当前位置:文档之家› 液力变矩器发展及现状

液力变矩器发展及现状

液力变矩器发展及现状
液力变矩器发展及现状

液力变矩器的发展及现状

液力变矩器具有的优良特性,自动适应性、无级变速、良好稳定的低速性能、减振隔振及无机械磨损等,是其它传动元件无可替代的。历经百年的发展,液力变矩器的应用不断扩大,从汽车、工程机械、军用车辆到石油、化工、矿山、冶金机械等领域都得到了广泛的应用。液力变矩器的流场理论、设计和制造、实验等研究工作,近年来,也得到了突飞猛进的发展。

1.液力变矩器的应用

国外已普遍将液力传动用于轿车、公共汽车、豪华型大客车、重型汽车、某些牵引车及工程机械和军用车辆等。以美国为例,自70年代起,每年液力变矩器在轿车上的装备率都在90%以上,产量在800万台以上,在市区的公共汽车上,液力变矩器的装备率近于100%,在重型汽车方面,载货量30-80t的重型矿用自卸车几乎全部采用了液力传动。迄今为止,在功率超过735kW,载货量超过100t的重型汽车上,液力传动也得到了应用。如阿里森(ALLISON)的CLBT9680系列液力机械变速器就应用于功率为882.6kW、装载量为108t的矿用自卸车上,在某些非公路车辆上,在大部分坦克及军用车辆上也装备了液力传动。在欧洲和日本,近年来装备液力传动的车辆也有显著增加。国外较大吨位的装载机、推土机等工程机械多数都采用了液力传动。

我国在50年代就将液力变矩器应用到红旗牌高级轿车上,70年代又将液力变矩器应用于重型矿用汽车上。目前,我国车辆液力变矩器主要应用于列车机车、一些工程机械和新一代的主战坦克及步兵战车等车辆上。液力传动在国内工程机械上的应用始于60年代,由天津工程机械研究所和厦门工程机械厂共同研制的ZL435装载机上的液力传动开始的。80年代由天津工程机械研究所研制开发了"YJ单级向心涡轮液力变矩器叶栅系统"和"YJSW双涡轮液力变矩器系列"。两大系列目前已成为我国国内工程机械企业的液力变矩器的主要产品。其产品的主要性能指标已达到国外同类产品的先进水平。80年代北京理工大学为军用车辆研制开发了Ch300、Ch400、Ch700、Ch1000系列液力变矩器,突破大功率、高能容、高转速液力变矩器的设计与制造关键技术,达到国际先进水平,满足了军用车辆的使用要求。一些合资企业生产的轿车和重型载重车等也应用了进口的液力变矩器。同国外相比,我国车辆应用液力变矩器虽然有了一定基础,但应用范围窄,数量较小,在中型载货汽车、公共汽车、越野汽车等车辆上没有应用或应用极少。西部大开发和我国经济的大发展,交通运输、水利水电、建筑业、能源等领域将是发展重点,因此液力变矩器在我国有广阔的市场。

2.液力变矩器技术的发展

目前广泛使用的液力变矩器主要有下列几种形式:

1) 普通三工作轮闭锁式液力变矩器,如图1。结构简单,车辆起动和低速行使时,主要利用变矩器的增矩性能,换档时利用变矩器的缓冲性能,高速时将变矩器闭锁,充分利用机械传动的高效性能。

2) 多工作轮液力变矩器,如图2。主要用于需要起动转矩大的工程机械和车辆,和需要

液力变矩器多工况工作的机械上。

3) 可调(导叶)式液力变矩器,如图3。当负载需作双向运动,对动力性能具有恒速或恒力等特殊牵引特性要求时,液力变矩器必须具有可调节反馈控制的功能,并在动态指标方面满足一定的要求。主要应用领域是,具有特种牵引要求的各种军、民用机械,如空中加油软管曳绕卷盘机械,主被动双向运动恒力加载试验机械,大型固定式提升机械,陆基或船基水下物件曳绕机械等。

4) 牵引-制动型液力变矩器,如图4。在保证牵引能力的同时,充分利用液力变矩器的减速制动性能。俄罗斯研制了一种牵引-制动型液力变矩器。

国内的研究人员曾对液力变矩器的制动工况做过一些研究和探索,但是并没有形成系统的完善的理论,没有结合具体的车辆设计出具体结构。北京理工大学正在研究牵引-制动型液力变矩器,已完成了工作原理和设计理论的研究,在2~3年内可研制出产品样机。

2.1流场理论的发展现状

液力变矩器是叶轮机械的一种。液体在液力变矩器工作轮流道中的流动是粘性、不可压缩的三维不稳定流动。

基于建模和计算的复杂性和液力变矩器流场的特殊性,长期以来在工程中采用的是一维流动理论,即束流理论。由于它的简便性和一定的合理性,因而具有工程实用价值,目前得到广泛应用的液力变矩器的设计理论仍是束流理论。一元束流理论的优点是物理概念简单,设计计算工作大为简化和易于掌握等。但由于其诸多假设与变矩器内流场有很大差别,所以用一维束流理论设计出来的变矩器往往不能达到预期的性能指标,而要经过反复的试验和改进,这就大大地增加了试验量和研制周期。随着车辆、工程机械等行业对液力变矩器性能和研制周期要求的不断提高,给液力变矩器的研究提出了新的课题,研究人员在液力变矩器流场理论的研究上付出了很多努力,取得了一定进展。

在一元束流理论的基础上发展了二维流动理论。它将工作轮中的流动简化为过旋转轴心的一组平行轴面内的平面流动,每个平面内的速度分布和压力分布都是相同的。在给定了叶片的边界形态和流量后,即可用数学方程求出该平面上任一点的流动参数。在二维流动理论基础上建立起来的二维或准二维性能预测和叶栅设计方法,把原来由中间平均流线所代表的进、出口速度和叶片参数改为沿进出口边或沿内外环具有某种变化规律的分布。应用二维流动理论,人们对液力变矩器的性能预测、叶性设计及绘制方法等进行了大量研究,得到了较好的效果。

总的来说,用二维流动理论描述纯离心式或轴流式工作轮中的流动情况与实际较为接近,而描述常用的向心式或一般的混流式工作轮,则与实际差别较大。

液力变矩器设计计算方法的发展方向是三维流动理论,描述粘性流体三维流动的运动方程是纳维-斯托克斯(Navier-Stokes)方程,简称N-S方程。由于N-S方程和欧拉方程的复杂性,直接求数值解非常困难,特别是N-S方程,到目前为止尚无法直接求解。近十多年来,人们多用有限元法和有限差分法求三维流动的微分方程或变分方程。

