCD的面积最大并求最大 面积; (2)若将所截得的矩形铝皮ABCD卷成一个以AD为母线的圆 柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能 使做出的圆柱形形罐子体积最大并求最大面积.

【常州市第17题】 【盐城市】18.(本小题满分14分) 因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放 (14≤≤a a ,且)∈a R 个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()y a f x =?,其中16 1(04)8()15(410)2 ?-≤≤??-=??-<≤??x x f x x x . 若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之 和.根据经验, 当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用. (Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天 (Ⅱ)若第一次投放2个单位的药剂,6天后再投放a 个单位的药剂,要使接下来的4天中 能够持续有效治污,试求a 的最小值(精确到,参考数据 . 18.解:(Ⅰ)因为4a =,所以64 4(04)8202(410) x y x x x ?-≤≤? =-??-<≤?………………………………1分 则当04x ≤≤时,由 64 448x -≥-,解得0x ≥,所以此时04x ≤≤………………… 3分 当410x <≤时,由2024x -≥,解得8x ≤,所以此时48x <≤………………………5分

专题 正余弦定理的应用

正余弦定理的应用 1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b ,cos B =2 3 ,求c 的值; (2)若sin cos 2A B a b =,求sin()2 B π +的值. 4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥 AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线 段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径. 已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

正余弦定理的应用举例教案

1.2正弦定理余弦定理的应用举例 教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤

(二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维 品质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

高三数学一轮复习教案:平面向量的数量积与应用举例 必修四

必修Ⅳ—08 平面向量的数量积与应用举例 1.已知两个非零向量a b 与,我们把数量 叫做a b 与的数量积(或内积),记作a b ?,即规定 a b ?= ,其中θ是a b 与的 ,cos b θ叫做向量b a 在方向上的 .零向量与任一向量的数量积为 . 2.设a b 与都是非零向量,由数量积的定义可得:a b ⊥? ,a b 与同向时, a b ?= ,a b 与反向时,a b ?= ,a a ?= ,即a = (此结论可以求出量的模).a b ?的几何意义:数量积a b ?等于a 的长度 与b a 在方向上的投影 的乘积. 3.向量数量积的运算律有:a b ?= (交换律);()a b λ?= (结合律) ()a b c +?= (分配律). 4.若1122(,),(,)a x y b x y ==则a b ?= .若表示向量a 的有向线段AB 的起点11(,)A x y 和终点 22(,)B x y ,则a = (这是平面内两点间的距离公式). 若1122(,),(,)a x y b x y ==则a b ⊥? .,a b 的夹角为θ,则cos θ= . 5.向量在几何中的应用:平面几何图形的许多性质,如平移,全等,相似,长度,夹角等都可以 由 .向量方法解决平面几何问题“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将 ;(2)通过 研究几何元素之间的关系和距离、夹角等问题;(3)把运算结果 成几何关系. 6.向量在物理中的应用:由于力、速度是向量,它的分解与合成与向量的 相似,可以用向量的方法来解决. 例1.(2005,北京)若1,2,()0a b a a b ==?+=则a b 与的夹角为( )

高中数学《正余弦定理应用举例》公开课优秀教学设计

人教版必修五《1.2应用举例》教学设计 一、教材分析 本节课是学习了正弦定理、余弦定理及三角形中的几何计算之后的一节实际应用课,可以说是为正弦定理、余弦定理的应用而设计的,因此本节课的学习具有理论联系实际的重要作用。在本节课的教学中,用方程的思想作支撑,以具体问题具体分析作指导,引领学生认识问题、分析问题并最终解决问题。 二、教学目标设置 根据本节课的教学内容以及学生的认知水平,确定了本节课的教学目标: 知识与技能:①能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解测量的方法和意义 ②会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法,搞清利用解斜三角形可解决的各类应用问题和基本图形和基本等量关系, 过程与方法:①采用启发与尝试的方法,让学生在解决实际问题中学会正确识图、画图、想图,帮助学生逐步构建知识框架。 ②通过解三角形的应用的学习,提高解决实际问题的能力;通过解三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用 情感、态度、价值观:①激发学生学习数学的兴趣,并体会数学的应用价值 ②培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ③进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力 三、学生学情分析 本节课的教学对象是云南师范大学实验中学高二年级的学生. 1.已有的能力:学生已经学习了正弦定理和余弦定理,能够运用解决一些三角形问题,具有了一定的基础。 2.存在的问题:学生在运用正弦定理和余弦定理解三角形的时候不能将实际问题转化成数学问题的问题,构造模型的能力有待提高。 难点: 1.实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 2. 根据题意建立数学模型,画出示意图 突破策略:

高中数学-2.5《平面向量应用举例》教学设计

2.5《平面向量应用举例》教学设计 【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神. 【导入新课】 回顾提问: (1)若O 为ABC ?重心,则OA +OB +OC =0. (2)水渠横断面是四边形ABCD ,DC =12 AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来. 新授课阶段 探究一:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例. 教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及 数量积表示出来: 例如,向量数量积对应着几何中的长度.如图: 平行四边行 ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+(平移) ,DB AB AD a b =-=-,2 22||AD b AD ==(长度).向量AD ,AB 的夹角为DAB ∠.因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果 “翻译”成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用 例1 证明:平行四边形两条对角线的平方和等于四条边的平方和. 已知:平行四边形ABCD .

相关主题
文本预览
相关文档 最新文档