尽管人们对液力变矩器内流场的研究已经取得了一定的进展,但是由于液力变矩器内流场的特殊性和复杂性,完全抛开一维束流理论来进行液力变矩器设计计算的条件尚不成熟,能准确地反映液力变矩器内流场状况的理论尚未形成,液力变矩器的研究设计方法并没有从根本上得到改善,对液力变矩器还不可能进行一步到位的设计,往往要有多次反复,需要做大量的实验。

2.2设计方法的发展现状

液力变矩器的设计主要内容有叶栅系统入、出口参数设计、液流道设计、特性计算、整体结构设计及供油系统设计。

叶栅系统入、出口参数设计是指根据给定的性能指标确定最佳的叶栅系统入、出口参数,包括流道的入、出口宽度和半径及叶片的入、出口角度和厚度。目前采用的设计方法有三种:基型设计、统计设计和基于流场理论的设计。

基型设计:选择性能与设计要求接近的液力变矩器作为设计基型,循环圆的形状,叶轮的布置,叶片的形状,叶片的数目,各种计算系数均参考基型选择,几何尺寸按相似原理进行确定。

统计设计:根据现有液力变矩器的种类和性能指标,有针对性地进行综合分析,统计出液力变矩器的性能和工况、叶轮尺寸及叶片角度的关系,制定出图表或解析式作为设计的参考。设计时根据性能要求选定一些参数作为设计计算的初始点,根据统计图表或解析式确定所设计的液力变矩器的各项参数,从而确定叶栅系统入、出口参数。

基于流场理论的设计:目前叶栅系统入、出口参数设计的理论基础仍然是一元束流理论。根据束流理论及能量守衡定律建立叶栅系统入、出口参数设计计算的基本数学关系式,根据设计性能要求及制造工艺条件建立约束方程,然后,通过选择合适的优化目标函数、优化计算方法及初始参数进行设计计算。可以使用的方法有,渐次逼近法,采用单或多目标优化计算方法来计算最佳叶栅系统入、出口参数。

液流流道是由循环圆内、外环曲面及叶片曲面组成的,其设计包括循环圆设计和叶形设计。

循环圆设计是确定循环圆的外环形状、内环形状、设计流线形状及叶片的入、出口边的轴面位置及形状。设计方法有两种:基型设计及基于统计结果和流场理论的设计。

叶片设计是在循环圆设计和叶栅系统入、出口参数设计基础上进行的,叶片的形状直接影响液流流道的形状及叶轮的制造。液力变矩器的叶片可以分为两类:可展曲面叶片和不可展曲面叶片。

叶片设计的方法可分为三种:三维设计、准三维设计和二维设计。由于流场理论研究的制约,直接进行叶片的三维曲面设计和准三维设计困难较大,而且,优势不是很明显。目前应用的叶片设计方法仍是投影于多圆柱面的等角射影原理的流线法,对此方法的研

究也较深入和广泛,积累了不少经验。

2.3制造方法的发展现状

液力变矩器的制造,随着液力变矩器的结构形式及应用场合不同而有所不同。叶轮的制造可以分为两大类:组装式和整体铸造式。前者叶轮的内环、外环及叶片分别采用金属板冲压或铣制而成,然后,用焊接、铆接的方法,将三部分组装成完整的叶轮,该方法具有单件成本低,加工精度和流道的表面粗糙度高的优点,但工装成本高。后者叶轮的内环、外环及叶片直接由模具浇注成一体,一般是铝铸件。根据形成流道的型芯的制法不同,工作轮的铸造方法分为整体型芯法和组合型芯法,适合于具有空间曲面形状且不等厚度的叶片的叶轮的制造。根据形成铸型型腔材料的不同,工作轮的铸造方法又可分为砂型铸造和金属型铸造。采用金属型、石膏芯复合铸造工艺生产液力变矩器铝叶轮的方法,可以提高铸件的表面粗糙度,保障尺寸精度,并能铸造出叶片根部的圆角。

3.计算机在液力变矩器设计制造中的应用

3.1 CAD/CAM技术的发展现状

CAD/CAM技术是随着信息技术的发展而形成的一门新技术,它的应用和发展引起了社会和生产的巨大变革,因此CAD/CAM技术被视为20世纪最杰出的工程成就之一。目前,CAD/CAM技术广泛应用于机械、电子、航空、航天、汽车、船舶等各个领域。

CAD/CAM系统对硬件的主要要求有:强大的图形处理和人机交互功能;相当大的外存容量;良好的通讯联网功能。近年来,由微机组成的CAD/CAM系统越来越受到用户的欢迎。显示器是CAD/CAM系统重要输出设备之一。自80年代以来,为增强图形显示功能,出现了带有图形处理功能的显示卡。这种卡即有高分辨的显示控制能力,又有高性能2D/3D图形处理功能,使显示器图形处理功能大为增强。另外一些优秀的CAD/CAM软件功能提高迅速,如:PTC公司的Pro/Engineer、EDS公司的UG.II、Solidworks公司的Solidworks等等。

3.2 计算机在液力变矩器设计制造中的应用

北京理工大学在液力变矩器的计算机辅助设计与制造等方面进行了系统深入的研究,开发了液力变矩器计算机辅助设计、制造一体化系统,该系统包含了计算机辅助设计、计算机辅助制造、计算机辅助测绘、三元流流场分析和工程数据库管理系统等模块;建立了高起点的软、硬件开发环境及系统软件总体结构。实现了液力变矩器循环园、叶片及工作轮铸造模具的CAD/CAM。提高了叶轮的制造精度,缩短了研制周期,降低了成本。

3.3计算机在液力变矩器流场理论研究中的应用

根据当前流场理论的研究成果,许多大型软件公司将这些理论溶入其CAE软件之中,并且在工程实践和理论研究中取得了重要成果和应用。

流场计算主要应用到的学科是CFD,即计算流体动力学。目前已经出现一大批用于CFD

计算的商业及非商业软件。主要利用的数值计算方法为有限体法、有限元法和差分法等。而商业元件凭借其广泛的适用性受到了各个层次研究人员的欢迎,其中主要有FLUENT、ANSYS/FLOTRAN等计算流体动力学软件。

在这里,我们采用ANSYS/FLOTRAN作为工具对液力变矩器流场分布进行计算。它是一个用于分析二维及三维流体流动的先进的工具,可以对如下问题进行分析:层流或湍流、传热或绝热、可压缩或不可压缩、牛顿流或非牛顿流、多组份传输等,而同时这些分析互相并不抵触。我们认为所分析对象为湍流、绝热、不可压牛顿流体。同时FLOTRAN提供了多种湍流模式进行湍流计算,一般我们采用在工程中应用比较成熟的二维方程湍流k-e模型及其改进模型如RNG模型和NKE模型等。它们不仅能对常规流动问题进行较为准确的求解,同时也还可以进行网格局部细分,计算二维表面张力效应、自由表面、流体辐射、表面张力效应、计算ALE - CFD分析的任意欧拉-拉格朗日列式以及进行流体-固体耦合场分析和流场优化设计。

4.展望

综上所述,液力变矩器在我国有广阔的市场,入世以后,我国液力变矩器的制造业正面临着前所未有的挑战。另一方面,无论是液力变矩器的设计方法,还是其制造方法仍有许多工作值得去做。要积极推广变矩器的使用,开发新型液力变矩器,并不断地改善其性能。液力变矩器的研究工作对我国工业水平的提高,对国防事业的发展都存在深远的意义。

变矩器特性

变矩器的透穿性 变矩器的透穿性(transmittancy of torque converter)变矩器的泵轮力矩系数(λB)随涡轮、泵轮转速比变化的特性。就基本质而言,透穿性是变矩器隔离发动机与工作机,使发动机的工况不受工作机影响的能力,换句话说,如果变矩器不具有透穿性,则工作机的工况变化不能透过变矩器影响发动机的工况,这对发动机是有利的。定性描述变矩器透穿性的指标是透穿度,即工作机的工况变化能透过变矩器影响发动机工况的程度。 由无因次特性可知,对于两个循环圆几何相似但有效直径不等的变矩器(称为同一系列的变矩器),具有相同的无因次特性。相同类型不同系列的变矩器其无因次特性是不同的,但其变矩比和效率随转速比的变化趋势是相同的,而泵轮力矩系数随转速比的变化趋势却是不同的,就是说,他们的透穿性是不一样的,见下图。变矩器的透穿性一般有下述几种。 (c) (d) 变矩器的透穿性 非透穿泵轮力矩系数λB为常数,不随转速比变化,这样的变矩器与发动机共同工作时,发动机的力矩和转速不随变矩器的转速比而变化,因此,输出端(涡轮轴)的工况变化将 不会透过变矩器影响发动机的工况,这样的特性称为非透穿,这类变矩器称为非透穿变矩器。见图(a)。 正透穿泵轮矩系数随转速比的增大而减小,这样的变矩器与发动机共同工作时,发动机的力矩和转速将随输出端(涡轮轴)工况的变化而变化,由于这样的特性对发动机有利,故称为正透穿,这类变矩器称为正透穿变矩器。见图(b)。 负透穿泵轮力矩系数随转速比的增大而增大,由于这样的特性往往会使发动机过载,故称为负透穿,这类变矩器称为负透穿变矩器。见图(c)。

内燃机车上离心涡轮变矩器一般具有复合透穿性,见图(d )。 内燃机车上的离心涡轮变矩器的透穿度T 表示为: 式中,λB ,λB * 为某一工况和计算工况下的泵轮力矩系数。 根据变矩器的透穿性和透穿度,可以比较和评价变矩器的性能,并依确定变矩器和柴油机的共同工作点。 液力变矩器及其与发动机共同工作的性能 液力传动是以液体为工作介质的涡轮式传动机械。它的基本工作原理是通过和输入轴相连接的泵轮,把输入的机械能转变为工作液体的动能,使工作液体动量矩增加。和输出轴相连接的涡轮,把工作液体的动能转变为机械能输出,并使工作液体的动量矩减小。 液力传动的主要特点是:1自动适应性、2防振隔振作用、3 良好的起动性、4 限矩保护性、5 变矩器效率。 第一节 液力变矩器的特性 液力变矩器的特性是表示变矩器各输出和输入参数之间函数关系的曲线。这些函数之间的相互关系,虽可用理论分析和计算来获得,但由于大量引入假设,使计算结果与实际情况有一定的差距。因此,变矩器实际的特性曲线是通过台架试验来取得的。液力变矩器的特性曲线主要有以下三种:输出特性、无因次特性和输入特性。 一、液力变矩器的输出特性 液力变矩器的输出特性是表示输出参数之间关系的曲线。通常是使泵轮轴的转速保持不变,在此工况下求取以涡轮轴转速 2n 为自变量的各输出特性曲线(参看图4-1)。

液力变矩器研究现状与发展趋势

液力变矩器研究现状与发展趋势 摘要:综述目前国内外液力变矩器设计分析理论的发展过程,内流场分析方法和液力变矩器关键部件设计方法的研究现状,对所使用的理论计算方法、实验方法进行了分类、介绍和评价,总结了相应的研究进展和取得的成果,并在前人研究成果的基础上,探讨了液力变矩器研究的发展趋势。 关键词:液力变矩器;流场分析;三维流动;设计 前言 液力变矩器是以液体为介质,利用液体的相互作用引起机械能与液体动能之间的相互转换,通过液体动量矩的变化来改变传递转矩的传动装置。液力变矩器具有自动适应性、无级变速、良好稳定的低速性能、减振隔振及无机械磨损等优良特性,延长了动力传动装置的使用寿命,提高了乘坐的舒适性、安全性及通过性,因此广泛应用于汽车、军用车辆、工程机械、石油、冶金、矿山及化工机械等领域,是车辆自动变速系统的主要部件。 液力变矩器主要包括泵轮、涡轮和导轮三个部件,如图1所示。泵轮由发动机驱动;涡轮与变速器输入轴相连,导轮则通过单向离合器安装在变速器壳体上。工作液在各工作轮组成的闭合循环道内流动,通过动能的变化来传递扭矩。 图1液力变矩器基本组成 1液力变矩器设计方法 液力变矩器的设计主要是指变矩器的循环圆设计、叶片设计、特性计算、整体结构设计以及一些关键零部件的设计,由于叶片参数直接影响到变矩器的性能,因而是液力变矩器的设计的关键是叶片设计。循环圆和叶片的设计方法通常有经验设计法、相似设计法和理论设计法三种。在实际的设计过程中,这三种方法是综合应用的,主要分为两个环节:一是基于束流理论的参数设计。二是在试制产品试验结果的基础上根据经验规律进行改进。其中,试验改进环节消耗大量的成本和时间,几乎占据整个设计过程的80%以上。而且众多环节需要经验确定,使得设计具有很大的不确定性。 基于建模和计算的复杂性和液力变矩器流场的特殊性,液力变矩器叶片设计的理论基础已由一维流动理论、二维流动理论发展到三维流动理论。 (1)一维流动理论:将工作轮中的总液流假设成由许多流束组成,认为叶片数无穷多,厚度无限薄,忽略粘性对流场的影响,简化很大,具有一定的工程实用价值,能反映流体作用的宏观效果,但不能正确反映宏观效果的微观原因,与液力变矩器实际内流场差别较大。 (2)二维流动理论:在束流理论的基础上,认为工作轮中的液体只在垂直于旋转轴线的一组平行轴面内的平面流动,且其中每一平面的速度分布和压力分布都是相同的,即流动参数是两个空间坐标的函数。在给定了叶片的边界形态和流量后,即可用数学物理方程求出该平面上任一点的流动参数分布。该简化对纯离心式或轴流式工作轮中的实际流动情况,较为接近;对常用的向心式涡轮液力变矩器来说,与实际流动的差别仍然很大。 (3)三维流动理论:液力变矩器是流道封闭的多级透平机械,流道内为复杂的三维粘性流动。由于流道的曲率变化非常大,叶片的形状也是三维的,这就造成液流沿着流线方向、圆周方向以及从内环到外环都是变化的。另外,油液是有粘性的,这就必然会在流道壁面上出现附面层,由此还会引起“二次流动”

液力变矩器的知识介绍

液力变矩器的知识介绍: 1、定义:液力变矩器,亦称扭力转换器,是在液力耦合器的基础上改进而成,用来传递旋转动力。液力变矩器由泵轮,涡轮,导轮组成。安装在发动机和变速器之间,以液压油(ATF)为工作介质,起传递转矩,变矩,变速及离合的作用。它将动力源(通常是发动机或电机)与工作机连接起来,可同液力耦合器一样起到离合器的作用,但不同的是,液力变矩器可以改变力矩的大小。 2、结构及工作原理:液力耦合器通过泵轮和涡轮来传递动力,而液力变矩器则在泵轮和涡轮之间增加了一个导轮。和液力耦合器一样,液力变矩器在工作时内部充有油液,油液在泵轮和涡轮间循环活动。但在油液活动过程中,固定不动的导轮给涡轮一个反作用力矩,实现了动力输出的变矩。 液力变矩器简图 以液体为工作介质的一种非刚性扭矩变换器,是液力传动的型式之一。图为液力变矩器,它有一个密闭工作腔,液体在腔内循环活动,其中泵轮、涡轮和导轮分别与输进轴、输出轴和壳体相联。动力机(内燃机、电动机等)带动输进轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、

导轮再返回泵轮,周而复始地循环活动。泵轮将输进轴的机械能传递给液体。高速液体推动涡轮旋转,将能量传给输出轴。液力变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输进扭矩,因而称为变矩器。输出扭矩与输进扭矩的比值称变矩系数,输出转速为零时的零速变矩系数通常约2~6。变矩系数随输出转速的上升而下降。液力变矩器的输进轴与输出轴间靠液体联系,工作构件间没有刚性联接。液力变矩器的特点是:能消除冲击和振动,过载保护性能和起动性能好;输出轴的转速可大于或小于输进轴的转速,两轴的转速差随传递扭矩的大小而不同;有良好的自动变速性能,载荷增大时输出转速自动下降,反之自动上升;保证动力机有稳定的工作区,载荷的瞬态变化基本不会反映到动力机上。液力变矩器在额定工况四周效率较高,最高效率为85~92%。叶轮是液力变矩器的核心。它的型式和布置位置以及叶片的外形,对变矩器的性能有决定作用。有的液力变矩器有两个以上的涡轮、导轮或泵轮,借以获得不同的性能。最常见的是正转(输出轴和输进轴转向一致)、单级(只有一个涡轮)液力变矩器。兼有变矩器和耦合器性能特点的称为综合式液力变矩器,例如导轮可以固定、也可以随泵轮一起转动的液力变矩器。为使液力变矩器正常工作,避免产生气蚀和保证散热,需要有一定供油压力的辅助供油系统和冷却系统。 3、液力变矩器的特性:液力变矩器的特性可用几个外界负荷有关的特性参数或特性曲线来评价。描述液力变矩器的特性参数主要有转数比、泵轮转矩系数、变矩系数、效率和穿透性等。描述液力变矩器的特性曲线主要有外特性曲线、原始特性曲线和输进性曲线等。

阻变存储器概述

阻变存储器概述 阻变存储器(Resistive Random Access Memory, RRAM)是一种基于非电荷存储机制的新型存储技术。RRAM的上下电极之间是能够发生电阻转变的阻变层材料。在外加偏压的作用下,器件的电阻会在高低阻态之间发生转换从而实现“0”和“1”的存储。在二进制存储中,一般将低阻态代表“1”,高阻态代表“0”。器件从高阻变化为低阻的过程称为Set,从低阻变为高阻的过程称为Reset。Set 过程中,一般需要限制通过器件的最大电流,以避免器件完全损坏。虽然阻变存储器的研究自2000年后才兴起,但薄膜的阻变现象早在1967年就由英国Standard Telecommunication Laboratories的J. G. Simmons等人发现[1]。1971年,美国加州大学伯克利分校的华裔教授Leon Chua就在理论上预言了除了电阻、电容、电感之外的第四种基本器件——忆阻器(Memristor)的存在[2]。在2008年的Nature杂志上,惠普公司报道已成功制备出忆阻器原型器件并提出了相应的物理模型。他们模拟了(a)有动态负微分现象的电阻器件、(b)无动态负微分现象的电阻器件、(c)存在非线性离子运动的电阻器件三种不同器件的工作机制:(a)中当所加正电压到达最大值时,器件还未完全发生电阻转变,在正电压逐渐减小的过程中器件继续发生电阻转变(电阻减小),因此观察到了明显的负微分电阻现象;在(b)中所加正向电压到达最大值之前,器件已经完全发生电阻转变,之后在未加负偏压之前器件电阻一直保持不变,因此没有负微分电阻现象;在(c)器件中,离子运动是非线性的,其到达上下电极两种边界条件是突变的,因此其一般只有两种状态(OFF和ON态)。阻变存储器RRAM可以归为忆阻器(c)类器件中的一员。 2.1 阻变存储器的材料体系 2.1.1 固态电解质材料 固态电解质体系中包含两个要素:一是固态电解质层,二是可在固态电解质层中发生氧化还原反应的金属。基于这类体系的RRAM器件被称为PMC (programmable metallization cell)或CBRAM(Conductive Bridging RAM)[5],其特征是两个电极一边是惰性金属如Pt,另一边是易于发生氧化还原反应的活泼金属如Cu和Ag。两电极中间是固态电解质层,金属离子可以在固态电解质中移动。当Cu或Ag等活泼金属作为阳极时,这些易氧化的金属原子失去电子成为金

最新液压传动技术发展现状与前景展望

液压传动技术发展现状与前景展望 摘要:对液压传动技术及其优缺点进行描述;将其发展现状、工业应用情况作了一个简要的总结归纳;并根据其自身的特点对其发展趋势在液压现场总线技术、自动化控制软件技术、纯水液压传动、电液集成块等四方面做了合理的展望。关键词:液压传动;工业应用;发展趋势 1 液压传动的定义及其地位 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统[1]。液压传动,是机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段[2]。 2 液压传动的发展简史 液压传动是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795 年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905 年将工作介质水改为油,又进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920 年以后,发展更为迅速。1925 液压元件大约在19 世纪末20 世纪初的20 年间,才开始进入正规的工业生产阶段[2]。年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展[3]。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着控制理论的出现和控制系统的发展,液压技术与电子技术的结合日臻完善,电液控制系统具有高响应、高精度、高功率-质量比和大功率的特点,从而广泛运用于武器和各工业部门及技术领域[4]。 3 液压传动的优缺点 3.1 与机械传动、电气传动相比,液压传动具有以下优点 1.液压传动的各种元件,可以根据需要方便、灵活地来布置。 2.重量轻、体积小、运动惯性小、反应速度快。 3.操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。 4.可自动实现过载保护。

轮式装载机文献综述

轮式装载机 摘要:本文以模块的方式讲述了轮式装载机的发展以及用途、分类和相关参数、总体构造、传动系统、制动系统、转向系统、工作装置和液压系统的组成。在用途和分类中对装载机的发动机功率、传动形式、行走结构、装卸方式做了简单的介绍。通过选用原则的叙述,使我们对装载机使用性能有进一步的了解。另外,简单列举了国内外主要的制造厂商,同时,对轮式装载机的技术发展动态与趋势做了简单的叙述。关键词:轮式装载机、用途、总体构造 轮式装载机属于铲土运输机械类,是一种广泛用于公路、铁路、建筑、水电、港口和矿山等建设工程的土石方施工机械。具有作业速度快、效率高、机动性好、操作轻便等优点,对于加快工程建设速度,减轻劳动强度,提高工程质量,降低工程成本都发挥着重要的作用,是现代机械化施工中不可缺少的装备之一。 1中国装载机行业的发展 我国现代轮式装载机起始于20世纪60年代中期的Z435型。该机为整体机架、后桥转向。经过几年的努力,在吸收当时世界最先进的轮式装载机技术的基础上,开发成功了功率为162KW的铲接式轮式装载机,定型为Z450(即后来的ZL50),并于1971年12月18日正式通过专家鉴定。就这样诞生了我国第一台铰接式轮式装载机,从而开创了我国装载机行业形成与发展的历史。 1978年,天工所根据机械部的要求,制订出以柳工Z450为基型的我国轮式装载机系列标准。制订标准时,保留用Z代表装载机,用L取代“4”代表轮式,改Z450为ZL50,就这样制订出了以柳工ZL50型为基型的我国ZL轮式装载机系列标准,这是我国装载机发展鸣上的重大转折点。该标准制订出来后按当时的行业分工,柳工、厦工制造ZL40以上的大中型轮式装载机,成工、宜工制造ZL30以下的中小型轮式装载机,逐步形成了柳工、厦工、成工和宜工当时的装载机四大骨干企业。 到70年代末、80年代初我国装载机制造企业已增加至20多家,初步形成了我国装载机行业。到目前为止,我国轮式装载机已经发展到了第三代,但最基本的结构仍然是由Z450(ZL50)演变而来。第二代变化不很大,第三代变化稍大一些。2001年我国装载机全行业总销售量已突破3万台,居世界装载机市场的前列。因此,目前我国已经成了世界上装载机产销大国。 2006年中国装载机行业全行业总销售量为129,793台,比2005年的112,527台,增长了15.3%,净增了17266台,其净增量超过了中国装载机行业“八五”以前任何

阻变存储器可靠性的研究

龙源期刊网 https://www.doczj.com/doc/9d12385986.html, 阻变存储器可靠性的研究 作者:沈冬云 来源:《科学与财富》2017年第21期 摘要:随着我国现代化建设的不断发展,各种存储器设备在工业生产与民用消费中得到了广泛应用。我国在集成电路制造领域不断进步的过程中,以浮栅结构为基础的FLASH存储器在物理尺寸上已经达到物理极限,如何对储存器进行进一步的开发已经成为相关机械十分重要的研究课题之一。 中阻变存储器以结合简单、高速度、低功耗等方面的特点得到了广泛的关注。然而,中阻变存储器在技术与应用上还没有十分成熟,在可靠性方面也没十分充分的保证。本文对阻变存储器在可靠性方面的问题进行了详细的阐述与分析,并根据具体的问题提出了相关的解决方法,希望可以起到参考作用。 关键词:问题分析;可靠性国;阻变存储器 阻变存储器属于三明治结构器件的一种,内部结构中的电极材料对于器件的性能也有一定的影响。对于阻变存储器的研究目前主要集中在电极材料与功能层材料上。 一、器件的工艺制备 本次实验研究所采用的器件结构为1T1R,通常情况下,晶体管能够起到限流与形状两方面的作用,阻变存储器结构为Pt/Ti/HfOx/Cu结构,其中Cu是阻变存储器的下电极,在CMP 工艺处理下,该部件能够起到电极的作用。功能层FfOx,离子束或ALD蒸发生长。Ti/Pt为上电极,粘附层为Ti层,能够使功能层与Pt的粘附性得到提,上电极Ti/Pt与功能层HfOx,厚度分别为70nm与6nm。具体工艺流程如下。 (一)硅片清洗 以硅片为衬底,阻态越高越好,去掉硅片表面所附着的有机物,具体操作方法为通过双氧水与浓硫酸对硅片进行冲洗,再对氢氟酸溶液进行稀释处理,将自然氧化层去除掉,再用气氛将水分吹干。 (二)SiO2层的生长 SiO2能够对硅片起到决绝作用,在对硅片清洗干净后将其置于热氧化炉,经过4-5小时的干法氧化后,SiO2会得到生长,可以达到200nm的厚度; (三)ZrO2或HfO2原子层或原子层沉积或离子束溅射

流体控制技术综述 汤明海

流体控制技术综述 学校:华东交通大学 院系:机电工程学院 专业:测控技术与仪器1班 学号:20120310110110 姓名:汤明海

流体控制技术综述 汤明海 (华东交通大学机电工程学院12测控技术与仪器1班) 摘要:本文主要介绍液压传动的介绍以及他的发展前景。对液压传动技术及其优缺点进行描述;将其发展现状、工业应用情况作了一个简要的总结归纳;并根据其自身的特点对其发展趋势在液压现场总线技术、自动化控制软件技术、纯水液压传动、电液集成块等四方面做了合理的展望。 关键词:液压传动;工业应用;发展趋势;发展简史;优缺点 1 液压传动的定义及其地位 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统。液压传动,是机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段。 2 液压传动的发展简史 液压传动是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795 年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905 年将工作介质水改为油,又进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。1925 液压元件大约在19世纪末20世纪初的20年间,才开始进入正规的工业生产阶段。维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20多年。在1955年前后 ,日本迅速发展液压传动,1956年成立了“液压工业会”。近20-30年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着控制理论的出现和控制系统的发展,液压技术与电子技术的结合日臻完善,电液控制系统具有高响应、高精度、高功率-质量比和大功率的特点,从而广泛运用于武器和各工业部门及技术领域。

液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理 4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 * 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的 主动元件。 *

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体 6-曲轮7-驱动端盖8-单向离合器9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。 *

图4-3为液力变矩器油液流动示意图。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰 好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变 矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离

阻变随机存储器(RRAM)综述(自己整理)

目录 引言 (1) 1 RRAM技术回顾 (1) 2 RRAM工作机制及原理探究 (4) 2.1 RRAM基本结构 (4) 2.2 RRAM器件参数 (6) 2.3 RRAM的阻变行为分类 (7) 2.4 阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5 RRAM与忆阻器 (30) 3 RRAM研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻 变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

液压传动技术的现状及发展

液压传动技术的现状及发展 班级:13级模具二班 姓名:王金露 学号:

液压传动技术的现状及发展【摘要】液压作为一个广泛应用的技术,在未来有更广泛的前景,随着计算机的深入发展,液压控制系统可以和只能的技术,计算机的技术等技术结合起来,这样能够在更多的场合中发挥作用,也可以更加精巧的,更加灵活的完成预期的控制任务。与机械传动相比,液压传动更容易实现其运动参数和动力参数的控制。近年来,液压技术迅速发展,液压元件日臻完善,使得液压传动在机械系统中的应用突飞猛进,液压传动具有的优势也日渐凸显。随着液压技术与微电子技术,计算机控制技术以及传感技术的紧密结合,液压传动技术必将在工程机械行业走驱动系统发展中发挥越来越重要的作用。世界各国对液压工业的发展都给予很大重视。 【关键词】液压装置,计算机,自动控制,微电子 【引言】液压传动技术是工业上最常见的一门技术,他是利用各种元件根据帕斯卡原理来达到力的传递所设计的一种技术。液压传动技术根据其自身的特点在工业上得到了广泛的应用,但也相应的有一

定的局限性。为了给用户提供更全面、更可靠、更物美价廉的自动化,保证产品质量的均一性,减轻单调或繁重的体力劳动,提高生产效率,降低生产成本就需要对液压传动技术不断的创新,因此对于机器的性能、质量、可靠性的要求不断提高,液压传动技术必将在工程机械行业的发展中发挥出越来越重要的作用。 【正文】 液压传动是根据17世纪帕斯卡提出的液体静压力传动原理 而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼,在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。第一次世界大战后液压传动广泛应用,特别是 1920 年以后,发展更为迅速。 1925 液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。年维克斯发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克对能量波动传递所进行的理论及实际究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。第二次世界大战期间,在美国机床中30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20多年。在1955年前后,日本迅速发展液压传动,1956年成立了“液压工业会”。近30年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着

自动变速箱与液力变矩器工作原理

自动变速箱 自动变速箱简称AT,全称Auto Transmission,它是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。 和手动挡相比,自动变速箱在结构和使用上有很大不同。手动挡主要通过调节不同齿轮组合来更换挡位,而自动变速箱是通过液力传递和齿轮组合的方式来达到变速的目的。其中液力变扭器是自动变速箱最具特点的部件,它由泵轮、涡轮和导轮等构件组成,泵轮和涡轮是一对工作组合,泵轮通过液体带动涡轮旋转,而泵轮和涡轮之间的导轮通过反作用力使泵轮和涡轮之间实现转速差并实现变速变矩功能,对驾驶者来说,您只需要以不同力度踩住踏板,变速箱就可以自动进行挡位升降。由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。为了满足行驶过程中的多种需要(如泊车、倒车)等,自动变速箱还设有一些手动拨杆位置,像P挡(停泊)、R挡(后挡)、N挡(空档)、D挡(前进)等。 从性能上说自动变速箱的挡位越多,车在行驶过程中也就越平顺,加速性也越好,而且更加省油。除了提供轻松惬意的驾驶感受,自动变速箱也有无法克服的缺陷。自动变速箱的动力响应不够直接,这使它在“驾驶乐趣”方面稍显不足。此外,由于采用液力传动,这使自动挡变速箱传递的动力有所损失。 手自一体自动变速箱 手自一体变速箱的出现其实就是为了提高自动变速箱的经济性和操控性而增加的设置,让原来电脑自动决定的换挡时机重新回到驾驶员手中。同时,如果在城市内堵车情况下,还是可以随时切换回自动挡。

液力变矩器的工作原理就像两个风扇相对,一个风扇工作,然后将另一个不工作的风扇吹动。这个比喻可以很形象的解释液力变矩器中泵轮和涡轮之间的工作关系。不过详细解释其工作原理,则有些复杂。 动力输出之后,带动与变矩器壳体相连的泵轮,泵轮搅动变矩器中的自动变速箱油(以下简称ATF),带动涡轮转动,ATF在壳体中是一个循环的动作,由于泵轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧,冲向前方的涡轮,再流向轴心位置,回到泵轮一侧,如此周而复始的循环,将动力传向与齿轮箱连接的涡轮。 不过只有该零部件和传动方式,只能称为液力耦合器,若想成为液力变矩器,必然要改变涡轮叶片的形状,这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮旋转方向相反,因而造成冲击,所以为了成为液力变矩器还需另一个部件:导轮。导轮是存在于泵轮和涡轮之间的一个部件,用于调节壳体中ATF液流方向,通过单向离合器与箱体固定。 有了导轮,才有了“变矩”的灵魂所在,在泵轮与涡轮转速差较大时,动力输出的扭矩也变大了,此时的变矩器想当一个无级变速器,通过转速差来提升扭矩,此时导轮处于固定状态,用以调节ATF回流;而当转速差降低,涡轮泵轮耦合或锁止时,扭矩接近对等,无需增矩,导轮随泵轮和涡轮同向转动,避免自身搅动ATF,造成动力的损耗。 至此我们了解到了液力变矩器的最大特点——软连接,而这种动力的传输方式起到了两大功能:1、从静止到低速时的平稳起步;2、在加速过程中,较大动力输出时,起到增大扭矩的作用。如果与MT上的离合器相比较,则需注意的是,第一条起到了并优化了MT 上离合器的功能,但第二条则是离合器无法实现的。

液压气动技术的发展趋势

液压气动技术的发展趋势 液压与气压传动相对于机械传动来说是一门新兴技术。从1795年世界上第一台水压机诞生起,已有几百年的历史,但液压与气压传动在工业上被广泛采用和有较大幅度的发展是20世纪中期以后的事情。在工程机械、冶金、军工、农机、汽车、轻纺、船舶、石油、航空和机床行业中,液压技术得到了普遍的应用。随着原子能、空间技术、电子技术等方面的发展,液压技术向更广阔的领域渗透,发展成为包括传动、控制和检测在内的一门完整的自动化技术。现今,采用液压传动的程度已成为衡量一个国家工业水平的重要标志之一。如发达国家产的95%的工程机械生、90%的数控加工中心、95%以上的自动线都采用了液压传动。 从20世纪70年代开始,电子技术和计算机技术迅速发展并进入液压技术领域,在产品设计﹑制造和测试方面采取了这些先进技术,取得了显著的效益。利用计算机辅助设计技术进行液压元件和液压系统的设计计算﹑性能仿真﹑自动绘图以及数据的采集和处理,可提升液压产品的质量,优化其性能,减低成本,并大大缩短其生产和交货周期。在设备控制方面,利用计算机控制系统,可简化操作提高劳动生产率,提高自动化水平,并增加产品的可靠性。因此,近年来,液压行业对于计算机技术的应用给予极大的关注,其中计算机辅助设计CAD的推广使用和数字控制液压元件的研制开发尤其突出。另外,减小元件的体积和重量,提高元件的寿命研制新介质以及污染控制的研究,也是当前液压传动及液压控制技术发展和研究的重要课题。 我国的液压工业开始于20世纪50年代,其产品最初只用于机床和锻压设备,后来又由于拖拉机和工程机械。自20世纪60年代开始,从国外引进液压元件生产技术,同时自行设计液压产品。目前,我国生产的液压元件已形成系列,并在各种机械设备上得到了广泛的应用。目前我国以开发研制了中高压齿轮泵﹑插装式锥阀﹑电业比例阀﹑叠加阀以及新系列中﹑高压阀等。尽管如此,我国的液压元件和液压产品与国外先进的同类产品相比,在性能上,在种类﹑规格上仍存在着较大的差距。 为了迅速赶超世界先进水平,我国已瞄准世界主流的液压元件系列型谱,有计划的引进﹑消化﹑吸收国外最先进的液压技术和产品,并对我国正生产的液压产品进行整顿,合理调整产

离合器_文献综述

文献综述 前言 汽车诞生100多年来,人们一直在研究汽车离合器技术,希望汽车运行更加快捷、舒适、安全、可靠。对于以燃机为动力的汽车,离合器在机械传动系统中作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连接的总成。离合器的主动部分和从动部分借接触面间的摩擦作用,或是用液体作为传动介质,或是用磁力传动来传递转矩,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又允许两部分相互转动。目前在汽车上广泛采用的是用弹簧压紧的摩擦离合器。发动机发出的转矩,通过飞轮及压盘与从动盘接触面的摩擦作用,传给从动盘。当驾驶员踩下离合器踏板时,通过机件的传递,使膜片弹簧大端带动压盘后移,此时从动部分与主动部分分离。摩擦离合器应能满足以下基本要求:(1)保证能传递发动机发出的最大转矩,并且还有一定的传递转矩余力。 (2)能作到分离时,彻底分离,接合时柔和,并具有良好的散热能力。 (3)从动部分的转动惯量尽量小一些。这样,在分离离合器换档时,与变速器输入轴相连部分的转速就比较容易变化,从而减轻齿轮间冲击。(4)具有缓和转动方向冲击,衰减该方向振动的能力,且噪音小。 (5)压盘压力和摩擦片的摩擦系数变化小,工作稳定。 (6)操纵省力,维修保养方便。 一、离合器的发展史 在早期研发的离合器结构中,锥形离合器最为成功。它的原型设计曾装在1889年德国戴姆勒公司生产的钢质车轮的小汽车上。它是将发动机飞轮的孔做成锥体作为离合器的主动件。采用锥形离合器的方案一直延续到20世界20年代中叶,对当时来说,锥形离合器的制造比较容易,摩擦面容易修复。它的摩擦材料曾用过驼毛带、皮革带等。那时也曾出现过蹄-鼓式离合器来替代锥形离合器。该结构采用蹄-鼓式。这种结构型式有利于在离心力作用下使蹄紧贴鼓面。蹄-鼓式离合器用的摩擦元件为木块、皮革带等,蹄-鼓式离合器的重量较锥形离合器轻。无论锥形离合器或蹄-鼓式式离合器,都容易造成分离不彻底甚至出现主、从动件根本无法分离的自锁现象(当时所提供的材料符合体的摩擦系数变化很

福伊特液力变矩器的结构及工作原理的使用0

第一章福伊特液力传动箱简介 T211re.4液力传动箱是德国福伊特公司是专门为铁路车辆设计的涡轮传动装置。它是350kW性能级别的轨道车专用传动箱。 第一节 T211re.4液力传动箱的技术指标 一、T211re.4液力传动箱的主要技术参数

: 二、T211re.4液力传动箱的特性参数 第二节 T 211re.4液力传动箱的特点 一、命名规则: T211re.4液力传动箱是铁路工程车辆专用设备,其命名

规则如下: 二、T211re.4液力传动箱的特点 T211re.4液力传动箱其输入功率科大350kW,采用全新的福伊特驱动控制器(VTDC)可以直接安装在传动箱上并录入运行数据。另外还具有监控诊断功能,液力制动可以通过联合制动的方式整合进入车辆制动系统以及性能的高可靠性。

第二章 T211re.4液力传动箱的结构 第一节 T211re.4液力传动箱的组成 一、液力传动箱组成 T211re.4液力传动箱由液力制动、液力液力变扭器、液力耦合器、换向机构、电气控制模块VTIC及部分组成,其外形如图2-1所示。其输入、输出侧分别如图2-2、2-3所示。 图2-1 T211re.4液力传动箱外形图

其液力传动箱包括机械部分和液力部分组件,其结构如图2-4所示。 二、机械组件 机械组件包括增速齿轮、扭转减振器、换向装置、齿轮变速器。 图2-2 T211re.4液力传动箱输入侧 1-输入装置

图2-3 T211re.4液力传动箱输出侧 2-输出装置 图2-4 转动装置组件 1-输出装置;2-增速齿轮;3-输入装置;4-液力偶合器;5-液力变扭器 6-机械部件;7-换向装置的幵关轴 传动箱输入轴(3)直接与柴油机相连,通过一对增速齿轮(2)将转速提升至液力元件的工作转速,变扭器(5)和偶合器(4)的泵轮都装在泵轮轴上,两者的涡轮都装在与传动箱输出相连的涡轮轴上,涡轮轴再通过一系列的机械齿轮最终驱动传动箱输出(1),通过换向离合器(7)的作用,使传动链里机械齿轮(6)的数量增减,实现换向。

液力变矩器评价指标及与发动机共同工作特性

液力变矩器评价指标 反映液力变矩器主要特征的性能有如下一些:变矩性能,自动适应性能,经济性能(效率特性),负荷特性,透穿特性和容能特性。 一、变矩性能 变矩性能是指液力变矩器在一定范围内,按一定规律无级地改变由泵轮轴传至涡轮轴的转矩值的能力。变矩性能主要用无因次的变矩比特性曲线)(i f K =来表示。 作为评价液力变矩器变矩性能好坏的指标是如下两种工况的K 值:一是i =0时的变矩比值0K ,通常称之为起动变矩比(或失速变矩比);二是变矩比K =1 时的转速比i 值,以M i 表示,通常称作偶合器工况点的转速比,它表示液力变矩 器增矩的工况范围。 一般认为0K 值和M i 值大者,液力变矩器的变矩性能好。但实际上不可能两 个参数同时都高,一般0K 值高的液力变矩器,M i 值小。因此,在比较两个液力 变矩器的变矩性能时,应该在0K 值大致相同的情况下,来比较M i 值;或者在M i 近似相等的情况下,来比较0K 值。 二、自动适应性 自动适应性是指液力变矩器在发动机工况不变或变化很小情况下,随着外部阻力的变化,在一定范围内自动地改变涡轮轴上的输出力矩T M -和转速T n ,并处于稳定工作状态的能力。液力变矩器由于变矩性能均可获得单值下降的)(T T n f M =-的曲线,而具有自动适应性。自动适应性是液力变矩器最重要的性能之一,因为利用液力变矩器的这一性能,就可以制造自动的液力机械变速箱。

三、经济性能(或效率特性) 经济性能是指液力变矩器在传递能量过程中的效率。它可以用无因次效率特性()f i η=来表示。 一般评价液力变矩器经济性能有两个指标:最高效率值max η和高效率区范围 的宽度。后者一般用液力变矩器效率不低于某一数值(如对对工程机械取75%η=,对汽车取80%η=)时所对应的转速比i 的比值21 i d i η=来表示。1i 、2i 分别为η不小于某一值的最低和最高转速比。通常认为,高效率范围d η越宽,最高效率值max η的值越高,则液力变矩器的经济性能越好。但实际上,对各种液力变矩器来说,这两个要求往往是矛盾的。 四、负荷特性 液力变矩器的负荷特性是指它以一定的规律对发动机施加负荷的性能。 由于发动机与液力变矩器的泵轮相连,并驱动泵轮旋转,因此,液力变矩器施加于发动机的负荷性能完全可由泵轮的转矩变化特性决定。 52B B B M gD n λρ= 在工作油一定,有效直径D 一定时,液力变矩器在任一工况i 时5B gD c λρ=为常数,因此,泵轮的转矩B M 与其转速B n 的平方成正比。即 2B B M cn = 这是一条通过原点的抛物线,通常称之为液力变矩器泵轮的负荷抛物线。负荷抛物线比较清楚地表明随着泵轮B n 的不同所能施加于发动机的负荷。 五、透穿性能 液力变矩器的透穿性能是指液力变矩器涡轮轴上的转矩和转速变化时,泵轮轴上的扭转和转速相应变化的能力。

阻变随机存储器(RRAM)综述(自己汇总整编)

.- 目录 引言 (1) 1 RRAM技术回顾 (1) 2 RRAM工作机制及原理探究 (4) 2.1 RRAM基本结构 (4) 2.2 RRAM器件参数 (6) 2.3 RRAM的阻变行为分类 (7) 2.4 阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5 RRAM与忆阻器 (30) 3 RRAM研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻 变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

相关主题
文本预览
相关文档 最新文档